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1  |  INTRODUC TION

The long arm of chromosome 2 is unique in human autosomes, 
originating from the head- to- head fusion of two ancestral chromo-
somes at 2q13 with the ancestral centromere at 2q21.1 Terminal or 
interstitial deletion of the long arm of chromosome 2 is a rare copy 
number variations (CNVs), with approximately 100 cases reported in 
available literature.2 Furthermore, this deletion has been associated 

with epilepsy, intellectual disability, developmental delay, cardiovas-
cular malformation, hypospadias and cryptorchidism, digital abnor-
malities, and other visceral organ anomalies.3 Clinical manifestations 
vary greatly based on the size and location of the deletion.

A deletion involving 2q24.3 has been previously reported, and 
the patient exhibited psychomotor retardation, low set ears, cranial 
sutural irregularities, and laryngomalacia.4 Microdeletion of 2q31.1 
is deemed a clinically recognizable gene syndrome characterized by 
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Abstract
Background: Terminal or interstitial deletion of chromosome 2q is rarely reported but 
clinically significant, which can result in developmental malformations and psychomo-
tor retardation in humans. In the present study, we analyzed this deletion to compre-
hensively clarify the relationship between phenotype and microdeletion region.
Methods: We collected clinical records of the fetus and summarized patient symp-
toms. Subsequently, genomic DNA was extracted from fetal tissue or peripheral blood 
collected from parents. In addition, whole- exome sequencing (WES) and copy number 
variation sequencing (CNV- seq) were performed.
Results: The fetus presented a previously unreported interstitial deletion of 2q24.3-
	q32.1.	WES	and	CNV-	seq	revealed	a	de	novo	18.46 Mb	deletion	at	2q24.3-	q32.1,	a	
region	involving	94	protein-	coding	genes,	including	HOXD13, MAP3K20, DLX1, DLX2, 
SCN2A, and SCN1A. The fetus had upper and lower limb malformations, including 
camptodactyly and syndactyly, along with congenital cardiac defects.
Conclusion: Herein, we report a fetus with a novel microdeletion of chromosome 
2q24.3- q32.1, likely a heterozygous pathogenic variant. Haploinsufficiency of 
HOXD13 might be related to limb deformity in the fetus.
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short stature, moderate- to- severe developmental delay, microceph-
aly, hypotonia, specific craniofacial dysmorphisms, and upper/lower 
limb deformities associated with HOXD genes.5 Previously, chromo-
some deletions were discovered by Giemsa banding.6 Chromosome 
deletions spanning over 5 Mb are microscopically visualized on 
chromosome- banded karyotypes. Given the development of next- 
generation sequencing technology, CNV sequencing (CNV- seq) has 
been widely employed in recent years. Compared with conventional 
methodology, CNV- seq has advantages such as high throughput, 
high resolution, and relatively low cost.7 Moreover, CNV- seq can de-
tect	deletions	above	100 Kb.

Herein, we describe a novel interstitial heterozygous deletion 
that encompasses the 2q24.3- q32.1 chromosomal region, as deter-
mined using CNV- seq and whole exosome sequencing (WES). The 
deletion	was	found	to	affect	94	genes,	of	which	33	are	associated	
with diseases, including HOXD13, MAP3K20, DLX1, DLX2, SCN2A, 
and SCN1A. We analyzed the clinical features and genes on the de-
letion region to further interpret the relationship between the dele-
tion region and phenotype.8

2  |  METHODS

2.1  |  Participants

The proband and parents were enrolled at The First Affiliated 
Hospital of Wenzhou Medical University. Written consent was 
obtained from the parents of the fetus prior to commencing the 
study. All study protocols were reviewed and approved by the eth-
ics committees of The First Affiliated Hospital of Wenzhou Medical 
University. Relevant clinical records (symptoms, appearance and 
duration of symptoms, physical and ultrasound examination) were 
collected and examined.

2.2  |  DNA extraction

According to the manufacturer's standard instructions, genomic 
DNA was extracted from the fetal muscle and his parents' periph-
eral blood samples conserved in EDTA using the Tissue Genome 
DNA Extraction Kit DP341 and Blood Genome DNA Extraction Kit 
DP329	(TianGen).	DNA	purity	and	concentration	were	determined	
using the Nanodrop ND- 1000 Spectrophotometer (Thermo Fisher 
Scientific).	Genomic	DNA	was	stored	at	−20°C	until	use.

2.3  |  WES

Briefly,	ultrasound	was	used	to	break	genomic	DNA	into	250–	300 bp	
fragments. DNA libraries were constructed by end filling, adapter 
ligation, and polymerase chain reaction amplification.9 Then, the 
DNA libraries underwent hybridization capture and were enriched 
by the xGen Exome Research Panel v2.0 (IDT). High throughput 

sequencing was performed on the DNBSEQ- T7 platform (Beijing 
Genomics Institute). After filtration and quality control, clean reads 
were aligned to the University of California Santa Cruz (UCSC) 
human	reference	genome	(hg19)	using	the	Burrows-	Wheeler	map-
ping algorithm.10 Combined with OMIM, HGMD, SwissVar, Clinvar, 
and dbSNP, the genetic variation was analyzed, classified, and anno-
tated with the American College of Medical Genetics (ACMG).

2.4  |  CNV- seq

The DNA libraries were single- ended sequenced on the DNBSEQ- T7 
platform (Beijing Genomics Institute), with a sequencing depth of 
0.2x. Raw sequencing reads were processed according to the qual-
ity	 control	 standards	 and	 subsequently	 compared	 with	 the	 hg19	
of the UCSC using Burrows- Wheeler Alignment.10 Using read 
counts, Z- scores, and log2Ratio, the in- house bioinformatics pipe-
line evaluated CNVs.7 The candidate CNVs were filtered with the 
Accurate Diagnosis of Genetic Diseases Cloud Platform (Quanpu). 
Subsequently, CNVs were annotated based on the publicly available 
databases, including Decipher, Clinvar, ISCA, OMIM, ClinGen and 
UCSC (http://genome.ucsc.edu).11 Finally, according to the ACMG 
guidelines, CNVs were divided into five categories: pathogenic, 
likely pathogenic, likely benign, uncertain clinical significance, and 
benign.12

3  |  RESULTS

3.1  |  Clinical data

The male fetus (the proband) was the second child of young and non- 
consanguineous parents. The maternal pregnancy was uncomplicated. 
Family history included a spontaneous abortion (embryo arrest) at 
8 weeks	of	 gestation.	No	consanguinity	was	 reported.	Prenatal	 care	
showed no history of exposure to radiation and toxic agents. At the 
23rd week of gestation, the fetus exhibited increased anterior nasal 
skin and nuchal fold (Figure 1A and B). The echocardiogram indicated 
ventricular septal defect and aortic dysplasia (Figure 1C– F). A routine 
prenatal ultrasound revealed abnormal fetal hand posture and an in-
creased distance between fingers (Figure 1G– I). In addition, the gall-
bladder was unclear on the ultrasound image, along with the presence 
of polyhydramnios. The pregnancy was terminated, and the fetus was 
aborted	 owing	 to	 multiple	 malformations	 at	 27 weeks	 of	 gestation,	
with	a	weight	of	875 g	(10th–	25th	percentile),	length	of	35 cm	(25th–	
50th percentile), and a head circumference of 23.5 cm (10th– 25th 
percentile). On physical examination, the fetus exhibited dysmorphic 
features, including proximally placed fourth finger and camptodactyly. 
As shown in the ultrasonic image, the distance between the thumb, 
index finger, and middle finger was increased, with splaying between 
the index and middle fingers (Figure 1J). His feet were symmetrical 
with complete cutaneous syndactyly of the second and third digits 
(Figure 1K). The necropsy was refused.

http://genome.ucsc.edu
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3.2  |  CNVs detection

WES revealed a heterozygous deletion at genomic position (chr2: 
165125352–	183,581,904)	 (Assembly	 hg19).	 CNV-	seq	 confirmed	
the	likely	18.46 Mb	pathogenic	CNVs	on	chromosome	2	(Figure 2A). 
This position corresponded to the 2q24.3 and 2q32.1 cytogenetic 

bands. The chromosomal constitution was as follows: 46,XY 
array2q24.3q32.1	 (165125352–	183581904) × 1.	 The	 deletion	 af-
fected	 94	 protein-	coding	 genes,	 including	 HOXD13, MAP3K20, 
DLX1, DLX2, SCN2A, and SCN1A (Figure 2B). Both parents did not 
carry abnormal CNVs, which indicated that the deletion in the 
proband was de novo.

F I G U R E  1 The	ultrasound	image	of	
the fetus. (A) The anterior nasal skin is 
approximately	0.64 cm	thick.	(B)	The	
nuchal	fold	is	thickened	to	1.04 cm.	(C)	
The continuity of the ventricular septum 
is	interrupted	by	approximately	0.25 cm.	
(D) Color Doppler flow imaging shows 
a bidirectional shunt on the ventricular 
level. (E) In the three- vessel and trachea 
view, the ascending aorta is significantly 
narrower than the pulmonary artery. The 
transverse	aortic	arch	is	0.15 cm	wide.	(F)	
The inner diameter of the aortic isthmus 
is	0.13 cm.	(G–	J)	A	wide	gap	between	the	
thumb, index finger, and middle finger. 
Camptodactyly. Proximally placed fourth 
finger. (K) Syndactyly between second 
and third toes

(A)

(C)

(E)

(G)

(J) (K)

(H) (I)

(F)

(D)

(B)
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4  |  DISCUSSION

Herein, the proband presented camptodactyly, syndactyly, proxi-
mally placed fourth finger, ventricular septal defect, and aortic dys-
plasia. We identified a novel heterozygous interstitial deletion at 
chromosome	 2q24.3–	32.1	 (chr2:	 165125352–	183581904),	 which	
could have markedly contributed to the fetal phenotype. The dele-
tion	 involved	94	protein-	coding	 genes,	 including	33	morbid	 genes	
related to recognizable clinical phenotypes. Among these, HOXD13, 
SCN2A, and SCN1A have exhibited haploinsufficiency in ClinGen.13 
Table 1 summarizes the clinical features of patients with chromo-
some deletion from 2q24.3 to 32.1.3,6,14– 17

In this study, the most prominent feature was deformity of 
the upper and lower limbs, including camptodactyly, syndactyly, 
and clinodactyly. All reported patients with 2q24.3– 32.1 dele-
tions appear to present limb abnormalities. Overall, 8/11 patients 
presented syndactyly, 4/11 patients exhibited camptodactyly, 
and 8/11 patients presented clinodactyly. As noted in mouse mu-
tants, the HOXD cluster and surrounding regulatory sequences 
are considered the underlying cause of the limb phenotype in this 
region.3,18 Deletion, translocation, or disruption of this locus can 
reportedly cause camptodactyly, syndactyly, brachydactyly, ectro-
dactyly, and polydactyly.14,19 Considering the current case study, 

the deletion contained HOXD13, an essential gene for regulating 
and developing the genital tract and autopod that forms hands and 
feet.20 In addition, it has been suggested that the HOXD cluster 
can regulate the size and number of digits in a dose- dependent 
manner, indicating a negative relationship between the HOXD 
gene and digit number rather than qualitative functions.21,22 In 
the presence of multiple homozygous HOXD mutations, major limb 
defects are likely to occur.22 Heterozygous deletion of HOXD13 
may lead to HOXD13 haploinsufficiency. The heterozygous loss- 
of- function variants reduce the production of functional protein 
binding to DNA, while sustaining the basic function of HOXD13 
protein.23 Therefore, it exhibits a milder phenotype, similar to that 
observed in our proband and shows incomplete penetrance with 
some frequency.24,25 Meanwhile, it explains the limb phenotypes 
with different reported severity.

Spielmann et al.26 have found that Map3k20, a gene within the 
deletion region, is expressed in developing limbs. Furthermore, the 
authors summarized the clinical manifestations of Map3k20 muta-
tions, including split- foot malformation with mesoaxial polydactyly, 
which is related to hearing loss and exhibits a possible clinical phe-
notype of cutaneous syndactyly.26,27 Herein, cutaneous syndactyly 
was an important malformation in the examined fetus. However, 
according to mouse experiments and reported pedigrees, the 

F I G U R E  2 Copy	number	variations	(CNVs)	detection.	(A)	CNV	sequencing	shows	an	18.46 Mb	deletion	circled	in	red.	The	interstitial	
deletion is at chromosome 2q24.3– 32.1. (B) The protein- coding genes are located in the deleted region. The genes marked in blue are related 
to the disease
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heterozygous deletion of Map3k20 did not induce abnormal mor-
phological changes.

Severe limb deformities, including split hand and monodactyly, 
have also been reported, and DLX1 and DLX2 are speculated to be 
novel candidate genes.5,14,28 However, upper and lower limb mal-
formations in the examined fetus did not confirm this possibility. 
Theisen et al.29 have reported individuals exhibiting deleted DLX1/
DLX2 integrally, and no obvious limb phenotype was detected. In 
mutant mouse experiments, heterozygous/homozygous DLX1/
DLX2 knockouts did not induce limb abnormalities, but could pro-
duce marked craniofacial and spinal abnormalities.30 Facial dysmor-
phism is a well- known feature in 2q31.1 microdeletion; however, no 
gene cluster has been defined. Interestingly, the examined fetus had 
no facial deformities, which could be attributed to the distinct ex-
pression of this gene in different species. Further experiments are 
warranted to determine whether DLX1/DLX2 deletion could explain 
craniofacial abnormalities.

Chromosomal deletion is frequently associated with congen-
ital heart defects (CHD) of unknown pathogenesis. Examining the 
echocardiogram, our proband exhibited a ventricular septal defect 
and aortic dysplasia. The ascending aorta was significantly narrower 
than the pulmonary artery in the three- vessel and trachea view. 
Based on the echocardiogram, the examined fetus did not exhibit 
large ventricular septal defects and abnormal left ventricular devel-
opment. Aortic dysplasia is primarily associated with chromosomal 
anomalies. Alison et al.31 have found that approximately 40% of pa-
tients with split hand and monodactyly mapped to chromosome 2 
exhibited CHD, and DLX genes might affect the migration of neural 
crest cells to influence the formation of cardiovascular derivatives.32 
Ventricular septal defect is the most frequently detected CHD. 
Overall, 4/11 patients were found to exhibit a ventricular septal de-
fect. TTN is located in the deleted region, encodes titin protein, and 
is overexpressed in the fetal heart and skeletal muscle. The large 
spectrum of observed cardiologic phenotypes suggests that titin- 
mediated defects (caused by TTN mutations) could underlie certain 
cardiac conditions with or without skeletal muscle involvement, such 
as ventricular septal defect.33 TTN mutations are also associated 
with dilated cardiomyopathy.34 In addition, ATF- 2, one of the deleted 
genes, is critical for cardiomyocyte differentiation.35 ATF- 2 has been 
shown to regulate the expression of five genes associated with left 
ventricular outflow tract obstruction.36 Moreover, it suggests that 
the heterozygous ATF- 2 deletion could lead to heart defects.

SCN2A and SCN1A, two genes detected in the current fetus, are 
known to be associated with epilepsy.37 Haploinsufficiency of SCN2A 
and SCN1A is reportedly responsible for nervous system dysfunc-
tion. SCN1A has been associated with several epilepsy syndromes 
with distinct clinical severities, especially the Dravet syndrome 
(DS), a refractory childhood epilepsy characterized by intractable 
seizures, developmental disorders, and increased mortality.38 The 
heterozygous deletion of SCN2A mainly induces autism spectrum 
disorders and intellectual disability.39 However, given the death of 
our proband, several potential symptoms could not develop, and no 

neurological examinations, such as cerebral magnetic resonance and 
electroencephalogram, could be performed. Deletion of SCN2A and 
SCN1A genes did induce notable clinical effects in our proband.

In summary, we report a de novo interstitial deletion of 
2q24.3-	q32.1.	 This	 genomic	 segment	 involves	 94	 protein-	coding	
genes, and 33 of these are related to recognizable clinical pheno-
types. This case study further supports the role of HOXD13 hap-
loinsufficiency in limb defects. Furthermore, we identified possible 
causative genes by analyzing gene function and phenotype. Certain 
defects may be due to the cumulative effect of genes in deleted 
fragments.
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