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Abstract: Skeletal muscle repair is initiated by local inflammation and involves the engulfment of
dead cells (efferocytosis) by infiltrating macrophages at the injury site. Macrophages orchestrate
the whole repair program, and efferocytosis is a key event not only for cell clearance but also for
triggering the timed polarization of the inflammatory phenotype of macrophages into the healing
one. While pro-inflammatory cytokines produced by the inflammatory macrophages induce satellite
cell proliferation and differentiation into myoblasts, healing macrophages initiate the resolution
of inflammation, angiogenesis, and extracellular matrix formation and drive myoblast fusion and
myotube growth. Therefore, improper efferocytosis results in impaired muscle repair. Retinol saturase
(RetSat) initiates the formation of various dihydroretinoids, a group of vitamin A derivatives that
regulate transcription by activating retinoid receptors. Previous studies from our laboratory have
shown that RetSat-null macrophages produce less milk fat globule-epidermal growth factor-factor-8
(MFG-E8), lack neuropeptide Y expression, and are characterized by impaired efferocytosis. Here,
we investigated skeletal muscle repair in the tibialis anterior muscle of RetSat-null mice following
cardiotoxin injury. Our data presented here demonstrate that, unexpectedly, several cell types
participating in skeletal muscle regeneration compensate for the impaired macrophage functions,
resulting in normal muscle repair in the RetSat-null mice.

Keywords: cardiotoxin injury; retinol saturase; neuropeptide Y; MFG-E8; efferocytosis; skeletal
muscle repair

1. Introduction

Skeletal muscle is frequently injured, but temporary damage is compensated by the
remarkable regenerative capacity of this tissue [1]. The regeneration process involves
several interrelated phases. In the first inflammation phase, tissue-resident macrophages
(Mφs) sensing the damage initiate a local, sterile inflammation and recruit further immune
cells to the injury site. Then, quiescent myogenic stem cells, called satellite cells (SCs),
become activated and differentiate into myoblasts, which proliferate and fuse. Finally, in
the tissue remodeling phase, the growth of muscle fibers, resolution of inflammation,
revascularization, and innervation of new fibers take place [2].
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In the inflammation phase, the first wave of arriving immune cells, neutrophils secrete
chemokines and pro-inflammatory cytokines to recruit blood-derived monocytes. Follow-
ing tissue entry, these monocytes differentiate into Ly6C+ M1 polarized pro-inflammatory
Mφs, which produce further inflammatory mediators, such as interleukin (IL)-6, IL-1, tumor
necrosis factor- (TNF)-α, and nitric oxide (NO), which activate quiescent SCs to proliferate
and differentiate into myoblasts [3,4]. Mфs also clear the necrotic myofibers and dying neu-
trophils in the injured tissue. This efferocytosis process polarizes them to Ly6C− M2-like
healing Mφs, which guide the resolution of inflammation and full tissue regeneration [5].
To do so, healing Mφs secrete anti-inflammatory lipid mediators [6] and cytokines, such as
IL-10, thereby limiting inflammation and favoring myoblast differentiation [7]. These cells
also release growth factors, e.g., transforming growth factor (TGF)-β, which induces new
extracellular matrix formation [8], and the TGF-β family member growth differentiation
factor (GDF)3, which specifically stimulates myogenic cell fusion to form new myofibers [9].
Thus, Mφs play a central role in guiding the whole muscle-regeneration process, and the
timed switch between their two main subsets, the inflammatory and healing Mφs, is key to
proper repair [10]. Increasing evidence indicates that when efferocytosis and consequently
the Mφ polarization fail, regeneration also fails. Thus, loss of efferocytosis receptors, such
as scavenger receptor class BI [11], Mer tyrosine kinase [12], and integrin β3 coreceptor
transglutaminase (TG)2 [13], or loss of the macrophage polarization mediating transcription
factor peroxisome proliferator-activated receptor (PPAR)γ [9] have been reported to result
in impaired skeletal muscle repair following cardiotoxin (CTX)-induced injury.

Interestingly, both efferocytosis [14] and myoblast fusion [15] require the appearance of
phosphatidylserine (PS) on the cell surface and involve the same PS binding receptors. Thus,
the efferocytosis receptors brain angiogenesis inhibitor (BAI)1 [16], stabilin-2 [17], TG2 [13],
Axl [12], and integrin β3 [18] were all found to participate in myoblast differentiation and
fusion. Some of the PS receptors directly bind PS, while others use bridging molecules
to form a link with PS. Integrins belong to the second group by using milk fat globule-
epidermal growth factor-factor 8 (MFG-E8) as a bridging molecule [19]. Both Mφs [19] and
myoblasts [20] secrete MFG-E8, which binds with its RGD domain to the integrin receptor,
and with its gamma carboxylated glutamate side chains to PS [21].

Retinol saturase (RetSat) is an oxidoreductase enzyme that catalyzes the conversion
of all-trans retinol to all-trans-13,14-dihydroretinol [22]. All-trans-13,14-dihydroretinol is
oxidized in vivo to all-trans-13,14-dihydroretinoic acid, a selective agonist of the retinoic
acid receptor, and possibly to 9-cis-13,14-dihydroretinoic acid [23], which is identified as
a physiologically relevant retinoid X receptor agonist [24]. Recent work in our laboratory
has shown that the loss of RetSat alters Mφ differentiation at the monocyte stage, resulting
in Mφs which express less MFG-E8 and practically no neuropeptide Y (NPY) [25]. As a
consequence of less MFG-E8 production, RetSat-deficient Mφs show impaired phago-
cytic capacity [25]. Due to the impaired macrophage efferocytosis, and also due to the
fact that both MFG-E8 and NPY would have anti-inflammatory activity by promoting
Mφ polarization [19,26,27], loss of RetSat results in the development of systemic lupus
erythematosus-like autoimmunity in aged female mice, similar to other mice that show
impaired efferocytosis [28]. In the present study, we investigated whether the loss of RetSat
affects the ability of skeletal muscle to be repaired in mice.

2. Materials and Methods
2.1. Reagents

All reagents were obtained from Sigma-Aldrich (Budapest, Hungary), except where
indicated otherwise.

2.2. Experimental Animals

Experiments were carried out using 2–6-month-old young adult male C57BL/6J
RetSat+/+ mice and their full-body RetSat−/− littermates [29]. Mice were bred in het-
erozygous form under specific pathogen-free conditions in the central animal facility of the
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University of Debrecen. To check whether the RetSat−/− mice are indeed full knock out,
we determined the NEO cassette expression by qRT-PCR in several tissues and found it to
be expressed (Supplementary Figure S1). All animal experiments were approved by the
Animal Care and Use Committee of the University of Debrecen, with permission numbers
7/2016 and 7/2021/DEMÁB.

2.3. Cardiotoxin-Induced Muscle Injury Model

Mice were anesthetized with 2.5% isoflurane using a SomnoSuite device. The muscle
damage was induced by injecting into the tibialis anterior (TA) muscle 50 µL of 12 µM CTX
(Latoxan, Valence, France), dissolved in phosphate-buffered saline (PBS). This concentration
of CTX induces severe muscle injury, facilitating detection of more significant alterations
in the subsequent regeneration process in the absence of regeneration–related genes but
still allows full regeneration as detected 3 months after the injury. Mice were sacrificed,
and TA muscles were harvested at various time points following injury and processed for
further experiments.

2.4. Hematoxylin/Eosin and Immunofluorescent Staining of the Regenerating Muscle

TA muscles from control mice or at the indicated days post-injury were dissected for
histological assessment. The muscles were snap-frozen in liquid nitrogen-cooled isopentane
and kept at−80 ◦C. Seven micrometer cryosections were cut at−20 ◦C using a 2800 Frigocut
microtome (Leica, St Jouarre, France) and were kept at −20 ◦C until further analysis.
Hematoxylin/eosin (H&E) staining was performed to assess the overall morphology and
presence of necrotic fibers following injury. Images from the sections were taken using an
AMG EVOS cl microscope (Thermo-Fisher Scientific, Waltham, MA, USA).

To calculate the cross-sectional areas (CSA) and collagen-stained areas, frozen muscle
sections were incubated in 10 mM citric acid-sodium citrate buffer (pH 6.0) for 15 min then
in blocking solution (50% FBS in PBS) for 1 h at room temperature. After blocking, samples
were labeled with Dylight 488 conjugated anti-laminin B (PA5-22901, Invitrogen, Carlsbad,
CA, USA) (1:100) and anti-collagen 1 antibody (SAB4500362, Sigma-Aldrich (Budapest,
Hungary)) (1:100) at 4 ◦C overnight followed by Alexa Fluor 488 conjugated Goat anti-
Rabbit IgG secondary antibody followed by washing three times with PBS. The nuclei
were labeled with 4 µg/mL 4′,6-diamidino-2-phenylindole (DAPI) (Invitrogen, Carlsbad,
CA, USA), and the slides were mounted with glass coverslips. Images were taken on a
FLoid Cell Imaging Station fluorescent microscope (Thermo-Fisher Scientific, Waltham, MA,
USA) and analyzed using ImageJ v1.52 software (National Institutes of Health, Bethesda,
MD, USA) with a muscle morphometry plugin. Areas with fibers containing centrally-
located nuclei were considered regenerating muscle parts. CSAs are reported in µm2, while
collagen content is reported as the percentage of the total examined regenerating area.

2.5. Quantification of Necrotic Areas

Necrotic myofibers were defined as pink pale patchy fibers infiltrated by basophil
single cells and quantified as described previously [11]. Briefly, 4 non-overlapping micro-
scope view field areas were digitally captured from 6–8 H&E stained TA muscle sections at
200-fold magnification. The percentage of necrotic area/relative to the total regenerating
area was calculated after manual outlining of the necrotic fibers in the sections.

2.6. Isolation of Muscle-Derived CD45+ Leukocytes

Muscle-derived CD45+ cell isolation was carried out as described previously [12].
Briefly, TA muscles were removed at 2, 3, and 4 days post-injury and dissociated in RPMI
containing 0.2% collagenase II (Thermo-Fisher Scientific, Waltham, MA, USA) at 37 ◦C for
1 h and filtered stepwise through 100 µm and 40 µm filters. CD45+ cells were isolated using
magnetic sorting (Miltenyi Biotec, Gladbach, Germany).
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2.7. Generation of Bone Marrow-Derived Macrophages (BMDMs) for NEO Cassette
Expression Analysis

Bone marrow progenitors were obtained from the femur of 2 to 4-month-old RetSat +/+

and RetSat−/− mice by lavage with sterile physiological saline. Cells were differentiated for
5 days in DMEM medium supplemented with 10% conditioned medium derived from L929
cells, as a source for macrophage colony-stimulating factor (M-CSF); and 2 mM glutamine,
100 U/mL penicillin, and 100 mg/mL streptomycin at 37 ◦C in 5% CO2. Non-adherent
cells were washed away every second day.

2.8. Gene Expression Analysis

Total RNA of muscle-derived CD45+ cells, BMDMs, and different organs homogenized
in TRIzol with a Shakeman homogenizer (BioMedical Science, Tokyo, Japan) were isolated
with TRIzol reagent (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s
instructions. Total RNA was reverse transcribed into cDNA using a High Capacity cDNA
Reverse Transcription Kit (Thermo-Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s instructions. Quantitative RT-PCR was carried out in triplicate using FAM-
labeled MGB assays (Thermo-Fisher Scientific, Waltham, MA, USA) on a Roche LightCycler
LC 480 real-time PCR instrument. Relative mRNA levels in the case of CD45+ cells were
calculated using the comparative CT method and normalized to beta-actin (β-actin) mRNA.
In the case of the TA muscle samples, gene expression was normalized to the total RNA
content (200 ng) of the samples. Catalogue numbers of the TaqMan assays used were the fol-
lowing: Actb Mm02619580_g1, Tgfb1 Mm01178820_m1, MyoD1 Mm00440387_m1, Myhc1
Mm01332489_m1, Myog Mm00446194_m1, Tnf Mm00443258_m1, Gdf3 Mm00433563_m1,
IL1B Mm00434228_m1, IL10 Mm01288386_m1, IL6 Mm00446190_m1, IL4 Mm00445259_m1,
PPARg Mm00440940_m1, Arg1 Mm00475988_m1, MFG-E8 Mm00500549_m1, MCP-1
Mm00441242_m1, Pax7 Mm00834082_m1, RetSat Mm00458863_m1, NPY Mm01410146_m1,
eNOS Mm01164908_m1, iNOS Mm00440502_m1, NEO cassette NEOCASSETTE.

2.9. Quantification of Satellite and Fibrocyte-Adipocyte Progenitor Cells in the TA Muscle
Following CTX-Induced Injury

For intramuscular SC and fibro adipogenic precursor (FAP) cell detection, TA was
collected at day 4 post-injury and dissociated in RPMI containing 0.2% collagenase II
(Gibco/Thermo-Fisher Scientific, Waltham, MA, USA) at 37 ◦C for 1 hr and filtered through
a 100 µm filter. Prior to staining, ~225,000 pcs polystyrene microbeads (8 mm, 78511)
were added to the muscle cell suspension samples to determine the absolute cell numbers
later. The identification of the muscle precursor cells was based on the α7-integrin (PE-
conjugated, 130-120-812, Miltenyi Biotec, Bergisch Gladbach, Germany) staining of the
SCs, and the CD140a (BV711 conjugated, 740740, BD Biosciences, San Jose, CA, USA)
and Sca1 (BV605 conjugated, 563288, BD Biosciences, San Jose, CA, USA) staining of
the FAPs. Other muscle tissue-resident and immigrant cell types were gated from the
measurement by specific staining with a moisture of monoclonal antibodies, including
biotin anti-mouse CD45 (103104, BioLegend, San Diego, CA, USA), biotin anti-mouse
CD31 (102404, BioLegend, San Diego, CA, USA), and biotin anti-mouse Ter119 (79748,
BioLegend, San Diego, CA, USA). In the second step, APC-conjugated streptavidin (405207,
BioLegend, San Diego, CA, USA) was added to the cells. Before the measurement, cells
were washed with 0.5% BSA-physiological saline and suspended in 0.5% BSA-physiological
saline supplemented with SYTO16 green-fluorescent nucleic acid stain (S7578, Invitrogen,
Carlsbad, CA, USA) (5000× dilution) and 7-AAD non-cell-permeable dead cell stain (A1310,
ThermoFisher, Waltham, MA, USA) (1000× dilution) to exclude the injured and dead cells.
The measurement was performed with a FACS Aria III cytometer (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) equipped with violet (405 nm), blue (488 nm), yellow
(561 nm), and red (633 nm) lasers. The measurement of the microbeads was based on their
intense side directional light scattering (SSC) properties. The living cells were gated to
CD45/CD31/Ter119 positive and negative populations according to their APC fluorescence.
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The APC non-stained cells mainly involved the Sca1 bright, CD140a+, integrin-α7− FAP
cells, and the integrin-α7+, Sca1−, CD140a− SC cells. The absolute cell count was based on
the ratio of the cells of interest to the microbeads within the measured samples.

2.10. Quantification of Intramuscular Immune Cells by Flow Cytometry

The magnetically separated muscle-derived CD45+ cells were stained with a combina-
tion of Alexa Fluor 488-conjugated anti-F4/80 antibody (MF48020, Invitrogen, Carlsbad,
CA, USA) and Alexa Fluor 647-conjugated anti-Ly6G/Ly6C (GR-1) antibodies (108418,
BioLegend, San Diego, CA, USA) at room temperature for 15 min. The cells were gated
based on their forward and side scatter characteristics. Macrophages were gated as GR-1–

and F4/80+, while neutrophils as F4/80– and GR-1+ cells. This gating strategy was pre-
sented in our previous paper [12]. F4/80+ macrophages were also analyzed for expression
of Ly6C, CD206, or major histocompatibility complex (MHC)II, following staining with the
corresponding antibodies, Ly6C PerCP-Cy5.5 (128012, BioLegend, San Diego, CA, USA),
CD206-PE (141705, BioLegend, San Diego, CA, USA), or MHCII-FITC (107605, BioLegend,
San Diego, CA, USA), respectively. Fluorescent intensity was detected with a Becton
Dickinson FACSCalibur instrument (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA).

2.11. In Vitro Phagocytosis Assay by F4/80+ Cells

Phagocytosis experiments were carried out as described previously [30]. Briefly, target
C2C12 cells were induced to undergo necrosis by heating the cells at 65 ◦C for 10 min. Some
C2C12 cells were labeled with 1 µM CellTracker Deep Red Dye (ThermoFisher, Waltham,
MA, USA), and some were not. Since our previous studies indicated that attenuated
efferocytosis of RetSat-null macrophages is related to a decreased production of MFG-E8
during long-term efferocytosis [25], to induce MFG-E8 production, first the non-labeled
cells were added to 5-carboxyfluorescein diacetate (CFDA) (6 µM)-stained F4/80+ cells
isolated from the day 4 CTX-injured collagenase-treated TA muscles by magnetic beads
(Miltenyi Biotec, Gladbach, Germany) at 5:1 ratio (dead cell/F4/80+ cell) plated in 8-well
chamber slides (Gräfelfing, Germany) (3 × 105/well). After 5 h co-culture, F4/80+ cells
were washed and further incubated with labeled necrotic C2C12 cells for an additional
2 h, after which target cells were washed away extensively. In some cultures, Mφs were
detached by trypsinization, and the percentage of engulfing cells was determined using a
Becton Dickinson FACSCalibur flow cytometer (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA). Some other cultures were fixed in 1% paraformaldehyde. Representative
fluorescent images were taken at a FLoid Cell Imaging Station.

2.12. Statistical Analysis

All the data presented represent the results of at least three independent experiments,
and all data are presented as dots or mean or median ± SD or ± SEM. Statistical analysis
was performed using two-tailed, unpaired Student’s t-test and ANOVA with post-hoc
Tukey HSD test. The equal variance of the sample groups was tested by an F-test. * denotes
p < 0.05, ** denotes p < 0.01.

3. Results and Discussion
3.1. Loss of RetSat Does Not Alter the Regeneration Program in the Tibialis Anterior Muscle
Following Cardiotoxin Injury

To study the possible role of RetSat in muscle development, we compared the muscle
weights and the myofiber CSAs of control and CTX-treated TA muscles from RetSat+/+

and RetSat−/− mice. There was no significant difference between the body and TA muscle
weights of RetSat+/+ and RetSat−/− mice (Figure 1A,B). The mean and median CSA of the
control TA muscles were also similar between the two strains (Figure 1C), indicating that
embryonic TA muscle development is normal in the RetSat-deficient mice.
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days 10 and 22 post-CTX-injury in RetSat+/+ and RetSat−/− mice. (G) Myofiber size distribution in the 
control and regenerating RetSat+/+ and RetSat−/− TA muscles with their representative immunofluo-
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Figure 1. Normal muscle growth and regeneration in RetSat-deficient mice. (A) Body weight and
(B) muscle weight/body weight ratio in RetSat+/+ and RetSat−/− untreated mice. (C) Mean and
median myofiber cross-sectional area (CSA) of the TA muscles in RetSat+/+ and RetSat−/− un-
treated mice. (D) Muscle weight/body weight ratio of the regenerating TA muscles at days 10
and 22 post-CTX-injury in RetSat+/+ and RetSat−/− mice. (E) Mean and median myofiber CSAs of
the regenerating TA muscles at days 10 and 22 post-CTX-injury in RetSat+/+ and RetSat−/− mice.
(F) Percentage of newly formed myofibers containing two or more central nuclei, and mean num-
ber of central nuclei per fiber at days 10 and 22 post-CTX-injury in RetSat+/+ and RetSat−/− mice.
(G) Myofiber size distribution in the control and regenerating RetSat+/+ and RetSat−/− TA muscles
with their representative immunofluorescence pictures of laminin (green) and DAPI (blue) nuclear
staining. ImageJ software was used to examine 500 or more myofibers in each sample. Scale bars,
100 µm. The data are presented as a mean ± SEM (n = 6). Asterisks indicate statistical significance
(* p < 0.05); ns, not significant.

To investigate the effect of RetSat ablation on skeletal muscle regeneration, we induced
muscle damage by injecting CTX into the TA muscles and measured their weights and the
mean and median myofiber CSAs at days 10 and 22 post-injury. The weights and CSAs of
the regenerating muscles were also similar between the two strains (Figure 1D,E); neither
did we find a difference in the number of newly formed fibers with 2 or more central nuclei
or in the mean number of central nuclei per fiber, which are indicators of myoblast fusion
during the muscle regeneration, between RetSat+/+ and RetSat –/– mice determined at days
10 and 22 post-injury (Figure 1F). The fiber size distribution of the muscles before and after
injury was also similar between RetSat+/+ and –/– mice (Figure 1G).

Histological examination revealed no obvious morphological difference between the
control muscles of RetSat+/+ and RetSat−/− mice. On day 4, the regenerating muscles of
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both the wild-type and RetSat−/− mice displayed local necrosis and abundant leukocyte
infiltration (Figure 2). By day 10, most of the necrotic tissue was cleared from the muscles,
and by day 22 post-injury, the gross histological architecture of the muscles of both RetSat+/+

and RetSat−/− mice had been largely restored, and necrotic fibers were no longer visible.
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trigger muscle damage. Representative H&E-stained cross-sections of the TA muscles from RetSat+/+

and RetSat−/− mice before and 4, 10, and 22 days after CTX treatment (n = 4). Scale bars, 200 µm.

Previously, we detected lower phagocytic capacity of the Mφs in RetSat−/− mice [25]
and observed a similar finding when we used necrotic myoblasts as target cells in the
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in vitro phagocytosis assay performed by muscle-derived Mφs (Figure 3A,B); therefore,
we determined the sizes of the necrotic areas in control and regenerating TA muscles.
As shown in Figure 3C, we detected similar necrotic area sizes between the two strains of
mice, indicating that the in vivo clearance of dead fibers is not affected by the loss of RetSat.
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and 22-day regenerating muscles of RetSat+/+ and RetSat−/− mice. (E) Representative immunofluorescence 
pictures of type 1 collagen (green) and DAPI (blue) nuclear staining in control and 10-day regenerating 
TA muscles of RetSat+/+ and RetSat−/− mice. Scale bars, 100 μm. All data are expressed as mean ± SD (n = 
4). Asterisks indicate statistical significance (* p < 0.05, ** p < 0.01); nd, not detected. 

To assess the possible impact of RetSat ablation on gene expression and SC cell pro-
liferation and differentiation in the control and regenerating TA muscles, we determined 
the number of SC cells (Figure 4A) and the expression of myogenic genes, such as the 
Pax7, MyoD, and myogenin transcription factors involved in myoblast proliferation and 

Figure 3. Unaltered necrotic cell removal and collagen deposition in the TA muscles of RetSat-null
mice following CTX-induced damage. Decreased in vitro phagocytosis of necrotic C2C12 myoblasts
by muscle-derived RetSat−/− F4/80+ cells determined (A) by FACS analysis and (B) by visualizing
the number of engulfed cells. (C) Necrotic regions in the control and regenerating muscles of
RetSat+/+ and RetSat−/− mice at days 0, 10, and 22 post-CTX injury. (D) Quantification of collagen
1-positive regions in control and 10- and 22-day regenerating muscles of RetSat+/+ and RetSat−/−

mice. (E) Representative immunofluorescence pictures of type 1 collagen (green) and DAPI (blue)
nuclear staining in control and 10-day regenerating TA muscles of RetSat+/+ and RetSat−/− mice.
Scale bars, 100 µm. All data are expressed as mean ± SD (n = 4). Asterisks indicate statistical
significance (* p < 0.05, ** p < 0.01); nd, not detected.

During muscle repair, the deposition of extracellular matrix proteins is transiently
increased, which is required for the regulation of SC, and for myoblast proliferation and
differentiation [31]. Therefore, we decided to determine the amount of collagen 1 in the
control and regenerating TA muscles. In both mouse strains, there was a temporal increase
in collagen 1 deposition at day 10 post-injury, which decreased by day 22, as compared to
their own non-regenerating muscles; however, there was no significant difference between
the two strains (Figure 3D,E).

To assess the possible impact of RetSat ablation on gene expression and SC cell prolif-
eration and differentiation in the control and regenerating TA muscles, we determined the
number of SC cells (Figure 4A) and the expression of myogenic genes, such as the Pax7,
MyoD, and myogenin transcription factors involved in myoblast proliferation and differen-
tiation and that of the myosin heavy chain (MYHC)1 differentiation marker. During muscle
regeneration, the mRNA expression of Pax7, MyoD, and myogenin transiently increased,
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while that of RetSat and MYHC1 transiently decreased in the TA muscles; however, with
the exception of RetSat, there was no significant difference in their expression between the
two mouse strains (Figure 4B).
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Altogether, these data imply that loss of RetSat does not affect the number of SCs
in the skeletal muscle, nor does the loss of RetSat impact skeletal muscle development
or regeneration.

3.2. Decreased Recruitment of Mφs and Neutrophils after Injury in the Absence of RetSat

Following injury, muscle repair is initiated by the migration of inflammatory cells to
the injury site. To determine the composition of leukocytes in the early phase of muscle
regeneration, we performed a flow cytometric analysis of magnetically separated CD45+

cells from collagenase digested muscles. In accordance with previous observations, we
observed early infiltration of neutrophils at day 2 post-injury, followed by an increasing
number of Mφs at days 3 and 4 in wild-type mice. However, in the absence of RetSat, a
significantly decreased number of CD45+ cells infiltrated the injured muscle (Figure 5A). In
line with this observation, at day 2 post-injury, a significantly decreased gene expression
level of monocyte chemoattractant protein-1 (MCP-1) was detected (Figure 5B), whereas
the neutrophil/Mφ ratios did not change (Figure 5C).

3.3. Myoblasts Compensate for Attenuated MFG-E8 Levels of Macrophages in RetSat-Null Mice

To investigate the impact of RetSat ablation on the polarization of Mφs and on their
gene expressions, CD45+ cells from collagenase-digested regenerating muscles were mag-
netically separated at days 2, 3, and 4 post-injury and stained for the cell surface marker
proteins F4/80, Ly6C, CD206, and MHCII. In addition, the expression of their genes was de-
termined by quantitative PCR. Since to our surprise, based on the relative disappearance of
necrotic areas (Figure 3C), loss of RetSat in vivo did not seem to affect efferocytosis during
skeletal muscle regeneration, we first checked whether muscle-derived CD45+ cells from
the RetSat-null mice altered MFG-E8 levels. As seen in Figure 5D, expression of MFG-E8
mRNA within the CD45+ cells gradually increased until day 4 following cardiotoxin-
induced injury in both mouse strains. In accordance with our previous observations [25],
the muscle-derived CD45+ cells in the RetSat-null mice also expressed significantly less
MFG-E8. This finding is in accordance with the results of the in vitro phagocytosis assay,
which demonstrated a decreased long-term efferocytosis capacity for the muscle-derived
RetSat null macrophages (Figure 3A,B).
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However, in the regenerating muscle, we found no alterations in the levels of MFG-E8
mRNA in the RetSat-null mice as compared to their wild-type littermates (Figure 5D),
indicating that very likely myoblasts (the only cell type besides Mφs that is known to
produce MFG-E8 in regenerating skeletal muscle) fully compensate for the attenuated MFG-
E8 production of Mφs in the RetSat-null mice. In fact, using the data derived from the NPY
mRNA expression in the CD45+ cells and in the total muscle (Figure 5E), we could estimate
that in the wild-type regenerating muscles, less than 1% of the MFG-E8 is derived from
CD45+ cells. Since MFG-E8 is secreted into the tissue environment, myoblast-derived MFG-
E8 is expected to become available for phagocytosing cells as well. Thus, our data indicate
that in the regenerating muscles, independent of RetSat expression, macrophage-derived
MFG-E8 has no limiting effect on the phagocytic capacity of macrophages. This observation
partly explains why the in vivo efferocytosis did not change in the regenerating muscles of
RetSat-null mice.

3.4. Altered NPY Levels Both in Mφs and in the Skeletal Muscle of RetSat-Null Mice

Next, we assessed the levels of expression of NPY in muscle-derived CD45+ cells. NPY
has anti-inflammatory functions [26,27], and was also shown to promote angiogenesis [32].
NPY mRNA levels in CD45+ cells from the muscles of wild-type mice increased until day 3
following CTX-induced injury, and then they started to decrease. However, in accordance
with our previous findings [25], muscle-derived CD45+ cells from RetSat-null mice lacked
significant expression of NPY (Figure 5E).

Skeletal muscle does not express NPY mRNA or protein [33], but sympathetic neurons
do, and they co-release the NPY with noradrenaline following stimulation [34]. Accordingly,
we detected expression of NPY mRNA in control muscles, and in muscles from day
10 following CTX-induced injury in both wild-type and RetSat-null mice (Figure 5D).
In this context, it is worth noting that sympathetic neurons regulate immune functions
via NPY [35] and were reported to facilitate muscle repair [36]; we detected a significantly
enhanced amount of NPY mRNA in the muscles of control and day-22 post-injury RetSat-
null mice. The finding was similar when we checked the NPY levels in other organs, except
for the brain, where NPY mRNA expression was similar. These data indicate that the loss
of RetSat affects the mRNA expression of NPY not only in Mφs but also in the sympathetic
neurons innervating various tissues.

In addition, in the muscles of wild-type mice, expression of NPY mRNA increased
until day 3 following injury, then gradually decreased, whereas no expression of NPY
mRNA was detected during this time period in the muscles of RetSat-null mice. Since the
CD45+ cells of RetSat-null mice do not express NPY, this transient increase in the wild-type
muscle could be a result of infiltrating NPY-expressing CD45+ cells.

3.5. A Transient Delay in the M1/M2 Phenotypic Switch in Mφs of RetSat-Null Mice during the
Muscle Regeneration Process

Since proper timing of the M1/M2 phenotypic change of Mφs is central in guiding
muscle regeneration, we followed the process by determining the time-dependent changes
in the expression of M1- and M2-specific cell surface markers of Mφs, and in the expression
of genes of the CD45+ cells. Though the loss of RetSat did not affect the in vivo efferocytotic
capacity of Mφs, known to result in an altered polarization of Mφs, at post-injury day 3,
we detected a delayed generation of Ly6C− CD206+ Mφs from the Ly6C+ RetSat−/− NPY
null pro-inflammatory cells (Figure 5F). However, this delay disappeared by day 4, perhaps
due to the high myoblast-derived MFG-E8 level that also promotes the M1/M2 conversion,
and the appearance of CD206+ macrophages [37]. At the same time, the formation of the
MHCIIhigh expressing cells was not affected.
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3.6. mRNA Expression of RetSat, Various Cytokines, and Growth Factors in the CD45+

Macrophages Derived from the Regenerating TA Muscles of RetSat+/+ and RetSat−/− Mice

In accordance with our previous publication [38], the expression of RetSat mRNA
increased in the engulfing CD45+ cells (Figure 6A). In line with the lack of immunosup-
pressive NPY production, at day 2 post-injury as compared to their wild-type counterparts,
CD45+ cells from RetSat-null mice expressed an increased amount of pro-inflammatory
IL-1β, a cytokine that strongly contributes to SC cell proliferation and differentiation [39].
However, we did not find alterations in the expression of other pro-inflammatory cytokines,
such as TNF-α or IL-6, nor did we find a change in the appearance of the mRNA expression
of the M2-like IL-10, PPARγ, or GDF3 genes. However, the mRNA expression of three
enzymes known to determine NO release, arginase 1 (Arg1), nitric oxide synthase 3 (NOS3),
and the inducible iNOS, did change in such a way that they promoted long-term NO pro-
duction. Proper GDF3 production might be associated with normal myoblast differentiation
in RetSat-null mice. Prolonged NO production, together with elevated IL-1µ levels, on
the other hand, might promote SC cell activation in the presence of fewer Mφs [40], might
contribute to the initiation of angiogenesis in the absence of NPY [41], and might enhance
efferocytosis by promoting the appearance of PS on the surface of apoptotic cells [42].
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Previous studies have demonstrated that, in addition to Mφs, eosinophils are also
essential for proper muscle repair by producing IL-4 during muscle regeneration [43]. IL-4
contributes to the proper M2-like polarization of Mφs [44]; but most importantly, it triggers
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the proliferation of FAP cells [43]. FAP cells work side by side with Mφs to properly clear
the necrotic cells and contribute to myogenesis [43,45]. In addition to IL-4, macrophage-
derived TGF-β1 is also involved in the generation of FAP cells, and the number of FAPs
correlates with the TGF-β1 levels [46]. In this context, it is worth noting that we observed
significantly elevated TGF-β1 and IL-4 mRNA expression levels in the RetSat-null CD45+

cells at post-injury days 2 and 4, respectively, and as a result, we detected unaltered FAP
cell numbers in the RetSat null muscle during regeneration (Figure 6B).

4. Conclusions

Previous investigations have shown that strong intercellular crosstalk between various
populations of cells in the regenerating muscle drives and balances the process of skeletal
muscle repair [47,48]. Our data presented in this paper demonstrate that through this
crosstalk, several compensatory mechanisms are induced in the regenerating muscles of
RetSat-null mice to replace the impaired functions of the Mφs, which is attributed to their
attenuated MFG-E8 production, and to their lack of NPY expression. Thus, high levels
of MFG-E8 produced by the regenerating muscles generally obviate the need for MFG-
E8 release by macrophages for proper efferocytosis, independently of the loss of RetSat.
Higher levels of IL-1β and NO produced by CD45+ cells replace the need for NPY (which
might appear at the site of repair from the sympathetic neurons as well) and promote
sufficient SC cell proliferation, despite the presence of fewer neutrophils and macrophages
at the regeneration sites of the RetSa-null muscles. Increased production of TGF-β and
IL-4 by CD45+ leukocytes, on the other hand, maintains the proper FAP cell proliferation,
contributing to the proper in vivo dead cell clearance. Our data cannot distinguish whether
these alterations are the result of RetSat ablation or if they would also be induced under
other circumstances when fewer neutrophils and macrophages infiltrate the damaged
skeletal muscle area. Nevertheless, as a result of the adapted crosstalk, normal skeletal
muscle repair was observed following CTX-induced injury in the RetSat-null mice.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11081333/s1, Figure S1: The expression of neomycin resistance
expression cassette (neoR), replacing exon 1 of RetSat gene in various tissues isolated from wild-type
and full-body RetSat−/−mice determined by RT-qPCR.
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