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Abstract: Aquaculture activities have been implicated as responsible for the emergence of antimi-
crobial resistance (AMR), leading to broad dissemination and transference of antibiotic resistance to
pathogens that affect humans and animals. The current study investigates the on-farm practices and
environmental risk factors that can potentially drive the development and emergence of multi-drug-
resistant (MDR) Escherichia coli and Vibrio parahaemolyticus in the aquaculture system. A cross-sectional
study was conducted on 19 red hybrid tilapia (Oreochromis spp.) and 13 Asian seabass (Lates calcarifer,
Bloch 1970) farms on the west coast of peninsular Malaysia. Data were collected using a structured
questionnaire pertaining to farm demography, on-farm management practices and environmental
characteristics. Multi-drug-resistant E. coli (n = 249) and V. parahaemolyticus (n = 162) isolates were
analyzed using multi-level binary logistic regression to identify important drivers for the occurrence
and proliferation of the MDR bacteria. On-farm practices such as manuring the pond (OR = 4.5; 95%
CI = 1.21–16.57) were significantly associated with the occurrence of MDR E. coli, while earthen ponds
(OR = 8.2; 95% CI = 1.47–45.2) and human activity adjacent to the farm (OR = 4.6; 95% CI = 0.75–27.98)
were associated with an increased likelihood of MDR V. parahaemolyticus. Considering the paucity
of information on the drivers of AMR in the aquaculture production in this region, these findings
indicate the targeted interventions implementable at aquaculture farms to efficiently abate the risk of
MDR amongst bacteria that affect fish that are of public health importance.

Keywords: aquaculture system; E. coli; multi-drug resistance; antimicrobial resistance; V. parahaemolyticus;
risk factor

1. Introduction

Bacteria that are resistant to multiple classes of antibiotics pose increasing challenges
in treating animal and human infections. Multi-drug resistance in foodborne pathogens
such as Salmonella and Vibrio are especially of concern because of the prospective challenges
of treatment when humans are infected. Foodborne pathogens cause 7.5% (420,000) of all
mortalities worldwide [1,2], and approximately 7.7% of the world’s population experience
foodborne illnesses annually [3]. In Southeast Asia, 150 million cases of foodborne illnesses
are recorded every year, with an annual mortality rate of up to 175,000 [4]. Moreover,
Lim et al. [5] estimated 19,000 MDR-related deaths annually in Southeast Asian countries.

The intensification of both terrestrial and aquatic food animal production to improve
food sufficiency has been implicated as one of the major drivers of the increasing antimi-
crobial resistance (AMR). Aquatic ecosystems are vulnerable to various contaminants,
including chemicals and drug residues, as they are the recipients of run-offs from multiple
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terrestrial sources, including agricultural or livestock farms and healthcare facilities [6,7].
Aquaculture activities may increase the antimicrobial resistance burden resulting from the
uncontrolled use of antibiotics throughout the production cycle. In fact, certain types of
aquaculture products, such as catfish, are linked to antimicrobial use per kilogram that
exceeds those in terrestrial animals and humans [8]. Multiple studies have reported sig-
nificant differences in the levels of antimicrobial resistance genes (ARGs) of bacteria in
sediments from an aquaculture setting as compared to non-aquaculture sites [9–12].

The aquatic environment is a receptacle ideal for bacterial mutation, recombination and
horizontal gene transfer [13–15]. Increasing AMR levels have been reported among pathogens
found in the aquatic environment, such as Escherichia coli and Vibrio parahaemolyticus [16–18].
E. coli-associated diarrheal illness is responsible for nearly 200,000 annual deaths globally [2].
Moreover, the multi-drug-resistant commensal E. coli strain poses a significant public
health risk because E. coli is an accomplished AMR genes’ reservoir that is capable of
disseminating those genes to other bacteria [19,20]. Meanwhile, more than 20 serovariants
of V. parahaemolyticus, including 03:K6, 04:K68, 01:K25 and 01:KUT, have been implicated in
foodborne disease outbreaks in Asian countries, the United States and several other parts
of the world [21].

Aquaculture production has expanded rapidly over the past few years [22] and ac-
counts for more than half of the aquatic food animal production worldwide [23,24]. South-
east Asia provides a large proportion of the aquaculture products, accounting for 22% of
world production, and is poised to further expand its production to meet the increasing
global demand [25]. Malaysia is one of the Southeast Asian countries where the aquaculture
sector is rapidly expanding [26,27]. Unfortunately, the transition of aquatic production to
intensification is positively linked to the increasing levels of AMR among various bacteria
from the aquaculture settings in this region [28–33]. Consequently, the management prac-
tices and environmental variations in the aquaculture settings need to be better understood
to assign interventions that can most effectively decelerate AMR among bacterial pathogens.
In Malaysia, the National Action Plan for AMR includes surveillance of aquaculture prod-
ucts as part of the country’s strategic actions. Our previous paper has discussed the pattern
and prevalence of AMR among important bacterial pathogens in aquaculture products
and the environment [34]. This study identifies the on-farm management and surrounding
environmental factors associated with the detection of MDR E. coli and V. parahaemolyticus
to enable targeted interventions aiming to reduce the occurrence of MDR.

2. Materials and Methods
2.1. Source of the Isolates

The study design, sampling and collection of data, as well as identification and antimi-
crobial susceptibility tests, have been described in our previous publication [34]. Briefly,
a cross-sectional study was conducted on 32 aquaculture farms in the west coast of penin-
sular Malaysia. A total of 312 tilapia and 265 Asian seabass fish intestinal contents were
sampled. Two hundred and forty-nine (249) E. coli isolates were isolated both from fish
intestines (n = 577) and pond waters (n = 32). The isolation and identification of E. coli
from tilapia and Asian seabass adopted the method of Jang et al. and Ryu et al. [35,36].
Meanwhile, 162 V. parahaemolyticus isolates were recovered from the fish intestines (n = 265)
and pond waters (n = 13). The isolation and identification of V. parahaemolyticus adopted
the method of Huq et al., Momtaz et al., CDC and Neogi et al. [37–40]. The isolates were
tested for antibiotic susceptibility using the disk diffusion method for 12 antibiotics (con-
centration in µg): cefotaxime (30 µg), ceftiofur (30 µg), ciprofloxacin (5 µg), gentamycin
(10 µg), chloramphenicol (30 µg), streptomycin (10 µg), tetracycline (30 µg), ampicillin
(10 µg), erythromycin (15 µg), nalidixic acid (30 µg), kanamycin (30 µg) and trimethoprim
(5 µg). The susceptibility test against colistin was performed using the broth microdilution
method (BMD). These antibiotics were chosen in accordance with the WHO and OIE recom-
mendations for antimicrobial usage in humans and livestock [41,42], as well as Malaysia’s
Antimicrobial Resistance Integrated Surveillance program. The test using the disk diffusion
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method for E. coli was conducted according to the 2018 Clinical and Laboratory Standards
Institute (CLSI) guidelines [43], whereas that for Vibrio was performed according to the
CLSI guidelines of 2016 and 2020 [44,45]. The determination of the minimum inhibitory
concentration (MIC) of colistin was carried out according to the CLSI guidelines 2012 and
2018 [43,46]. The isolates demonstrating resistance to more than three groups of antibi-
otics were categorized as MDR [47]. We identified MDR in n = 110 E. coli and n = 35
V. parahaemolyticus isolates. All the work was carried out at the Veterinary Public Health
Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia.

2.2. Data Collection

A structured questionnaire was adapted from previous publications using the guid-
ance provided by the OIE [41,48]. The questionnaire comprised open- and closed-ended
questions about demography, farm management and production practices and was used
to retrieve information on the putative risk factors for the carriage of MDR E. coli and
V. parahaemolyticus in the aquaculture settings. The questionnaire was pre-tested, and
content validity was conducted by the experts in the field of veterinary public health,
epidemiology, aquatic animal health and AMR. The questions were refined based on the
suggestions and observations made to improve the content validity. Prior to data collec-
tion, the farmers were assured of confidentiality and briefed about the research objectives,
followed by the signing of an informed consent document. Face-to-face administration of
the questionnaire was performed by the researchers.

The following variables were investigated in this study:
Type of production system: the production systems used for cultivating tilapia and

Asian seabass are pond (earthen pond) and cage-culture systems. Pond culture is the rearing
of fish in the natural inland aquaculture or artificial basins. Ponds can be categorized based
on pond constructions; for instance, an earthen pond is constructed entirely from the soil.
Cage culture involves cultivating the fish within fixed or floating net enclosures braced by
a framework constructed from natural materials such as wood or modern polyethylene,
and set in sheltered, shallow portions of lakes, rivers, estuaries or oceans [49,50].

Water exchange: describes a system that allows continuous replacement of fresh
surface water.

History of diseases: a fish farm is considered positive if the fish were exposed to
disease during their growing stage.

Manure fertilization: refers to the utilization of animal manure to increase the produc-
tion of natural food organisms in the grow-out ponds [51]. This application is traditionally
practiced in a pond-system aquaculture setting [52,53].

History of antibiotic application: refers to the utilization of any form of antibiotics
during the growing stage of the fish.

Human activities: this is indicated by the presence of residential areas and commercial
developments such as markets, as well as recreational fishing spots, within a 1 km radius
of the aquaculture farm.

Livestock near the farm: refers to sightings of cattle, goat or poultry farms within
a 1 km radius from the aquaculture farm.

2.3. Data Analysis

The antimicrobial sensitivity and multidrug resistance test data of E. coli and V. para-
haemolyticus isolates recovered from tilapia or Asian seabass were analyzed separately
using WHONET 5.6 [54,55]. A multilevel binary logistic regression was employed because
our data was hierarchical in nature, with bacterial isolates nested within farms [56–58]. The
analysis was performed following the steps suggested by and Sommet and Morselli [57]
and Crowson [56].

The chi-square test was used for the univariable exploratory analysis to identify
a priori risk factors associated with the outcome variable. Variables for inclusion in the full
model were selected based on the univariable analysis (p < 0.05) and variables that were
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suggestive of important effects. The model building used a forward stepwise selection
process [59,60]. All the statistical analyses were performed using the IBM SPSS Statistics
version 26 (IBM, Armonk, NY, USA: IBM Corp.) at a significance level of α = 0.05.

3. Results
3.1. MDR Escherichia coli
3.1.1. Descriptive Statistics

Thirty-two fish farms cultivating tilapia (n = 19) and Asian seabass (n = 13) were included
in this study, which consisted of earthen pond (n = 20; 62.5%) and cage-culture (n = 12; 37.5%)
systems. Most of the tilapia sampled were raised in an earthen pond (94.7%), while most of
the seabass (76.9%) were raised in a cage-culture system. Regular water exchange occurs in
30 farms (93.7%). The cage-culture farms do not practice the application of animal manure,
while three of the pond system farms (9.4%) administer manure-based fertilizers to increase
the production of the pond’s natural food organisms. Two of the farms (6.3%) (earthen-pond
farms) reported a history of antibiotics use for treatment of fish disease, and the remaining
30 farms (93.7%) reported not using any antibiotics. Five farms (15.6%) reported a history
of disease infection, while the remaining 27 farmers (84.4%) reported no disease on their
farms. Pets such as cats and dogs can be seen in 16 farms (50%), while 16 farms (50%)
reported no pets. Anthropogenic activities were observed nearby in the study area; 18 of
the farms (56.3%) were located near human activity, and 8 farms (25%) were located near
livestock farms. Human activities observed within 1 km of the fish farms were residential
areas, commercial development (e.g., markets), recreational fishing spots area and oil palm
agriculture. Livestock farms such as poultry, goat and cattle were observed within 1 km of
the fish farms in the study area. All the variables in this study presented in Table 1.

Table 1. Univariable analysis for risk factors associated with the growth of MDR E. coli in the
aquaculture production systems (n = 32) on the west coast of peninsular Malaysia.

Variables Frequency Positive (%) Chi-Square (χ2) p-Value

Human activity near farm
Yes 161 77 (47.8) 2.460 0.117
No 88 33 (37.5)

Livestock near farm
Yes 80 45 (56.3) 6.967 0.008 *
No 169 65 (38.5)

Type of fish
Tilapia 202 94(46.5) 2.413 0.120

Asian seabass 47 16 (34)
Type of production system

Earthen pond 186 92 (49.5) 8.328 0.004 *
Cage 63 18 (28.6)

Water exchange
Yes 236 102 (43.2) 1.677 0.195
No 13 8 (61.5)

Manure application
Yes 36 27 (75) 16.213 0.000 *
No 213 83 (39)

Diseases history
Yes 37 14 (37.8) 0.708 0.400
No 212 96 (45.3)

Antibiotic application
Yes 16 10 (62.5) 2.328 0.127
No 233 100 (42.9)

Presence of pets in farm
(dogs, cats)

Yes 139 71 (51.1) 6.079 0.014 *
No 110 39 (35.5)

* Statistically significant, p < 0.05.
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3.1.2. Univariable Factor Associated with MDR E. coli

In the univariable analysis, the factors significantly associated with the occurrence
of MDR among E. coli isolated from aquaculture production systems were the type of
production system (χ2 = 8.328; p = 0.004), use of manure in the pond (χ2 = 16.213; p = 0.000),
presence of pets in the farm (χ2 = 6.079; p = 0.014) and livestock observed in nearby areas
(χ2 = 6.967, p = 0.008) (Table 1).

3.1.3. Multivariable Factor Associated with MDR E. coli

The full model of multilevel binary logistic regression analysis revealed that manure
application (OR = 4.5; 95% CI = 1.21–16.57; p = 0.025) was significantly associated with
an increased chance of MDR E. coli in the aquaculture system (Table 2). Escherichia coli
isolated from the aquaculture farms using manure fertilization in the pond were approxi-
mately 4.5 times more likely to acquire MDR as compared with those from farms that did
not use manure fertilization.

Table 2. Multilevel binary logistic regression of risk factors associated with the occurrence of MDR
E. coli in the aquaculture production system (n = 32) on the west coast of peninsular Malaysia.

Variables Coefficient SE t p-Value OR 95% Confidence Interval

Intercept −0.424 0.2298 −1.846 0.066 0.65 0.42–1.03
Manure application (Yes) 1.500 0.6636 2.261 0.025 4.48 1.21–16.57

Water exchange (Yes) 0.903 0.8212 1.099 0.273 2.47 0.49–12.43

SE, standard error; OR, odds ratio.

3.2. MDR Vibrio parahaemolyticus
3.2.1. Descriptive Statistics

Thirteen Asian seabass farms consisting of three earthen ponds (23.1%) and ten cage-
culture (76.9%) production systems participated in this study. Only one of the farms
(7.7%) reported a history of antibiotic administration, and the remaining twelve farms (92%)
reported no antibiotic usage. Four farms (30.8%) had a previous history of disease outbreaks,
while the remaining nine farms (69.2%) had none. Pets such as cats and dogs can be
observed in eight farms (61.5%), while five farms (38.5%) reported no pets. Anthropogenic
activities were observed nearby; four of the farms (30.8%) were located near areas of human
activities, and one farm (7.6%) was located near a livestock farm. All the variables in this
study presented in Table 3.

Table 3. Univariable analysis for risk factors associated with the occurrence of MDR V. parahaemolyti-
cus in the Asian seabass production system (n = 13) on the west coast of peninsular Malaysia.

Variables Frequency Positive (%) Chi-Square (χ2) p-Value

Human activity near farm
Yes 63 32(50.8) 51.857 0.000 *
No 99 3(3.0)

Livestock near farm
Yes 21 10(47.6) 9.640 0.002 *
No 141 25(17.7)

Type of production system
Earthen pond 52 30(57.7) 58.884 0.000 *

Cage 110 5(4.5)
Diseases history

Yes 62 13(21) 0.024 0.877
No 100 22(22)

Antibiotic application
Yes 21 10(47.6) 9.640 0.002 *
No 141 25(17.7)
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Table 3. Cont.

Variables Frequency Positive (%) Chi-Square (χ2) p-Value

Presence of pets in farm
(dogs, cats)

Yes 69 20(29) 3.866 0.049 *
No 93 15(16.1)

* Statistically significant, p < 0.05.

3.2.2. Univariable Factors Associated with MDR V. parahaemolyticus

In the univariable analysis, the factors significantly associated with the occurrence
of MDR among V. parahaemolyticus isolates recovered from the Asian seabass production
system were the type of production system (χ2 = 58.884; p = 0.000), antibiotic usage
(χ2 = 9.640; p = 0.002), human activity nearby (χ2 = 51.857; p = 0.000), presence of pets in
the farm (χ2 = 3.866; p = 0.049) and livestock nearby (χ2 = 9.640; p = 0.002) (Table 3).

3.2.3. Multivariable Factor Associated with MDR V. parahaemolyticus

The full model of the multilevel binary logistic regression analysis revealed that the
earthen pond system (OR = 8.2; 95% CI = 1.47–45.2; p = 0.017) was significantly associated
with eight times increased odds of MDR V. parahaemolyticus in Asian seabass farms (Table 4).
In addition, although not statistically significant, human activity adjacent to the farm
elevated the odds of MDR (OR = 4.6; 95% CI = 0.75–27.98; p = 0.099) amongst the isolates.

Table 4. Multilevel binary logistic regression of risk factors associated with the occurrence of
MDR V. parahaemolyticus in the Asian seabass production system (n = 13) on the west coast of
peninsular Malaysia.

Variables Coefficient SE t p-Value OR 95% Confidence Interval

Intercept −3.025 0.4783 −6.325 0.000 0.049 0.019–0.125
Type of production system

(earthen pond) 2.099 0.867 2.421 0.017 8.16 1.47–45.23

Human activity near farm (Yes) 1.522 0.9163 1.661 0.099 4.58 0.75–27.98
Livestock near farm (Yes) −0.691 0.5760 −1.200 0.232 0.50 0.16–1.56

SE, standard error; OR, odds ratio.

4. Discussion

The aquaculture production system may serve as an important receptacle of MDR
bacteria and ARGs, enabling their broad transference throughout the aquatic ecosystems,
thus endangering food safety and security [61–63]. The literature suggests that activities
in fish farming may drive AMR and MDR development [64–67]. Therefore, this study
explores these activities.

4.1. Escherichia coli

We found that using animal manure as a pond fertilizer significantly increased MDR in
the E. coli recovered from our aquaculture setting. This finding is supported by other similar
studies such as a study from Thailand that reported a higher level of AMR in bacteria re-
covered from the fish gut raised in integrated broiler-fish farms that dispensed manure into
the pond [68] and complemented by recent studies conducted in Tanzania and Bangladesh
that found an accumulation of ARGs in the fish ponds that use domestic farm and poultry
wastes from animal husbandry [69]. More recently, a report by Thornber et al. [67] identi-
fied that using human and livestock/poultry wastes to fertilize ponds in the traditional
integrated farming practices is associated with elevated AMR risk in shrimp farming. Fur-
thermore, a study by Adeyemi et al. [64] demonstrated that adding poultry droppings
to the fish pond promotes development of MDR in gram-negative bacteria in the water
and fishes.
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Using manure in aquaculture ponds aims to establish a condition that can expedite
a surge in the stocks of natural foods and boost a prebiotic effect that positively stimulates
alterations of the pond microbiota [70]. However, Lima et al. [71] and Fatoba et al. [72]
found that using manure may increase the risk of indicator bacterial pathogens developing
MDR because antibiotics are widely used in food animal production. Farmers in Asian
countries administer higher amounts of antibiotics in food animals as compared to those in
other parts of the world. Van Boeckel et al. [73] projected that food animals in the Southeast
Asian countries will have the highest increase in antibiotic use by 2030. About 52–276 mg
of antibiotics per kilogram of live chicken and 46 mg of antimicrobial agents per kg of
live pig were found in Southeast Asian countries; furthermore, 286.6 mg and 77.4 mg of
in-feed antimicrobials were utilized to grow 1 kg of live pig and poultry, respectively [74],
compared to 26.1–147.3 mg/PCU (population correction unit) in pigs and 107.3 mg/PCU
in poultry in European countries [73]. Therefore, it is not surprising that livestock manure
contains antibiotics in its parental form [75]. For aquaculture, the interconnectivity of
aquatic ecosystems augments the AMR and MDR further, as locally generated resistance
can easily be dispersed to other global settings [66].

Another major concern with raising fish aimed for human consumption in manure-
fertilized ponds is the presence of partially degraded or undegraded antibiotics. The
bioaccumulation of these antibiotics generates continuous selective pressure on the aquatic
microbiota [70]. Aquatic microbes harbor numerous mobile genetic elements, such as plas-
mids and transposons, that can recombine and mobilize, thus enhancing the emergence of
AMR and MDR through horizontal transfer of ARGs among bacterial pathogens [15,62,76].
These elements can travel to the wider environment and human habitat [61,77,78]. Fertil-
ization of fish ponds using manure should, therefore, be removed to minimize the risk of
bacterial pathogens developing and acquiring MDR. At the very least, if manure is to be
used, it should be pretreated by sterilization and fermentation [79,80].

4.2. Vibrio parahaemolyticus

We found that the earthen pond production system significantly increases the like-
lihood of MDR V. parahaemolyticus; isolates recovered from the earthen pond of Asian
seabass culture were eight times more likely to demonstrate MDR compared to those
recovered from the cage system. Pond water quality is highly vulnerable to environmental
conditions, including pollutants [81,82]. When ponds are not or rarely emptied throughout
the production cycle, antimicrobials and antimicrobial residues can rapidly accumulate
in the sediments [68]. In addition, long intervals between pond sediment removal results
in the rapid accumulation of antibiotics [83], exerting continuous selective pressure that
stimulates the development and selection of antimicrobial-resistant bacteria in the fish
ponds [68,84,85]. On the other hand, cage culture is characterized by fixed or floating net
enclosures braced by a framework constructed with natural materials, such as wood or
modern polyethylene, and set in estuaries, rivers or oceans. The cages are susceptible to
waves, seasonal change, temperature and other environmental factors [86,87]. The lower
MDR level found in the present study among isolates recovered from the cage culture pro-
duction may partly be attributed to the effect of antibiotic residues or resistance elements
that are diluted and dispersed by waves and degradation [88].

V. parahaemolyticus obtained from farms near areas where human activities take place,
such as residential areas and recreation sites such as fishing spots, faced an increased
risk of MDR. This finding is supported by several studies, such as by Zhang et al. and
Borella et al. [89,90], that linked resistance genes in the marine aquaculture to terrestrial
and anthropogenic sources. Pruden et al. [91] found that upstream human activities
facilitate the dissemination of riverine ARGs. Ghaderpour et al. [92] also documented high
resistance levels and MDR E. coli in the aquaculture environment located upstream of the
Selinsing and Sangga Besar rivers in Malaysia, which receive anthropogenic runoffs. In
addition, a recent study conducted in the river estuary in Johor, Malaysia, found that the
sampling site where residential areas and sewage treatment plants were clustered together
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had frequent microbial abundance and MDR profile [93]. Zheng et al. [94] reported that
estuarine and coastal environments polluted by antibiotics and antibiotic-resistant genes
frequently receive a series of contaminants such as riverine runoff, wastewater treatment
plants, sewage discharge and aquaculture.

4.3. Limitations

Our study should be interpreted with caution because of several limitations. Misclassi-
fication bias could have occurred because of poorly documented antibiotic use at the farms.
Many farmers do not have proper documentation and records of diseases and treatments
administered on their farms. In addition, we were unable to capture differences as a result
of changes in the water characteristics across time and season since sampling was done just
once for each farm.

5. Conclusions

This study highlights that the use of livestock manure for pond enrichment is
an important driver in the development of MDR E. coli in aquaculture systems. Hence, it is
recommended to reduce or avoid manure application altogether, or if this method is still
preferred, then the manure must be pretreated before adding it to the pond. Furthermore,
earthen pond systems and anthropogenic activities near the farms elevate the likelihood of
MDR V. parahaemolyticus. This study’s findings inform aquaculture interventions that are
likely to effectively mitigate MDR emergence amongst bacterial pathogens of public health
and animal health importance. It may also reduce the risk of the local aquaculture setting
becoming the mixing vessel of various resistant pathogens, as well as resistant genes that
could be rerouted to the global aquatic ecosystems.
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