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ABCC2 (MRP2; also known as cMOAT or cMRP) belongs to
the adenosine triphosphate (ATP)-binding cassette (ABC)
transporter superfamily, which represents a large family of
transmembrane proteins that use the energy of ATP hydrol-
ysis to transport a wide variety of physiological substrates
across biological membranes.[1] Phylogenetically, ABC trans-
porters are classified into seven subfamilies of 49 transport-
er genes (ABCA to ABCG).[2] The major physiological role of
these transporters is to protect cells and tissues against
xenobiotics. Consequently, they also play a critical role in
the disposition of drugs and their metabolites, altering
their pharmacokinetics and pharmacological profile.[1]

ABCC2, a member of the multidrug resistance-associated
protein (MRP/ABCC) subfamily, is strongly expressed on the
apical canalicular membrane of hepatocytes,[3] where it
pumps endogenous metabolites conjugated to sulfate, glu-
curonate or glutathione (GSH) into the bile.[4] One of the
most prominent endogenous substrates are conjugates of
bilirubin which results from heme metabolism during
breakdown of hemoglobin. Hereditary and acquired ABCC2
defects resulting in impaired bilirubin excretion into bile
give rise to jaundice (yellow discoloration of skin and
sclera/eyes) as one of the most prominent clinical signs of
liver.[5] Through facilitation of biliary GSH excretion, ABCC2
is one of the critical determinants maintaining (bile acid-in-
dependent) bile flow.[5] Moreover, many nonconjugated
xenobiotics,[6] including unmodified anionic drugs,[7] are
also efficiently transported by ABCC2.

However, in spite of this broad substrate specificity, the
molecular determinants of ABCC2-mediated transport are
still unknown, probably due to the lack of a high-resolution
crystal structure and the possible existence of several bind-
ing sites in this protein.[8] In this scenario, ligand-based
methods provide an alternative way to characterize and
identify potential ABCC2 substrates. Here, we report the ap-
plication of different machine learning methods for the de-
velopment of models for putative substrate/non-substrate
classification.

Currently there is no consistent published data set com-
prising ABCC2 substrates and non-substrates. This is mainly
due to the fact that there is no standardized assay for ABC-
transporter substrates. Polarized transport across cell-mon-
olayers, cellular uptake, toxicity ratio in overexpressing vs.
wild type cells, as well as ATPase stimulation are just a few

methods to assess the substrate properties of compounds.
Moreover, different assays might lead to different class
labels for the same compound. When searching publicly
available databases such as ChEMBL and TP-Search,[9] the
use of both databases led to a data set formed by 44
unique compounds, which were not enough to cover a sig-
nificant portion of the chemical space. Thus, this set of
compounds was kept and used in a further step as external
data set to validate the model.

In the present work, we used the data set from Szak�cs
et al. to the develop a ABCC2 substrate classification
model.[10] The authors measured the activity of 1429 com-
pounds against 60 tumor cell lines expressing different
levels of ABC transporters. By correlating the mRNA level of
each transporter with the cytotoxicity of each compound
over all 60 cell lines, it was possible to postulate putative
substrates for each ABC transporter. Compounds whose
cell toxicity is decreased in cells expressing high levels of
an ABC transporter may be considered as substrates. Con-
versely, compounds for which no negative correlation be-
tween cytotoxicity and ABC expression level is observed
were considered as non-substrates. This data set of course
is a quite noisy and fuzzy one, and compounds showing
a negative correlation between cytotoxicity and ABCC2
mRNA expression not necessarily are true substrates of
ABCC2. However, this dataset represents the largest one
available. In addition, it can easily be expanded to the
whole NCI60 screening set comprising more than 30.000
compounds.

The original database was carefully curated leading to
a final data set formed by 1204 compounds (see Methods).
These compounds were classified as substrates or non-sub-
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strates based on their Pearson correlation coefficient (here-
after referred to as PCC) values. Two different PCC vales
were tested: �0.25 and �0.30. Compounds having a PCC
value lower or equal to this threshold value were consid-
ered as putative substrates. Conversely, those having a PCC
higher than this threshold were categorized as non-sub-
strates. This procedure yielded a data set formed by 1067
non-substrates and 156 substrates for a PCC value of �0.25
and by 98 substrates and 1106 non-substrates when a PCC
value of �0.30 was considered (Table 1).

Taking into account the lack of information about the
stereochemistry for most of the compounds, we decided to
use only 2D descriptors. These descriptors were calculated
using MOE2010 (Molecular Operating Environment; Chemi-
cal Computing Group Inc. , 2010). A total of 93 different 2D
descriptors (see Methods) were computed for all 1204 com-
pounds and subjected to Z-Score normalization. Then, the
two resulting data sets (i.e. , the data sets obtained for PCC
values of �0.25 and �0.30, respectively) were divided into
training (TR) and test set (TS) using three different proce-
dures: (1) Diverse Subset module of MOE2010 on basis of
the Tanimoto coefficient using MACCS structural keys; (2)
MOE2010’s Diverse Subset module using the Tanimoto co-
efficient and each the set of descriptors previously calculat-
ed and, (3) randomly by using KNIME v.2.3.4 (http://kni-
me.org). Consequently, three different sets composed by TR
and TS were obtained for each data set, giving a total of 6
different data sets to be used as starting point for develop-
ing the models (Figure 1).

For each data set, first a feature selection algorithm was
applied in order to reduce the dimensionality of the data
by identifying the most relevant features or descriptors. For
this purpose, the CfsSubsetEval-Bestfirst algorithm imple-
mented in WEKA was used (http://www.cs.waikato.ac.nz/~
ml/weka).[11] Subsequently, five different WEKA classifiers
were tested: Na�ve Bayes (NB), k-nearest neighbors classifier
(IBk), the decision trees J48 and Random Forest (RF) and
the Support Vector Machine (SMO).[12]

In order to deal with the imbalance of the data sets
(Table 1), a misclassification cost was applied to each classi-
fier using the cost sensitive classifier as implemented in
WEKA. This approach increases the cost for misclassifying
any minority class (substrate) as the majority class (non-

substrate).[12] Several cost values, arbitrarily assigned, were
tested. In addition, the cost sensitive classifier was also ap-
plied in combination with Bagging, which samples subsets
from the training set, builds multiple base learners and ag-
gregates their predictions to make final predictions.[13]

On the other hand, taking into account the ability of
ABCC2 to transport negatively charged compounds, we de-
cided to investigate whether the presence of compounds
in the data set possessing a net charge different from zero
affected the performance of the model. As the curation
protocol neutralizes the compounds, a new database was
created by changing the protonation state of strong acids
and bases of the initial curated database. Subsequently, the
same procedure as described in Figure 1 was applied to
the resulting data set.

Table 2 shows the best models obtained for the neutral
and the charged data sets at PCC values of �0.25 and
�0.30, respectively. As can be seen, the addition of charges
does not significantly improve the performance of the
models, but modifies the type and number of descriptors
selected to build the model (Table 3).

The best model for identification of putative MRP2 sub-
strates was obtained by including explicit charges at PCC
value of �0.25. This model, built on 16 2D MOE2010 de-
scriptors using the CostSensitive classifier and Random
Forest, was capable to predict correctly 77.4 % and 71.9 %
of substrates and non-substrates of the test set, respective-
ly (Table 2).

The 16 2D MOE2010 descriptors used to build this model
are briefly summarized in Table 3. As can be seen, the
number of rings and bonds, and therefore the molecular
size or the molecular weight, are important factors for
ABCC2 substrates. Also the number of bromine, chlorine
and sulfur atoms plays a critical role. This last is in agree-
ment with the ability of ABCC2 to transport compounds
having sulfur atoms in their structures, i.e. , conjugate to
sulfate or glutathione.

Lipophilicity and low polarizability are also important for
ABCC2 recognition. However, ABCC2 substrates have some
properties that are distinctly different from those reported
for the well-characterized ABC family member ABCB1 (also
named P-glycoprotein, P-gp or MDR1).[14] These properties
are the fractional negative charge (PEOE_VSA_FNEG) and
vsa_don, which represents the sum of the van der Waals
surface areas of all H-bond donors in the molecule. The im-
portance of having a fractional negative charge in the mol-
ecule is in agreement with previous experimental studies
showing the ability of ABCC2 for transporting anionic com-
pounds and with the results obtained by Ryu et al, who
identified the positively charged residues Lys324, Lys483,
Arg1210 and Arg1257 as critical residues for ABCC2-substrate
interaction.[15]

Nevertheless, it is important to note that the fractional
negative van der Waals surface area (PEOE_VSA_FNEG), the
sum of the van der Waals surface area of atoms which con-
tribution to logP is equal or lower than �0.40 (SlogP_VSA0)

Table 1. Composition of the training and test sets considered in
the present work. S: substrates; NS Non-substrates.

PCC Total TR TS

S NS S NS S NS

MACCS 154 1050 126 838 28 212
0.25 Descriptors 154 1050 123 841 31 209

Random 154 1050 123 840 31 210
MACCS 98 1106 85 879 13 227

0.30 Descriptors 98 1106 80 884 18 222
Random 98 1106 78 962 20 222
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and the sum of the van der Waals surface areas of all H-
bond donors in the molecule (vsa_don), are always selected
by the feature selection algorithm (Table 3), irrespective of

the PCC value and the deprotonation state of the mole-
cules. This observation points clearly towards the relevance
of these properties in ABCC2 substrate binding.

Table 2. Performance of the best models obtained for the noncharged and charged initial databases at the PCC values considered in the
present work. Bottom grey and white have been used to indicate the models obtained at PCC values of 0.25 and 0.30, respectively.

TR/TS selection Misclassification
cost (FN : FP)

Machine learn-
ing algorithm

Specificity Sensitivity Precision G-mean MCC Accuracy

Noncharged Random 65 : 2.5 Bag[a] + J48 72.38 70.97 0.28 0.72 0.31 71.67
5-fold (TR) 72.62 67.48 0.27 0.70 0.29 70.05
10-fold (TR) 72.86 65.85 0.26 0.69 0.28 69.36
Charged Random 150 : 3.5 RF[b] 71.90 77.42 0.29 0.75 0.35 74.66
5-fold (TR) 67.26 73.17 0.36 0.70 0.28 70.22
10-fold (TR) 67.26 76.42 0.37 0.72 0.30 71.84
Noncharged Descriptors 81 : 1.20 Bag + J48 75.23 77.78 0.20 0.76 0.31 76.50
5-fold (TR) 67.76 68.76 0.16 0.68 0.21 68.26
10-fold (TR) 72.62 62.50 0.17 0.67 0.21 67.56
Charged Descriptors 80 : 1.10 RF 73.87 77.78 0.19 0.76 0.30 75.83
5-fold (TR) 66.52 68.75 0.16 0.68 0.20 67.63
10-fold (TR) 71.27 67.50 0.18 0.69 0.23 69.38

[a] Bag has been used to design the bagging algorithm. [b] RF refers to the Random Forest machine learning method.
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Figure 1. Schematic representation of the procedure used to build models for ABCC2 substrate prediction.
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Finally, we proceeded to evaluate the ability of the
model to classify new compounds. To this end, a data set
formed by 44 compounds (2 non-substrates and 42 sub-
strates) extracted from TP-Search and PubChem, was used.

In order to assess if these new compounds are within
the applicability domain of the training set, it was evaluat-
ed by use of principal component analysis (PCA) of the 16
descriptors used to build the model. As can be seen in
Figure 2, all the compounds of the external data set can be
considered inside the applicability domain of the model.

The results of the external validation (FN = 27, FP = 1)
clearly showed a low predictive ability of the model; it was
only able to correctly predict 26.2 % of the substrates (sen-
sitivity). This drop in predictive power of the model might
be attributed to the fact that it was developed for a reverse-
ly imbalanced data set. The number of substrates in the
training set was lower in comparison with the number of

non-substrates. On contrary, the number of substrates in
the external data set exceeded largely the number of non-
substrates.

Another possible explanation for the results obtained
from external validation is that the activity of the com-
pounds used as external set has been measured using dif-
ferent assays and cell lines. Especially in case of substrates
one has to be very careful, as different assays (polarized
transport, cytotoxicity, ATPase stimulation) might lead to
different class labels for the same compound. Thus, strictly
spoken our models are able to predict compounds which
show a negative correlation of cell toxicity vs. mRNA levels
of ABCC2, which not necessarily classifies these compounds
as true substrates of ABCC2.

However, the present work represents the first model for
classification of a large set of putative ABCC2 substrates
and non-substrates. Although the performance is not over-

Table 3. Set of 2D MOE2010 descriptors used to build each one of the models shown in Table 2.

Descriptor Description PCC = 0.25 PCC = 0.30

Noncharged Charged Noncharged Charged

a_don Number of hydrogen bond donor atoms.
p p p

a_nBr Number of bromine atoms.
p p

a_nCl Number of chlorine atoms.
p p p p

a_nN Number of nitrogen atoms.
p

a_nO Number of oxygen atoms.
p p

a_nS Number of sulfur atoms.
p p

b_count Number of bonds.
p p

PEOE_
VSA + 1

Sum of the van der Waals surface area of atoms having a charge in the range
[0.05, 0.10).

p

PEOE_
VSA + 2

Sum of the van der Waals surface area of atoms having a charge in the range
[0.10, 0.15).

p p

PEOE_
VSA + 3

Sum of the van der Waals surface area of atoms having a charge in the range
[0.15, 0.20).

p p p

PEOE_
VSA + 4

Sum of the van der Waals surface area of atoms having a charge in the range
[0.20, 0.25).

p p p

PEOE_VSA_
FNEG

Fractional negative van der Waals area.
p p p p

PEOE_VSA_
FPOS

Fractional positive van der Waals area.
p

PEOE_VSA_
POS

Total positive van der Waals area
p p p

PEOE_VSA_
PPOS

Total polar positive van der Waals area
p

rings Number of rings.
p p p

SlogP_VSA0 Sum of the van der Waals surface area of atoms which contribution to logP is
��0.40.

p p p p

SlogP_VSA1 Sum of the van der Waals surface area of atoms which contribution to logP is
in (�0.40, �0.20].

p

SMR_VSA1 Sum of the van der Waals surface area of atoms which contribution to MR is
in (�0.11, �0.26].

p p p

SMR_VSA2 Sum of the van der Waals surface area of atoms which contribution to MR is
in (�0.26, �0.35].

p

SMR_VSA4 Sum of the van der Waals surface area of atoms which contribution to MR is
in (�0.39, �0.44].

p p p

TPSA Total polar surface area (connection table approximation)
p

vsa_base Number of basic atoms.
p

vsa_don Sum of van der Waals surface areas of pure hydrogen bond donor atoms.
p p p p

vsa_other Sum of van der Waals surface areas of atoms typed as “others”.
p
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whelming, one should note that a highly imbalanced data
set composed of mostly natural product type compounds
has been used, which represents an extremely challenging
scenario. Analysis of the top scored model shows that the
use of charged compounds to build the model does not
significantly improve the performance of the model, but
clearly modifies its qualitative description. For ABCC2, the
most predictive model was obtained by inclusion of explicit
charges at PCC values of �0.25. This model shows the im-
portance of the hydrophobicity, the polarizability, the frac-
tional negative charge and H-bond donor properties for
compounds showing a negative correlation between their
toxicity and the expression rate of ABCC2 over a large
panel of tumor cells.

Computational Methods

Database preparation. The database, containing the NSC
identifiers for 1429 compounds, was available as supple-
mentary material at the http://www.sciencedirect.com/sci-
ence/article/pii/S1535610804002065 webpage. Chemical
structures of these compounds were retrieved according to
their NSC identifier from the NCI database file NCI_aug00_
2D.sdf, downloaded from the http://cactus.nci.nih.gov/
download/nci/ web site. No structure was found for 16 of
these compounds. Accordingly, a database formed by 1413
compounds was obtained.

Database curation. The database was curated using a mul-
tistep procedure based on that proposed by Fourches
et al. ,[16] which can be briefly summarized as follows:

Removal of inorganic compounds (i.e. , compounds not
containing carbon atoms in their structure) by calculating
the empirical formula of each compound using the Instant
Jchem v.5.3 program (http://www.chemaxom.com) and
sorting them in ascending order.

Analysis and removal of mixtures. Entries formed by more
than one compound were decomposed using the Wash
module implemented in MOE2010. Each one of the ob-
tained components was stored into separated columns for
further analysis. Only mixtures formed by a large organic
molecule and a small inorganic one such as sulfates, hydro-
chlorides, etc. , were retained. Mixtures formed by several
organic compounds with similar organic weight or by one
large organic compound and several smaller ones were de-
leted due to the impossibility to know which molecule was
responsible of biological activity.

Deletion of organometallics. Compounds containing
metal atoms were identified and deleted using MOE2010.

Removal of compounds having special atoms. Additionally,
compounds having atoms for which some descriptors
cannot be calculated such as tellurium or selenium were
identified and discarded using an in-house MOE2010 SVL
script.

Normalization of chemotypes. Functional groups and tau-
tomeric structures were converted to single standard forms
in order to avoid inconsistencies in the calculation of de-

Figure 2. Principal component analysis of the 16 descriptors used to build the model.
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scriptors and also in the elimination of duplicates. This step
was performed using the ChemAxon’s Standardizer with
the classical settings (clean 2D, aromatize, mesomerize,
neutralize, tautomerize and transform options). In addition,
the option “clear stereo” was used as first step in order to
eliminate any 3D structural information contained in the
original .sdf file. In this sense, the reader may take into ac-
count that there is no definite information about the relia-
bility of the stereochemical data of the compounds in the
NCI database.

Identification and elimination of duplicates. Nonunique
structures were identified using MOE2010. Once identified,
PCC values were compared. For compounds having differ-
ent PCC values, all the related entries were deleted. Other-
wise, for identical compounds having similar PCC values,
only one entry was kept.

Removal of compounds containing permanent charges.
Compounds having permanent or non neutralizable charg-
es were identified by calculating the total charge of the
molecule using the FCharge descriptor implemented in
MOE2010. Compounds with total charge different from
zero were discarded.

After this procedure, a data set formed by 1204 com-
pounds was obtained. This data set is available on our web-
site http://pharminfo.univie.ac.at/links/ and on www.chem-
spider.org.

Addition of charges. In order to investigate the effect of
including charged compounds on the performance of the
model, strong acids and bases of the curated database
were deprotonated or protonated, respectively using the
Wash module of MOE2010.

Compounds classification. Members of the dataset were
classified as substrate or non-substrates based upon their
Pearson correlation coefficient. Two different threshold PCC
values were used for classification: �0.25 and �0.30. Com-
pounds with a PCC lower or equal to this threshold value
were considered as substrates. Conversely, compounds
having a PCC value higher than this value were considered
as non-substrates.

Descriptors calculation. A set formed by 93 2D descriptors
accounting for physical properties (excepting Fcharge, mu-
tagenic, reactive, rsynth and SlogP), subdivided surface
areas, atom and bound counts (excepting a_ICM, a_IC,
chiral, lip_druglike, lip_violation, Oprea-related, VadjMa and
VadjEq), pharmacophore features and partial charges (ex-
cepting Q_ and PEOE_PC + , Q_ and PEOE_PC-, Q_ and
PEOE_RPC + , Q_ and PEOE_PRC-) was calculated with
MOE2010.

Training and test set selection. Compounds, sorted in as-
cending order according to their PCC values, were split into
training and test set using three different procedures:

a. A training set, containing 964 compounds (i.e. , 80 % of
the data set), was generated using the MACCS structural
keys and the Tanimoto coefficient similarity metric as imple-
mented in the Diverse Subset feature of MOE2010. The re-

maining compounds (240 compounds) were selected as
test set.

b. A second training and test sets were selected using
the Diverse Subset algorithm of MOE2010 based on the Ta-
nimoto coefficient and set of descriptors previously calcu-
lated. The composition of each training and test set is
shown in Table 1.

c. The data set was divided into substrates and non-sub-
strates. Then, 80 % of each category (i.e. , 124 substrates
and 853 non-substrates) was randomly selected for use as
training set using KNIME v. 2.4.0 (http://www.knime.org/).
The remaining compounds were considered as test set. In
all the cases, the test set was used to evaluate the perfor-
mance of the model built on the training set.

Machine learning. The selections of the best-performing
algorithm and an optimal set of properties for the selected
algorithm were performed using WEKA. The CfsSubsetEval-
BestFirst method, used as a pre-processing step to machine
learning, was applied on the training set in order to select
relevant features for the model. Five different machine
learning methods, in combination with the Weka’s CostSen-
sitive classifier, were used: Na�ve Bayes (NB), k-nearest
neighbors classifier (Ibk), the Weka’s implementation of
a C4.5 decision tree learner (J48), Random Forest (RF) and
the Weka’s implementation of the Support Vector Machine
(SMO). In all cases, the CostSensitive classifier was also used
in combination with Bagging.

Performance measurement. The performance of each al-
gorithm was measured using 5- and 10-fold cross-validation
analysis. In addition, five performance measures were used:
true negative rate (TN) rate (for specificity), true positive
(TP) rate (for sensitivity), G-Mean, Matthews Correlation Co-
efficient (MCC), F-measure and predictive accuracy, as de-
fined below:

Specificity = TN/(TN+FP)
Sensitivity = Recall = TP/(TP+FN)
Precision = TP/(TP+FP)
G-Mean = (Sensitivity � Specificity)1/2

MCC = [(TP � TN)�(FP�FN)]/[(TP+FP)(TP+FN)(TN+FP)-
(TN+FN)]1/2

Accuracy = (TN + TP)/(TN+TP+FN+FP)
where we took the minority class (substrates) as positive

class.
External validation data set. ABCC2 substrates and non-

substrates used for external validation were retrieved from
TP-Search and ChEMBL. 42 and 10 unique compounds
names were obtained from TP-Search and ChEMBL, respec-
tively. No structure was found for 5 compounds of TP-
Search, leading a total of 37 chemical structures obtained
from this database. Thus, three of the compounds found in
ChEMBL were also included in TP-Search. Consequently,
a data set formed by 44 compounds (37 from TP-Search
and 7 from ChEMBL), of which only two were non-sub-
strates, was used. Chemical structures of these compounds
were obtained from Pubchem Compound.[17] Curation and
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addition of net charges were performed using the proce-
dure previously described.

Applicability domain. The applicability domain of the
model was assessed using a principal component analysis.
PCA was performed using MOE2010 and the set of descrip-
tors used to build the model.
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