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A large number of EBV immortalized LCLs have been generated and maintained in genetic/epidemiological studies as a perpetual
source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into iPSCs have paved the way for
generating more relevant in vitro disease models using this existing bioresource. However, the overall reprogramming efficiency
and success rate remain poor and very little is known about the mechanistic changes that take place at the transcriptome and
cellular functional level during LCL-to-iPSC reprogramming. Here, we report a new optimized LCL-to-iPSC reprogramming
protocol using episomal plasmids encoding pluripotency transcription factors andmouse p53DD (p53 carboxy-terminal dominant-
negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency
and 100% success rate using this optimized protocol. Further, we investigated the transcriptional changes in mRNA and miRNA
levels, using FC-abs ≥ 2.0 and FDR ≤ 0.05 cutoffs; 5,228 mRNAs and 77 miRNAs were differentially expressed during LCL-to-iPSC
reprogramming. The functional enrichment analysis of the upregulated genes and activation of human pluripotency pathways in
the reprogrammed iPSCs showed that the generated iPSCs possess transcriptional and functional profiles very similar to those of
human ESCs.

1. Introduction

Epstein-Barr virus (EBV) immortalized lymphoblastoid cell
lines (LCLs) have been routinely used as surrogate in vitro cell
models for various human primary tissues to study genetic
influence on disease traits [1], drug response [2–5], and gene
regulation [6, 7]. Large numbers of stored human LCLs
have been collected in genetic/epidemiological studies as a
perpetual source ofDNA. For example, theNIMHRepository
and Genomic Resource alone currently stores over 184,000
LCLs [8] for sharing with investigators of mental disorders.
LCLs have clearly been a convenient and useful model in
the absence of primary tissue accessibility and therefore
widely banked to study a variety of human diseases, including
complex genetic disorders. However, their ability to faithfully
recapitulate the specific regulatory properties of the donor’s
primary tissue has always been debated. A number of studies
have characterized differences in gene regulatory phenotypes

between LCLs and primary tissues [9–12]. An alternative to
the LCLmodel is the stem cell based system,which carries the
potential to model the tissue specific physiology through the
use of differentiation protocols to generate specific cell/tissue
types. The invention of the induced pluripotent stem cell
(iPSC) technology allowed patient-specific, mature somatic
cells to be converted into an unlimited supply of human
pluripotent stem cells (hPSCs) [13, 14]. However, dermal
fibroblasts isolated from skin biopsies by and large remain the
material of choice for reprogramming experiments due to the
low reprogramming efficiency of other cell types including
LCLs.There exists a rich bioresource of numerous LCL repos-
itories generated from wide array of patients, many of them
with extensive genotypic and phenotypic data already gener-
ated; however, these remain severely underused for this pur-
pose. Recent developments in the reprogramming protocol
have made it possible to reprogram LCLs into iPSCs [15, 16]
but, due to the heterogeneity of the starting material and
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complexity of the optimization of various media components
and reprogramming factors, the reprogramming efficiency
and overall success rate remain poor. We have been able
to optimize a very efficient reprogramming protocol using
stored LCLs, episomes available from a public source, and
commercially available media, achieving 100 percent success
rate and high reprogramming efficiency (see Materials and
Methods for details).

The molecular events leading to the maintenance of
pluripotency in embryonic stem cells (ESCs) and reacqui-
sition of a stem-like state in iPSCs during somatic repro-
gramming represent mechanistically distinct processes that
converge on a set of remarkably similar transcriptional events
that underpin the pluripotent state [17]. Both ESCs and
iPSCs depend on fundamental transcription frameworks that
are governed by a common set of “core” stem cell-specific
transcription factors, namely, OCT4, SOX2, and NANOG
[18].These activators in turn collaborate with both ubiquitous
and cell type-specific transcription factors to orchestrate
complex gene expression programs that give stem cells the
unique ability to safeguard stemness while remaining poised
to execute a broad range of developmental programs that
drive lineage specification [19–22].

Although some success in developing a more efficient
LCL-to-iPSC reprogramming protocol has been achieved
[23], little is known about the mechanistic changes that take
place at the transcriptome and cellular functional level during
reprogramming of LCLs into iPSCs.

In this study, we sequenced six LCLs and their repro-
grammed iPSCs for miRNome (microRNA/miRNA) and
transcriptome (mRNA).We analyzed these dynamic datasets,
aiming at identifying the functional changes at the global
gene expression levels during LCLs-to-iPSC reprogramming
process. A differential gene expression analysis was per-
formed between LCLs and generated iPSC in combination
with functional annotations and Ingenuity�PathwayAnalysis
(IPA).

2. Materials and Methods

Wehave a rich resource of LCLs established using the periph-
eral blood mononuclear cells (PBMCs) collected from more
than 1400MexicanAmerican participants of our SanAntonio
Family Heart Study (SAFHS). Whole genome sequence data
and extensive phenotype data for common complex human
diseases are available for most of these SAFHS participants.
Our large, well characterized LCL resource provides a unique
opportunity to generate pluripotent stem cells from any
of these individuals in the context of their own particular
genetic identity for disease modeling, particularly by dif-
ferentiating specific cell/tissue type from generated iPSC to
experimentally test the hypotheses developed by statistical
genetics methods.

The six human lymphoblastoid cell lines used in this study
were previously established in vitro fromblood samples of our
SAFHS Mexican American participants from whom appro-
priate written consent was obtained. The six LCLs were dei-
dentified and labeled as LCL-1 through LCL-6.The donors of
LCL-1 and LCL-3 were diagnosed with sporadic Parkinson’s

disease.The donors of LCL-2, LCL-4, LCL-5, and LCL-6 were
healthy. The donors of LCL-3 and LCL-4 were first-degree
relatives whereas all other donors were unrelated. Institu-
tional Review Board of theUniversity of TexasHealth Science
Center at San Antonio (San Antonio, TX) approved all
protocols used in this study.

2.1. Cell Culture. The six LCLs were thawed from the SAFHS
cell line repository. The thawed cell lines were cultured
in RPMI 1640 complete media (i.e., RPMI 1640 media
containing 15% heat inactivated fetal bovine serum, 1%MEM
nonessential amino acids, 1mMsodiumpyruvate, and 10mM
HEPES buffer, all from Life Technologies) at 37∘C, 5% CO

2
,

and atmospheric O
2
for 1-2 passages to obtain the appropriate

number of viable cells.

2.2. iPSC Reprogramming and Validation. On day 0, that
is, 24 hours before nucleofection, LCL cultures were split
into 1 : 2 ratios to keep LCLs in log growth phase. On
day 1, about one million cells were nucleofected with
2.5 𝜇g equal amount mixture of episomal plasmids (pCE-
hOCT3/4, pCE-hSK, pCE-hUL, and pCE-mp53DD) encod-
ing reprogramming factors (i.e., OCT3/4, SOX2, KLF4, L-
MYC, and LIN28) and mouse p53DD (p53 carboxy-terminal
dominant-negative fragment) as described by Okita et al.
[24]. The episomal plasmids were obtained from Addgene
nonprofit plasmid repository and nucleofection was per-
formed using SE Cell Line 4D-Nucleofector� X Kit and
4D-Nucleofector DN-100 program on a 4D-Nucleofector
system (Lonza, http://www.lonza.com/). The nucleofected
LCLs were allowed to recover for 8–12 hours in 3mL of
RPMI 1640 complete media in a CO

2
incubator at 37∘C, 5%

CO
2
, and atmospheric O

2
and then transferred equally (i.e.,

0.5mL of media containing ∼1.67 × 105 cells) into aMatrigel�
matrix (Corning Inc.) coated six-well plate containing 1mL of
TeSR�-E7 xeno-free reprogramming media (STEMCELL�
Technologies). On days 3 and 5, 0.5mL of fresh TeSR�-
E7 media was added to each well and, on days 7 and 9,
1mL of media was replaced with fresh TeSR�-E7 media.
All precautions were taken as to not discard cells during
media exchange. By days 7–9, cells start to adhere to the well
surface and changes in cellular morphology were observed
(Figure 1(a)). On day 11, spent media were replaced with
2mL of fresh TeSR�-E7 media. Between days 13 and 15,
when iPSC-like colonies started to appear, the cultures
were transitioned to mTeSR�-1 (STEMCELL Technologies)
hPSC maintenance media (Figure 1(a)). Media were changed
daily thereafter. On days 18–21, 10–15 colonies morpholog-
ically similar to human ESCs (Figure 1(b)) and express-
ing surface antigen TRA-1-81 (live staining with TRA-1-81
antibody) were manually picked for further cultivation and
evaluation.

Using this newly developed protocol, we achieved a con-
sistently high reprogramming efficiency compared with the
previously published LCL-to-iPSC reprogramming protocols
(∼50–200 colonies/million nucleofected cells), which enabled
us to downsize our reprogramming experiments to approx-
imately a third of the original (i.e., reducing the number
of cells nucleofected and culture wells from ∼1 million cells
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: LCL-to-iPSC reprogramming and characterization. (a) Schematic diagram of LCL-to-iPSC reprogramming. (b) Morphology of
a reprogrammed iPSC colony at 5x, 10x, and 40x original magnifications, respectively. (c) Immunocytochemistry analysis of generated
iPSCs showing expression of pluripotency markers. (d) The graphs showing gene expression of core pluripotency markers in LCLs and
their reprogrammed iPSCs. (e) PCR analysis of genomic DNA confirms no integration or retention of plasmid genome/transgene in the
LCL reprogrammed iPSCs at passages 17–20. (f) Image showing immunocytochemistry analysis of the cells of three embryonic germ layers
differentiated from reprogrammed iPSCs using monolayer differentiation protocol. (g) Image showing normal karyotype of an iPSC line.
Karyotype analyses of each reprogrammed iPSC line were found to be normal. (h)The differential gene expression graph showing significant
downregulation of LCL specific genes.

and 6-well format to only ∼0.3 million cells and 2-culture-
well format), thereby reducing the reprogrammingmedia and
other culture costs considerably.This constitutes a significant
step towards the use of this technology in modeling human
disease at a population scale.

The reprogrammed iPSC lines were confirmed by
immunocytochemistry (Figure 1(c)) and differential gene
expression analysis of the pluripotency markers using RNA-
seq data (Figure 1(d)). The genomic/plasmid DNA PCR
analysis was performed to confirm that the reprogrammed
iPSCswere free from episomal plasmids used in LCL-to-iPSC
reprogramming (Figure 1(e)). The functional competence of
reprogrammed iPSC lines to differentiate into the cells of all
three germ layers was assessed throughmonolayer differenti-
ation into cells of endoderm, ectoderm, and mesoderm (Fig-
ure 1(f)) using the hPSC Functional Identification Kit (R&D
Systems) and provided protocol with minor modifications.
To assess the genomic integrity of the reprogrammed iPSCs,
karyotyping (Figure 1(g)) was performed using the method
described by Howe et al. [25] with minor modifications.

2.3. Genomic/Episomal Plasmid DNA PCR. Total cellular
and plasmid DNA from snap-frozen cell pellets (∼5 ×
106 cells) of the six stable reprogrammed iPSC lines was
isolated using the DNeasy Blood and Tissue kit (Qia-
gen) according to the manufacturer’s instructions. PCR to
detect episomal plasmid DNA was performed for 30 cycles
using primer pairs 5-GGCGTAATCATGGTCATAGC-3
and 5-ACGACAGGTTTCCCGACT-3 and Maxima Hot
Start master mix (Thermo Scientific) following the manu-
facturer’s instructions. The PCR primers were designed to
amplify a genomic region common in all episomal plasmids
used in our LCL-to-iPSC reprogramming method but not

complimentary to human genome. Purified plasmid DNA
was used as positive control. A genomic DNA fragment
from a human single copy gene (ALB) was also PCR ampli-
fied using primer pairs 5-TGAAACTTCGGCTCACTCCT-
3 and 5-ATTGATGAAAAGGCGGTTG-3 and following
the same PCR conditions for normalization and as a positive
control for cellular genome.The PCR products ware analyzed
using 1% agarose gel electrophoresis.

2.4. Total RNA Extraction. RNA was extracted from cell
pellets (∼5 × 106 cells) snap-frozen from LCLs immedi-
ately before nucleofection with reprogramming factors and
from their stable reprogrammed iPSC lines. Total RNA was
extracted from aforesaid LCL and iPSC lines (six each) using
TRIzol reagent (Life Technologies) and the manufacturer
protocol withminormodifications. RNAquality and quantity
were assessed using a NanoDrop 2000 Spectrophotometer
(Thermo Scientific) and an Agilent 2100 Bioanalyzer (Agilent
Technologies).

2.5. RNA Sequencing and Data Preprocessing

2.5.1. Small RNA Sequencing. The Illumina� TruSeq� Small
RNA Sample Preparation Kit was used to prepare small RNA
sequencing libraries from 1 𝜇g of total RNA. Briefly, the kit
uses a modified RNA 3 adaptor that specifically targets
miRNA and other small RNAs that have a 3 hydroxyl group.
After ligation to each end, reverse transcription was per-
formed to synthesize complementary single stranded cDNA.
The cDNA library was then PCR amplified and gel purified
for fragment size of 145–160 nucleotides containing miRNA
and other regulatory small RNAs. The small RNA libraries
fromall the 12 samples (i.e., six LCLs and their reprogrammed
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iPSCs) were then deep sequenced using the Illumina HiSeq
2500 platform to generate 13.8 million sequence reads.

2.5.2. mRNA Sequencing. The Illumina TruSeq RNA Sample
Preparation Kit v2 was used to prepare cDNA sequencing
libraries from 1𝜇g of total RNA. Briefly, poly-A tail containing
mRNA molecules was enriched from total RNA using oligo-
dT attached magnetic beads. The mRNA enriched sam-
ples were fragmented into smaller pieces (∼200–600 base
pairs) using divalent cations under elevated temperature.The
cleaved RNA fragments were then used as a template to
synthesize first-strand cDNA using reverse transcriptase and
random primers, followed by second-strand cDNA synthesis,
using DNA polymerase-I and RNase H. The synthesized
cDNA fragments were end-repaired and adaptor ligations
were performed. The products were purified and cDNA
libraries enriched with PCRwere deep sequenced on the Illu-
mina HiSeq 2500 platform to generate 58.3 million paired-
end sequence reads across the 12 samples.

2.5.3. Sequence Analysis. Raw fastq sequence files were gen-
erated and demultiplexed using the Illumina CASAVA v1.8
pipeline. After prealignment QCs, sequences were aligned
to human genome build 19 (hg19) and mapped to UCSC
transcripts using StrandNGS software v2.1 (StrandGenomics
Inc.) with default settings. The small RNA reads were also
mapped to small RNA annotations as implemented in Strand
NGS v2.1 (StrandGenomics Inc.)The aligned reads were then
filtered based on read quality metrics (i.e., quality threshold
≥ 20; N’s allowed in read ≤ 1; mapping quality threshold
≥ 40; read length ≥ 20), so that only good alignments
were retained and then quantification was performed. The
expression values (read counts) were log transformed and
“DESeq” normalization was applied. Only known mRNAs
and miRNAs having the normalized read count (NRC) ≥ 20
in all samples of any one out of two cell types or in both
(i.e., LCLs or iPSCs or both) were selected for differential
expression analysis.

2.6. Differential Gene Expression Analysis. For both miRNA-
seq and mRNA-seq datasets, we performed moderated 𝑡-
statistics and expression fold change analysis using Strand
NGS software. Based on the criteria fold change-absolute
(FC-abs)≥ 2.0 and false discovery rate adjusted𝑝 value (FDR)
≤ 0.05, differentially expressed genes were identified between
LCLs and iPSCs.

2.7. Functional Annotations and Pathway Analysis. To iden-
tify biological functions that were most significant to our
dataset, functional annotation enrichment analysis of signif-
icantly DE mRNAs and miRNAs was performed using IPA.
Right-tailed Fisher’s exact test 𝑝 values corrected for FDR
were used to calculate enrichment significance.The direction
of functional change during LCL-to-iPSC reprogramming
was assessed by activation Z-score as implemented in IPA.
This allows the assessment of changes in respective cell type-
specific key canonical pathways as a consequence of tran-
scriptomic changes during LCL-to-iPSC reprogramming.
The datasets comprising the normalized read count of the

expressed genes (NRC ≥ 20) in LCLs and iPSCs and fold
change values of significantly DE genes and miRNAs during
iPSC reprogramming were analyzed in IPA and the predicted
changes in the pathways were assessed by comparing the
generated expressed and DE gene pathway visualization.

3. Results and Discussion

3.1. Human LCL-to-iPSC Reprogramming and Validation.
Given the potential utility of the extensive LCL bioresource,
we attempted reprogramming six LCLs from our SAFHS
Mexican American participants into iPSCs using two previ-
ously publishedmethods that demonstrated successful repro-
gramming of LCLs [15, 16]. In the first set of reprogramming
experiments, we followed the method published by Choi et
al. [15] and successfully nucleofected (assessed by parallel
control nucleofection of GFP plasmid) one million cells
per cell line with a 10 𝜇g mixture of EBNA1/OriP plasmid
(i.e., 3.5 𝜇g of EN2L, 2.5 𝜇g of ET2K, and 4.0 𝜇g of EM2K)
obtained from Addgene plasmid repository, encoding the
OCT4, SOX2, NANOG, LIN28, c-Myc, KLF4, and SV40LT
reprogramming factors. The nucleofected cells were cultured
using the media and culture conditions described in the
publication but after repeating the experiments twice on six
different cell lines we did not achieve any success with this
protocol. In the second set of experiments, we followed the
method described by Rajesh et al. [16] and nucleofected the
same six LCLs with a 2 𝜇g mixture of the different plas-
mid combination described in the publication. We achieved
some success with OSNK, OSTK, and L-mL combinations.
Only two out of six LCLs would be reprogrammed into
iPSC using this method, but efficiency remained very poor
(Table 1). Whilst working on these reprogramming experi-
ments and trying different plasmid combinations, we have
optimized an efficient LCL reprogramming protocol (see
Figure 1(a) and the Materials and Methods for the detailed
protocol), achieving 100% reprogramming success (our 29
reprogrammed iPSC lines) and very high reprogramming
efficiency per nucleofection of one million cells (Table 1).
We used equal amount mixture of episomal plasmids (pCE-
hOCT3/4, pCE-hSK, pCE-hUL, and pCE-mp53DD) encod-
ing reprogramming factors OCT3/4, SOX2, KLF4, L-MYC,
LIN28, and mouse p53DD (p53 carboxy-terminal dominant-
negative fragment). This combination constitutes two major
changes from the previously published methods of Choi et
al. [15] and Rajesh et al. [16]. The first change is the use of
a mouse p53DD (p53 carboxy-terminal dominant-negative
fragment) for TP53 suppression. TP53 is an important cell
cycle regulator and it has been shown that its suppression
enhances the iPSC reprogrammingprocess both in fibroblasts
[24] and in LCLs [23]. The second change we made is
that we removed SV40LT from our reprogramming mix,
which was used in all three previously published LCL-to-
iPSC reprogramming methods by Choi et al. [15], Rajesh et
al. [16], and Barrett et al. [23]. The expression of SV40LT
was shown to be involved in suppression of iPSC induction
[24]. Our optimized method achieves consistently higher
LCL-to-iPSC reprogramming efficiency than the previously
published methods. Furthermore, we used commercially
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Table 1: iPSC induction efficiency from six LCL lines.

Cell line Cell number
nucleofected

Reprogramming efficiency (%)/plasmid mixture and conditions

EN2L + ET2K + EM2K
after Choi et al. [15]

OSNK + OSTK + L-mL
after Rajesh et al. [16]

Our optimized protocol
(see Materials and

Methods)
LCL-1 1 × 106 0.0 0.0003 0.0102
LCL-2 1 × 106 0.0 0.0 0.0204
LCL-3 1 × 106 0.0 0.0001 0.0054
LCL-4 1 × 106 0.0 0.0 0.0108
LCL-5 1 × 106 0.0 0.0 0.0132
LCL-6 1 × 106 0.0 0.0 0.0216

available reprogramming media; therefore, our method can
be easily reproduced by different laboratories interested in
LCL-to-iPSC reprogramming. All of our six iPSC lines used
in this study and 23 others were reprogrammed using our
optimized method. The reprogrammed iPSC lines formed
flat and compacted colonies and showed high nucleus-to-
cytoplasm ratios, the typical morphology of human ESCs
(Figure 1(b)). The immunocytochemistry and differential
gene expression analysis showed that all of our repro-
grammed iPSC lines express pluripotency markers (Figures
1(c) and 1(d)). The genomic/plasmid DNA PCR analysis
showed that the reprogrammed iPSCs were free from epi-
somal plasmids used in LCL-to-iPSC reprogramming at 17–
20 passages (Figure 1(e)). The iPSCs also showed potential
to differentiate into cells of all three germ layers by in vitro
monolayer differentiation protocols and exhibited a normal
karyotype (Figures 1(f) and 1(g)).

LCLs show high expression of the B-cell activation mark-
ers (FCER2/CD23, CD70, TNFRSF8/CD30, and ENTPD1/
CD39) and cellular adhesion molecules (ITGAL/CD11a,
LFA3/CD58, and ICAM1/CD54) [26]. These markers are
usually absent or expressed at very low levels in resting
B-cells, but their expression is significantly upregulated by
EBV encoded nuclear antigens (EBNA2, EBNA3C) and latent
membrane proteins (LMP1, LMP2A) when EBV infection
is used to generate the LCLs [27–29]. The differential
gene expression analysis of LCLs and their reprogrammed
iPSCs shows significant downregulation of these markers in
reprogrammed iPSCs (Figure 1(h)), which supports previous
findings that EBV transcriptional activity is inhibited in the
reprogrammed iPSCs [15, 16].

3.2. Differentially Expressed (DE) Genes. To investigate the
mechanistic gene expression changes that occurred dur-
ing LCL-to-iPSC reprogramming, we performed a parallel
genome-wide miRNA and mRNA expression analysis in six
LCLs and their reprogrammed iPSCs. A total of 5.5 and
8.3 million small RNA 40 bp single-end reads and 28.4 and
29.9 million mRNA 100 bp paired-end reads were obtained
for LCLs and their reprogrammed iPSCs, respectively, from
24 cDNA libraries (12 each for small RNA and mRNA)
sequenced on an Illumina HiSeq 2500 platform. Only known
miRNA and mRNA genes/transcripts with NRC ≥ 20 (i.e.,

normalized value ≥ 4.3219 on log
2

scale) in all samples of any
one or both cell types (i.e., in LCLs or in iPSCs or in both)
were considered to be expressed. We detected 12,325 mRNA
and 116 miRNA expressed genes/transcripts in LCL and iPSC
pairs during LCL-to-iPSC reprogramming.

Reproducibility of the expressed transcriptomic profiles
in the biological replicates of each cell type was evaluated by
calculating the correlation coefficient (𝑟2) on the total num-
ber of expressed genes/transcripts (Figure 2(a)) during LCL-
to-iPSC reprogramming. The average correlation coefficient
at 95% confidence interval (95%CI) was 0.938±0.007 for LCL
replicates and 0.969 ± 0.002 for iPSC replicates. These data
suggest highly concordant resetting of gene expression pro-
files in all six cell lines/biological replicates during LCL-to-
iPSC reprogramming.

To identify the unique transcriptomic signature of the
LCL-to-iPSC reprogramming, we performed moderated 𝑡-
statistics and expression fold change (FC) analysis in LCLs
and their reprogrammed iPSCs. Using the FC-abs ≥ 2.0
and FDR ≤ 0.05 cutoffs, 5,228 mRNAs and 77 miRNAs
were differentially expressed during LCL-to-iPSC repro-
gramming (Table S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2016/2349261; Figures 2(b)
and 2(c)). Among themRNAs andmiRNAs thatwereDEdur-
ing iPSC reprogramming, 2,317mRNAs and 29miRNAswere
downregulated and they accounted for themajority of the DE
mRNAs and miRNAs reads (i.e., 85.6% and 97% reads, resp.)
in LCLs.The upregulated 2,911 mRNAs and 48 miRNAs con-
stituted most of the DE iPSC transcriptome reads (i.e., 80%
mRNA and 96% miRNA reads).

Principal component analysis (PCA) of differentially
expressed mRNAs and miRNAs during LCL-to-iPSC repro-
gramming is shown in Figure 3.Thefirst principal component
(Component 1), which represents the expression variance due
to reprogramming (i.e., expression change as a function of
LCL and iPSC cellular identities), accounts for 85.35% of the
variance observed in DE mRNAs (Figure 3(a)) and 89.83%
of the variance observed in DEmiRNAs (Figure 3(b)) during
iPSC reprogramming.

These results suggest discrete and uniform resetting of
bothmRNA andmiRNA expression during iPSC reprogram-
ming, each cell type expressing a unique set of genes and
miRNAs.
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Figure 2: Differential gene expression statistics in LCL-to-iPSC reprogramming. (a) Expressed genes (NRC ≥ 20) correlation coefficient (𝑟2)
plots for LCLs versus iPSCs. (b) Volcano plots showing differentially expressed genes (mRNAs) between LCLs and their reprogrammed iPSCs.
(c) Volcano plots showing differentially expressed miRNAs between LCLs and their reprogrammed iPSCs.

3.3. Transcriptomic and Functional Signature of LCL-to-
iPSC Reprogramming. Hierarchical clustering based on the
expression profiles of significantly DE genes and miRNAs
during LCL-to-iPSC reprogramming is shown in Figure 4(a).

3.3.1. LCL Related Genes. During in vitro EBV immortaliza-
tion of B-lymphocytes, EBV oncoprotein expression converts
resting B-lymphocytes into LCLs, which consequently show
higher expression of B-cell activation markers, similar to

antigenic or mitogenic stimulation of the resting B-cells [26,
28].The LCL ChIP-seq data also indicate that EBV evolved to
usurp B-cell-intrinsic activation programs to support rapid
growth and survival of latently infected B-cells/LCLs [30].
Therefore, we explored the fate of EBV latent oncopro-
tein’s transcriptomic effect [29, 31] in our reprogrammed
iPSCs which includes the known effects on B-cell transcrip-
tion factors (STAT1, MYC, YY1, SP1, PAX5, BATF, IRF4,
ETS1, RAD21, SPI1, CTCF, RBPJ, ZNF143, SMC3, NFKB1,
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Figure 3: Principal component analysis (PCA) based on DE genes. (a) DE mRNAs during LCL-to-iPSC reprogramming. (b) DE miRNAs
during LCL-to-iPSC reprogramming.

NFKB2, TBL1XR1, EBF1, MAX, and RUNX3), major histo-
compatibility complex classes I and II, cell surface markers
(FCER2/CD23, CD70, TNFRSF8/CD30, and ENTPD1/CD39),
cellular adhesionmolecules (ITGAL/CD11a, LFA3/CD58, and
ICAM1/CD54), and LCL specific miRNAs (miR-155, let-
7a-i, miR-21, miR-142, miR-103, miR-320, and miR-146a-b).
These B-cell/LCL specific markers (mRNA and miRNA)
were highly enriched in differentially expressed genes and
showed significant downregulation in reprogrammed iPSCs
(Figure 4(b)). A few of the B-cell transcription factors (YY1,
SP1, RAD21, CTCF, RBPJ, ZNF143, SMC3, and TBL1XR1) that
were highly expressed in both LCLs and their reprogrammed
iPSCs may perform vital cellular functions; namely, YY1 and
SP1 are ubiquitously expressed transcription factors that are
involved in repressing and activating a diverse number of
promoters [32, 33]; cohesin component RAD21 as well as
SMC3 exhibits a functional role in maintaining ESC identity
through association with the pluripotency transcriptional
network [34]; CTCF is involved in many cellular processes,
including transcriptional regulation, insulator activity, and
regulation of chromatin architecture [35]; RBPJ DNA bind-
ing protein plays a role in lineage specification and stem
cell expansion [36]; ZNF143 is an important regulator of
mammalian embryonic stem cell renewal [20]; miR-103a is
expressed in various cell lineages and may perform some
basic cellular functions [37].

3.3.2. iPSC/ESC Related Genes. The genes and miRNAs
expected to be enriched in iPSCs/ESCs, from the literature
[18, 21, 38–42], include transcription factors involved in

maintaining “stemness” (FOXD3, GATA6, NANOG, NR6A1,
POU5F1, SOX2, UTF1, TFCP2L1, and ZFP42), signaling
molecules involved in pluripotency and self-renewal
(CRABP2, EDNRB, FGF4, FGF5, GABRB3, GAL, GRB7,
IFITM1, IL6ST, KIT, LEFTY1, LEFTY2, LIFR, NODAL,
NOG, NUMB, PTEN, SFRP2, and TDGF1), cytokines and
growth factors (FGF4, FGF5, LEFTY1, LEFTY2, NODAL, and
TDGF1), other ESC-specific genes (BRIX1, CD9, DIAPH2,
DNMT3B, IFITM2, IGF2BP2, LIN28A, PODXL, REST,
SEMA3A, TERT, ESRG, and GJA1), and miRNAs (miR-302a,
miR-302c, miR-371a, miR-302b, miR-302d, miR-372, miR-373,
miR-92a-1, miR-92a-2, miR-92b, miR-17, miR-20a, and miR-
18a) that were highly enriched in genes and miRNAs that
were expressed (NRC ≥ 20) in our reprogrammed iPSCs and
the majority of them showed significant upregulation (FC ≥
2.0, FDR ≤ 0.05) during iPSC reprogramming (Figure 4(c)).
The expression of transcription factors GATA6 and UTF1,
signaling moleculeNODAL, and growth factor FGF4 showed
upregulation during iPSC reprogramming; however, it was
below the detection threshold (NRC ≤ 20) in one or more
of our iPSCs, possibly due to lower overall read counts. The
expression of a few iPSC/ESCmarkers (gene/miRNAs) either
did not change significantly (IFITM2, IFITM1, DIAPH2,
NUMB, REST, BRIX1, TFCP2L1, FGF5, and miR-92a) or
was significantly (FC ≤ −2.0, FDR ≤ 0.05) downregulated
(PTEN and IL6ST) in our reprogrammed iPSCs. IFITM1
and IFITM2 are interferon-induced antiviral cell-intrinsic
restriction factors with high constitutive expression in
many cells. Both IFITM1 and IFITM2 were highly expressed
(NRC > 100) in both our LCLs and reprogrammed iPSCs.
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Figure 4: Continued.
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Figure 4: Gene expression patterns in LCLs, reprogrammed iPSC, and ESCs. (a) Expression pattern of all DE mRNAs and miRNAs in LCLs
and their reprogrammed iPSCs. (b) Expression profiles of LCL specific mRNAs and miRNAs in LCLs and their reprogrammed iPSCs. (c)
Expression profiles of mRNAs andmiRNAs known from the literature to be involved in maintenance of pluripotency and stemness in human
ESC/iPSCs. (d) PCA on gene expression profiles of six LCLs and their reprogrammed iPSCs generated in this study and three ESC and four
iPSC gene expression profiles downloaded from the GEO database.

EBV oncoprotein in LCLs and OCT4/POU5F1 in iPSCs
synergistically facilitate the expression of endogenous
retroviral integration elements in the human genome, which
consequently increase expression of IFITM proteins in both
LCLs and iPSCs [43, 44]. The DIAPH2 gene is ubiquitously
expressed and affects cytokinesis and other actin-mediated

morphogenetic processes that are required in self-renewal
and early steps of development [45]. The NUMB gene’s
primary function in cell differentiation is as an inhibitor
of Notch signaling which is essential for maintaining self-
renewal potential in stem and progenitor cells [46], whereas
it acts as a coactivator of EBNA2 activity by suppressing
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Notch signaling in LCLs [47]. The REST gene encodes a
transcriptional repressor of neuronal genes in nonneuronal
tissues and was expressed in our LCLs and iPSCs. However,
its role in self-renewal and pluripotency of ESCs remains
ambiguous [48–50]. The TFCP2L1 is preferentially expressed
in ESCs and upregulates NANOG expression and promotes
self-renewal in a NANOG dependent manner [51, 52].
miR-92a1 and miR-92a2 were among the most abundant
miRNAs in our LCLs and reprogrammed iPSCs.miR-92a are
ubiquitously expressed in majority of cell types and target
genes involved in cell cycle regulation and cell signaling
and thus are necessary during all stages of mammalian
development and essential for the proliferation of cells [53].
The PTEN gene was highly expressed (NRC > 100) both in
LCLs and in reprogrammed iPSCs but its expression was
downregulated during the LCL-to-iPSC reprogramming.
PTEN is a key regulator of hESC growth and differentiation
[54]. The pathways of CXCR4 and PTEN converge, leading
to the promotion and regulation of tumorigenesis [55], and
CXCR4 expression is inhibited by EBV oncoproteins in LCLs.
Based on these observations, we hypothesized that PTEN is
highly upregulated by EBVoncoproteins in LCLs. LikePTEN,
IL6ST was also highly expressed both in LCLs and in iPSCs
but was downregulated during iPSC reprogramming. EBV
oncoprotein LMP1 is known to significantly upregulate IL6ST
in LCLs [56]. In iPSCs/ESCs, IL6ST is primarily associated
with cell survival and differentiation [57].

3.3.3. Principal Component Analysis of Gene Expression
Profiles between LCLs, Their Reprogrammed iPSC Lines, and
Other ESC and iPSC Lines Available from Public Domain.
To further assess and compare the gene expression profile
of our LCL reprogrammed iPSCs with other ESC and
iPSC line gene expression profiles, we downloaded whole
genome RNA sequencing data of three ESC lines, that
is, GSM1888661 (H9ESC), GSM1888664 (HUES1), and
GSM1888680 (HUES3), and four iPSC lines, that is,
GSM1888662 (iPS11b), GSM1888660 (iPS15b), GSM1888679
(iPS18c), and GSM1888663 (iPS20b), from GEO public
database submitted by Choi et al. [58]. Principal component
analysis of the expressed mRNAs of 6 LCLs, their
reprogrammed iPSCs (this study), and 3 ESCs and 4 iPSCs
(downloaded from GEO database) is shown in Figure 4(d).
The first principal component (Component 1) which
represents the expression variance between LCLs and ESCs/
iPSCs (6 iPSCs (this study) and 3 ESC and 4 iPSC expression
profiles downloaded from GEO database) clusters accounts
for 81.76% of the total variance observed in all expressed
mRNAs. The second principal component (Component
2), which represents the expression variance between the
ESC/iPSC downloaded from GEO database and the LCL
reprogrammed iPSC lines generated in this study, accounts
for only 4.59% of the variance observed in all expressed
mRNAs. This small variance in the expressed mRNAs of
our reprogrammed iPSCs and ESCs/iPSCs data downloaded
from GEO may be attributed to the differences between
the genetic backgrounds of the donors of these lines as well
as laboratory-to-laboratory variation. This analysis further
confirms that our LCL reprogrammed iPSCs have a very

similar gene expression profile to that of human ESCs and
iPSCs.

3.3.4. Functional Annotation of DE Genes and miRNAs. To
better understand what biological functions were affected
and how these were affected by differentially expressed
mRNAs and miRNAs during LCL-to-iPSC reprogramming,
we performed functional annotation enrichment analysis of
downregulated and upregulated mRNAs and miRNAs using
IPA. The significantly enriched (FDR ≤ 0.001) functions
that were also either significantly upregulated (activation Z-
score ≥ 2.0) or downregulated (activation Z-score ≤ −2.0)
consequent to the upregulation or downregulation of the
DE genes and DE miRNAs are presented in Supplementary
Figure S1 and Supplementary Table S2.The top 15 upregulated
and downregulated functions are presented in Figure 5. The
224 biological functions that were significantly enriched in
downregulated genes and miRNAs predominantly showed
deactivation/downregulation of hematologic system devel-
opment and functions, particularly the functions related
to lymphocytes. This suggests that during reprogramming
LCLs lose their B-lymphocyte identity/functions. The 161
biological functions that were enriched in the upregulated
DE genes and miRNAs predominantly showed the activa-
tion/upregulation of early organism development suggesting
that reprogrammed iPSCs possess functional profiles very
similar to ESCs. Some of the basic cellular functions (e.g., cell
proliferation, survival, viability, movement/migration, phos-
phorylation of proteins, and organismal death) were enriched
in both upregulated and downregulated genes and miRNAs
but contrarily regulated. Both LCL and reprogrammed iPSC
share a basic self-renewal property; however, these results
suggest that such shared property may be regulated very
differently in LCLs and their reprogrammed iPSCs.

3.3.5. Canonical Pathways in LCL-to-iPSC Reprogramming.
Further, we explored the effects of iPSC reprogramming on
key LCL and human iPSC related canonical pathways using
IPA platform.

Previous studies of the molecular genetics and patho-
genesis of EBV induced B-cell growth support a model
where EBV encoded nuclear antigens (EBNA1, EBNA2, and
EBNA3A-C) and integral membrane proteins (LMP1 and
LMP2) utilize intrinsic B-cell receptors (BCR) signaling
pathways to support rapid growth and survival of latently
infected B-cells/LCLs [26, 28, 30, 59].

The EBV principal oncoprotein LMP1 along with LMP2A
mimics CD40 and B-cell receptor (BCR) signaling, respec-
tively, and activates NF-𝜅B, JNK, and MAPK pathways [29,
60–63]. These pathways control B-lymphocyte proliferation,
differentiation, and survival and are critically important
regulators of normal and pathological innate and adaptive
immune responses mediated through BCR signaling. As
expected, almost all of these pathways were in an activated
state in our LCLs (Figure 6(a)) and were significantly down-
regulated in reprogrammed iPSCs (Figure 6(b)). The FOXO1
and MEK/ERK signaling which was upregulated both in
LCLs and in reprogrammed iPSCs is known to play a role in
human iPSC/ESC maintenance [64, 65].
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Top 15 downregulated functions
Functions annotation [enrichment p value]
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Figure 5: Graphical presentation of the top 15 upregulated and downregulated cellular functions found to be enriched during LCL-to-iPSC
reprogramming.

Human iPSCs have similar properties to human ESCs
(hESCs), such as self-renewal and differentiation capacity
[13, 66]; therefore, we explored the state of human ESC
pluripotency pathways in our reprogrammed iPSCs. Human
iPSCs/ESCs exhibit a number of signaling pathways involved
in self-renewal and pluripotency, regulated by a combination
of intrinsic and extrinsic factors. Intrinsic factors include a
group of core transcription factors, that is, POU5F1/OCT4,
SOX2, and NANOG. The OCT3/4 and SOX2 partnership is
indispensable in the maintenance of pluripotency [67, 68].
NANOG is another member of the group of transcription
factors whose functions are deemed essential for the process
of self-renewal in human ESCs [69, 70]. All the core pluripo-
tency transcription factor’s genes (i.e., POU5F1/OCT4, SOX2,
and NANOG) were highly expressed (Figure 7(a)) and sig-
nificantly upregulated (Figure 7(b)) in our reprogrammed
iPSCs. The extrinsic basic FGF (bFGF) allows the clonal
growth of human ESCs/iPSCs on fibroblasts in the presence
of commercially available serum replacement [71]. At higher
concentrations, bFGF allows feeder independent growth of
human ESCs/iPSCs cultured in the same serum replacement
[72–75]. Apart from the core transcription factors, FGF
signaling and a balance between TGF-𝛽/Activin and BMP
signaling are central to the self-renewal of humanESCs/iPSCs
[76–78]. The TGF-𝛽 superfamily of ligands plays a major
role in maintaining the self-renewing capacity of human
ESCs/iPSCs through two main branches: the SMAD1/5
branch which is transduced on behalf of BMP and GDF
ligands via type I receptors ALK1, ALK2, ALK3, and ALK6
and the TGF-𝛽/Activin/NODAL branch, which involves the
activation of SMAD2/3 via ALK4, ALK5, and ALK7 [79–
83]. There are also two inhibitory SMADs: SMAD6, which
selectively inhibits SMAD1/5, and SMAD7, which inhibits
TGF-𝛽 signaling [84–86]. Upon activation by phosphory-
lation and association with a common SMAD4, receptor

activated SMADs translocate to the nucleus and in concert
with other transcription factors regulate gene expression.
SMAD2/3 pathway is also required for positive regulation
of several factors of TGF-𝛽 signaling. These factors include
NODAL, CRIPTO, LEFTY1, and LEFTY2 [83]. However,
genes involved both in TGF-𝛽/Activin and in BMP signaling
pathways were highly expressed and the expression of TGF-
𝛽-responsive genes NODAL, CRIPTO, and LEFTY was also
significantly upregulated in our reprogrammed iPSCs (Fig-
ure 7(b)). The expression of TGF-𝛽 itself was downregulated
and the expression of most SMADs did not change signifi-
cantly during LCL-to-iPSC reprogramming (Figure 7(b)). In
LCLs, EBV encoded EBNA1 represses TGF-𝛽 induced gene
transcription through rapid degradation of SMAD2 protein;
however, it does not affect the other SMAD proteins or
the transcription of either TGF-𝛽 or SAMD2 itself [87]. In
normal cells, activated SMAD complex consisting of either
dimers or trimers of phosphorylated SMAD2/3 bound to
SMAD4 is responsible for subsequent transcriptional regula-
tion of TGF-𝛽-responsive genes [88]. The TGF-𝛽-responsive
genes function in both autocrine and paracrine manners and
control the expression of their upstream regulator TGF-𝛽 and
SMADs [89]. In the absence of TGF-𝛽-responsive proteins,
transcription of TGF-𝛽 and SMADs (particularly SMAD2,
SMAD3, and SMAD4) was highly upregulated in LCLs,
whereas, in reprogrammed iPSCs, EBNA1 transcription was
inhibited and therefore TGF-𝛽 induced gene transcription
was reinstated (as shown by upregulated NODAL, CRIPTO,
and LEFTY), which along with extrinsic TGF-𝛽 in the
iPSC maintenance media plausibly downregulated TGF-𝛽
transcription slightly, but mRNA levels of most SMADs did
not change significantly indicating that TGF-𝛽 signaling plays
an important role in maintenance of human ESC/iPSCs.

In contrast to TGF-𝛽/Activin/NODAL signaling,
high BMP activity is associated with differentiation of
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human ESCs/iPSCs. Repression of BMP signaling in
human ESCs/iPSCs by Noggin and FGF supports long-
term self-renewal [74]. Binding of FGF to its receptor
and heparin leads to receptor autophosphorylation and
activation of intracellular signaling cascades, including the
Ras/ERK pathway and the PI3K pathway [64, 90, 91]. Our
reprogrammed iPSCs show evidence of FGF induced acti-
vation of both Ras/ERK (Figure 6(b)) and PI3K (Figure 7(a))
pathways.

Wnt/𝛽-catenin signaling also plays an important role
in controlling ESC maintenance. Canonical Wnt signaling
involves the binding of Wnt to the frizzled receptors. This,
in turn, activates Dsh, which displaces GSK3𝛽 from the
APC/AXIN complex, preventing ubiquitin mediated degra-
dation of 𝛽-catenin. Subsequently, 𝛽-catenin accumulates

and translocates to the nucleus where it associates with
TCF/LEF to activate transcription of Wnt target genes [92,
93]. All genes in Wnt/𝛽-catenin signaling pathway were
highly expressed in our reprogrammed iPSCs and expression
of 𝛽-catenin was significantly upregulated (Figures 7(a) and
7(b)).

Our reprogrammed iPSCs also showed evidence of acti-
vation of the S1P signaling pathway (Figure 7(b)). S1P signals
both extracellularly through EDG receptors coupled to G-
proteins and intracellularly by unidentified mechanisms that
support human ESC/iPSC self-renewal [94].

3.3.6. Recovery of Donor’s Genetic Relationships and Disease
State. Because the regulation of a large number of genes
was affected by iPSC reprogramming (42.4% of the total
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Figure 7: Diagram showing key human pluripotency pathways in ESCs/iPSCs. (a) Pathway genes expressed in reprogrammed iPSCs. (b)
Differential expression of pathway genes during LCL-to-iPSC reprogramming.

expressed genes), we investigated whether the gene expres-
sion pattern specific to the donor’s genetic relationships and
disease state was recovered in the process. We performed
hierarchical clustering analysis and PCA using data on all
12,325 mRNAs detected as expressed in LCLs and their
reprogrammed iPSCs. The LCLs fail to consistently cluster
by the genetic relationships of their donors or by the disease
state (Figure 8(a)). The similarity of iPSC-3 and iPSC-4 is
driven by genetic relatedness since these donors are first-
degree relatives sharing 50% of their genetic background
(Figure 8(b)). The similarity of iPSC-1 and iPSC-3, which
are unrelated donors with Parkinson’s disease, exhibits the
second most minimal distance from each other (hierarchical
clustering, Figure 8(b)). This proximity appears to be driven
by shared disease state. Further, we performed differential
gene expression analysis between iPSC lines of Parkinson’s

patients and iPSC lines of healthy donors. Using the FC-abs
≥ 2.0 and FDR ≤ 0.05 cutoffs, no genes were found to be
differentially expressed. More relevant neuronal cells will be
differentiated from the generated iPSCs, to further investigate
the pathophysiology and genetics of these Parkinson’s disease
cases. Several previous studies have shown successful model-
ing of Parkinson’s disease in neurons generated from iPSCs
[95–104].

4. Conclusions

To enable the utilization of existing LCL bioresources in iPSC
based disease modeling, it is an absolute necessity to develop
an efficient and reproducible LCL-to-iPSC reprogramming
method. Here, we describe a MEF feeder-free protocol for
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Figure 8: Clustering properties of LCLs and their reprogrammed iPSCs (a) Hierarchical clustering analysis and PCA in LCLs based on all
genes detected as expressed during LCL-to-iPSC reprogramming. (b)Hierarchical clustering analysis andPCA in generated iPSCs based on all
genes detected as expressed during LCL-to-iPSC reprogramming. #Thedonors of LCL-1 and LCL-3 were diagnosed with sporadic Parkinson’s
disease. The donors of LCL-2, LCL-4, LCL-5, and LCL-6 were healthy. ∗The donors of LCL-3 and LCL-4 were first-degree relatives whereas
all other donors were unrelated.

efficient and reproducible reprogramming of iPSCs from
LCL using publically available plasmids and commercially
available media. In addition, our comprehensive analysis of
genome-widemiRNome and transcriptomeof LCLs and their

reprogrammed iPSCs provides important documentation of
differentially expressed genes and miRNAs and their func-
tional consequences during LCL-to-iPSC reprogramming
which were previously unknown.
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