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Abstract: Herein, we report the design and synthesis of a series of chiral pyrrolidine-substituted
ferrocene-derived ligands. The proficiency of this novel structural motif was demonstrated in the
Rh-catalyzed asymmetric hydrogenation of dehydroamino acid esters and α-aryl enamides. The
products were obtained with full conversions and excellent levels of enantioselectivities of up to
>99.9% ee and 97.7% ee, respectively, using a BINOL-substituted phosphine-phosphoaramidite ligand
which possesses planar, central, and axial chirality elements.

Keywords: chiral ligand; ferrocene; asymmetric catalysis; rhodium-catalyzed olefin reduction

1. Introduction

Phosphorous-based ligands have found extensive use in homogeneous transition
metal catalysis [1–3]. Bidentate P,P based structures, exemplified by BINAP, DuPhos and
Josiphos, represent a privileged ligand scaffold in transition-metal catalysis (Figure 1) [4].
Ferrocenyl-based Josiphos derivatives have proven to be efficient ligands across a range
of enantioselective processes, particularly in the field of olefin hydrogenations [5,6]. Their
value has been demonstrated in the large-scale Ir-catalyzed hydrogenation of an N-aryl
imine in the synthesis of the herbicide (S)-metolachlor [7]. Thus, the increasing demand
for efficient enantioselective technologies has led to significant investigation of ligand
derivatives, as evidenced by the range of commercially available variants and sub-families
such as Knochel’s Ferriphos ligands [8].
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Focusing on planar chiral ferrocene compounds and their ease of preparation through
the use of diastereoselective ortho-metalating groups, including amines, sulfoxides, ac-
etals, oxazolines, azepines, sulfoximines, and hydrazones, has contributed to the wide
range of planar chiral ferrocene ligands reported to date [9]. We reported the prepara-
tion of ferrocenylphosphinamine ligands of type 1, Figure 2, possessing both planar and
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central chirality obtained through diastereoselective metalation of trans-(2R,5R)-2,5-dialkyl-
1-(ferrocenylmethyl)pyrrolidines and their application in Pd-catalysed allylic alkylation [10].
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Figure 2. Selected ferrocene-pyrrolidine containing ligands.

Thus, interested by the successful application of ferrocene-containing ligands, bearing
an α-chiral center, and extending our work on pyrrolidine-containing P,N ligands [11–13],
we developed novel ferrocene ligands in which the α-chiral center is incorporated into
a pyrrolidine unit. We had previously reported the enantioselective preparation of fer-
rocenepyrrolidine (R)-2 and applied it in the diastereoselective formation of a series of
N,O ligands of type 3 for the diethylzinc-mediated addition to aldehydes, affording enan-
tioselectivities of up to 95% ee [14]. In addition, we reported the synthesis of novel
ferrocene-phosphinamine ligands of type 4, again obtained through diastereoselective
ortho-metalation of ferrocenepyrrolidine (R)-2, Figure 2, and their application in the Pd-
catalyzed allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate
gave enantioselectivities of up to 77% ee [15].

In 2002, Boaz reported the synthesis of air-stable ‘BoPhoz’ ferrocenylphosphine-
aminophosphine ligands (5, Figure 3), which were highly effective in the asymmetric
hydrogenation of dehydro—α-amino acids, itaconic acids, and α-ketoesters [16,17]. Two
different phosphorus donor atoms generate electronic asymmetry at the metal centre which
then provides unique modulation of the catalyst activity. Derivatization of the ligands led
to an expansion of the range of suitable substrates for hydrogenation [18–20] and identified
the proficiency of the ligands in the catalytic asymmetric synthesis of cyclohexenone-based
atropisomers [21]. Chang and Zheng introduced a phosphine-phosphoramidite scaffold
(6, Figure 3) which proved effective in the asymmetric hydrogenation of a broad range
of substrates including both (Z)- and (E)-aryl and β-alkyl-β-(acylamino)acrylates [22–24].
With the success of the reported ligand derivatizations in mind, it occurred to us that
the flexible amino sidechain in 5 and 6 could be modified to introduce the more rigid
pyrrolidinyl motif found in 3 and 4. Herein, we present the preparation of a variety of
ferrocenylphosphine-aminophosphine and ferrocenylphosphine-phosphoramidite ligands
of type 7 and 8. The relatively facile introduction of the amino-phosphine moiety introduces
a modular element, which enabled the preparation of a diverse range of novel ligands for
investigation.
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2. Results and Discussion
2.1. Synthesis and Characterization of N-Phosphorus-Substituted Pyrrolidine Based Ligands

The strategy for the preparation of ferrocenyl N-phosphinepyrrolidinyl ligands was
adapted from our previous work on the ferrocene-phosphinamine ligands of type 4 [15].
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The synthesis of pyrrolidine (R)-13 from ferrocene (9), consisted of a Friedel-Crafts acylation
to afford ketone (10), a Corey-Bakshi-Shibata oxazoborolidine-mediated enantioselective re-
duction to afford alcohol (R)-11, its acetylation to afford acetate (R)-12 and finally treatment
with allylamine to give (R)-13 in a 92% yield over four steps (Scheme 1).

Molecules 2022, 27, x FOR PEER REVIEW  3 of 22 
 

 

 
Figure 3. Ferrocenylphosphine-aminophosphine and ferrocenyphosphine-phosphoramidite lig-
ands. 

2. Results and Discussion 
2.1. Synthesis and Characterization of N-Phosphorus-Substituted Pyrrolidine Based Ligands 

The strategy for the preparation of ferrocenyl N-phosphinepyrrolidinyl ligands was 
adapted from our previous work on the ferrocene-phosphinamine ligands of type 4 [15]. 
The synthesis of pyrrolidine (R)-13 from ferrocene (9), consisted of a Friedel-Crafts acyla-
tion to afford ketone (10), a Corey-Bakshi-Shibata oxazoborolidine-mediated enantiose-
lective reduction to afford alcohol (R)-11, its acetylation to afford acetate (R)-12 and finally 
treatment with allylamine to give (R)-13 in a 92% yield over four steps (Scheme 1). 

 
Scheme 1. Enantioselective synthesis of (R)-13. 

The introduction of the ferrocenyl phosphine moiety was accomplished by non-se-
lective ortho-lithiation of (R)-13, which was then quenched with chlorodiphenylphosphine 
(Scheme 2). Diastereomers (R,Sp)-14 and (R,Rp)-14 were separated by silica gel column 
chromatography and isolated in yields of 24% and 33%, respectively. To facilitate the in-
troduction of the N-pyrrolidinyl phosphine substituent, deallylation of the amine was ac-
complished using palladium(tetrakistriphenylphosphine) and N,N-dimethyl barbituric 
acid (NDMBA) [25]. Deprotected pyrrolidines (R,Sp)-15 and (R,Rp)-15 were isolated in 
yields of 98% and 86%, respectively. With the synthetic precursors to the desired ligands 
in hand, the final coupling could now be performed using triethylamine and the appro-
priate chlorodiarylphosphine. The initial series of ligands L1–6 were synthesized using 
(R,Sp)-15. Ligands bearing neutral (L1), electron rich (L2), and electron poor (L3–L4) aryl 
groups were synthesized in moderate to good yields (40–78%). The proficiency of a 
BINOL unit in ferrocenyl bisphosphonate [26], phosphoramidite [27,28], and phosphine-
phosphoramidite ligands [24] for enantioselective rhodium-catalyzed hydrogenation has 
been well-documented. Therefore, phosphoramidites L5 and L6 were synthesized using 

Fe

N

R

PR'2
PPh2

5
R = H, alkyl
R' = Ph, C6H11

Fe

N

R

P
PPh2

6

O
O

R = H, Me

Fe

N
PAr2

PPh2

7

Fe

N
POR2

PPh2

8

Fe Fe

O

Cl

O

Cl
Cl

AlCl3, CH2Cl2
 rt, 18 h

96%

THF,  -55 oC, 18 h
99%, 94.5% ee

N
B O

Ph
Ph

Me
BH3.THF

Fe

OH

Et3N, rt, 18 h
91%

Ac2O, DMAP
Fe

OAc

Cl
MeOH, 65 oC, 4 h

97%

Allylamine
Fe

N

9 10 (R)-11

(R)-12 (R)-13

Cl

Scheme 1. Enantioselective synthesis of (R)-13.

The introduction of the ferrocenyl phosphine moiety was accomplished by non-
selective ortho-lithiation of (R)-13, which was then quenched with chlorodiphenylphosphine
(Scheme 2). Diastereomers (R,Sp)-14 and (R,Rp)-14 were separated by silica gel column
chromatography and isolated in yields of 24% and 33%, respectively. To facilitate the
introduction of the N-pyrrolidinyl phosphine substituent, deallylation of the amine was
accomplished using palladium(tetrakistriphenylphosphine) and N,N-dimethyl barbituric
acid (NDMBA) [25]. Deprotected pyrrolidines (R,Sp)-15 and (R,Rp)-15 were isolated in
yields of 98% and 86%, respectively. With the synthetic precursors to the desired lig-
ands in hand, the final coupling could now be performed using triethylamine and the
appropriate chlorodiarylphosphine. The initial series of ligands L1–6 were synthesized
using (R,Sp)-15. Ligands bearing neutral (L1), electron rich (L2), and electron poor (L3–L4)
aryl groups were synthesized in moderate to good yields (40–78%). The proficiency of a
BINOL unit in ferrocenyl bisphosphonate [26], phosphoramidite [27,28], and phosphine-
phosphoramidite ligands [24] for enantioselective rhodium-catalyzed hydrogenation has
been well-documented. Therefore, phosphoramidites L5 and L6 were synthesized using
(R)- or (S)-1,1′-binaphthyl-2,2′-diyl phosphorochloridate in good yields of 83 and 70%,
respectively. In order to test the effect of a switch in planar chirality, isomeric ligands L7
and L8 were synthesized from (R,Rp)-15 in excellent yields of 90% and 98%, respectively
(Figure 4).
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Figure 4. Series of novel ligands L1–L8 prepared.

Interestingly, 5J coupling between the phosphorus atoms was observed for ligands
L1–L6 with coupling constants ranging from 16.4 to 56.2 Hz. Cross peaks in the two-
dimensional 31P{1H}–31P{1H} spectra (31P COSY) provided further evidence for this un-
expected interaction (Figure 5). Although ‘long range couplings’ (across more than four
bonds) between two phosphorus atoms are quite rare, the phenomenon has been observed
with several ligands, such as Xantphos (6J coupling) and tetraphosphine ferrocenyl deriva-
tives [29]. An excellent in-depth study of the ferrocenyl compounds attributed the 31P–31P
nuclear spin-spin coupling to a through-space non-bonded interaction of the phosphorus
lone pairs, as was previously observed in 19F–19F and 15N–19F couplings [30]. Due to the
magnitude of the coupling constants observed for L1–L6, it is unlikely a through-bond
interaction (σ- and π-transmitted components) is taking place. Through-space coupling re-
sults from overlap of the phosphorus lone-pair orbitals. Although the interaction provides
an adequate pathway to transmit spin information between the nuclei, it does not lead to
chemical bonding because both orbitals are occupied.
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A comparison of the JPP coupling constants in L1–L8 revealed a considerable effect
resulting from the choice of aryl phosphine-substitution (Table 1). The magnitude of
the coupling constant depends on the extent of the lone-pair overlap, providing some
information on the P-P orientation and proximity in solution. No coupling was observed for
L7–L8 indicating the planar and central chirality of the ligand prohibit favorable alignment
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of the lone pairs. These factors could provide useful information on the bite angle and play
an important role in the future development and application of this class of ligand.

Table 1. Magnitude of the tsJPP coupling constants in L1–L8.

Ligand tsJPP (Hz)

L1 16.4
L2 26.0
L3 19.5
L4 26.2
L5 56.2
L6 29.3
L7 -
L8 -

X-ray crystallographic analysis of L5 provided confirmation of the assignment of
the planar, central, and axial chirality in the molecule; 15% oxidation of the ferrocenyl
phosphorous atom (P1) was observed (Figure 6). The distance between the phosphorus
atoms was measured at 3.9 Å, which favorably compared to Meunier’s observation of
coupling constants over 20 Hz with P–P distances of 4.0 Å or below [30]. However, the
solid-state conformation of L5 obtained from X-ray structural data should not reflect
the conformation in solution due to effects of crystal-packing, meaning the true inter-
phosphorus distance remains unknown.
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2.1.1. Rhodium-Catalyzed Asymmetric Hydrogenation of Dehydroamino Acid Esters

Transition metal-catalyzed asymmetric hydrogenation of dehydroamino acid deriva-
tives is a valuable method for the preparation of amino acid precursors [31]. As such,
the field has undergone extensive investigation since the 1970s, from the seminal work
of Knowles and Kagan [32–34], thereby providing a convenient test reaction to test the
efficiency of the rhodium complexes of our novel ligands L1–L8.

Reaction Condition Optimization

(Z)-Methyl-2-acetamido-3-phenylacrylate 16a was chosen as a suitable substrate to test
the application of ligands L1–L8 (Table 2). Initial conditions consisted of Rh(COD)2OTf as the
rhodium source, with ligand L1 in THF at room temperature under an atmosphere of hydrogen
for 12 h. Full conversion of the starting material was observed with an ee of 89.0 % ee for the
product (Table 2, entry 2). When Rh(COD)2BF4 was employed a drop in the conversion of
starting material was observed, although the product was formed in a similar ee (Table 2, entry
3). This effect was subsequently observed throughout the optimization process (Table 2, entries
11, 18). Increasing the hydrogen pressure was found to have a detrimental effect upon the ee of
the product (Table 2, entries 4-5). Similarly, variation of the solvent had a deleterious effect upon
the ee and in some cases, the conversion (Table 2, entries 6–10). Poor asymmetric induction
and conversion were observed upon switching to ligand L2, which bears an o-tolyl substituted
phosphine (Table 2, entries 12–13). The comparatively electron-poor p-fluoro substituted L3
gave a similar result to that obtained previously with ligand L1 (Table 2, entry 14). Switching
to 3,5-di(trifluoromethyl)-substituted ligand L4, the product was formed in 92.2% ee with full
conversion after 2 h, and the ee was further increased to 95.5% upon cooling the reaction mixture
to 0 ◦C for 3 h (Table 2, entries 15–16). An (R)-BINOL-based system was next evaluated in
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the application of ligand L5. Gratifyingly, full conversion of 16a was found in 12 h, with the
product formed in an excellent enantiomeric excess of 97.9% (Table 2, entry 18). In this case,
upon repetition with Rh(COD)2BF4, no decrease in the conversion of the starting material was
observed (Table 2, entry 19). By increasing the hydrogen pressure to 10 bar, full conversion of the
starting material was observed within 2 h, but the ee of the product dropped slightly (Table 2,
entry 20). Variation of the solvent did not have a beneficial effect upon the enantioselectivity of
the reaction (Table 2, entries 21–22). Interestingly, changing the axial chirality using (S)-BINOL
in ligand L6 resulted in a significantly lower ee for the product (Table 2, entry 23). The best
result was obtained by switching the planar chirality, as illustrated in ligand L7, where full
conversion of the starting material was observed in one hour and an ee of 99.5% was obtained
(Table 2, entry 24). By increasing the hydrogen pressure to 20 bar and the reaction time to 4 h,
the catalyst loading could be significantly lowered to only 0.02 mol %, with minimal effect on
the enantioselectivity of product formation (Table 2, entry 25). Interestingly, in contrast to the
planar isomers (ligand L5 and L6), when the opposite hand of BINOL was used with ligand
L8, the opposite enantiomer of the product was formed, albeit with a much lower ee of 46.7%
(Table 2, entry 26). For comparison purposes, the results obtained in the literature using rhodium
complexes of Josiphos, DuPhos, and BoPhoz ligands are included (Table 1, entries 27–29). Our
optimal ligand (99.5% ee) compares favorably with DuPhos (85% ee) and Josiphos (96% ee) and
is identical to the level of enantioselectivity exhibited by the BoPhoz ligand (99.5% ee).

Table 2. Screening of asymmetric hydrogenation conditions with substrate 16a.
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Entry Ligand Rh Source Solvent H2 Pressure
(bar) Time (h) Conv. (%) [a] Ee (%) [b]

1 (±)-BINAP Rh(COD)2OTf THF 2.3 15 >99 -
2 L1 Rh(COD)2OTf THF 1 12 >99 89.0
3 L1 Rh(COD)2BF4 THF 1 12 78.7 90.0
4 L1 Rh(COD)2OTf THF 20 2 >99 76.3
5 L1 Rh(COD)2OTf THF 40 1 >99 71.2
6 L1 Rh(COD)2OTf DCM 1 12 >99 85.3
7 L1 Rh(COD)2OTf MeOH 1 12 >99 85.7
8 L1 Rh(COD)2OTf DMF 1 12 42.5 80.2
9 L1 Rh(COD)2OTf 1,4-Dioxane 1 12 66 82.8

10 L1 Rh(COD)2OTf Toluene 1 12 50 80.3
11 L1 Rh(COD)2BF4 Toluene 1 12 38.3 81.8
12 L2 Rh(COD)2OTf THF 1 12 70.6 27.3
13 L2 Rh(COD)2OTf DCM 1 10 64.3 17.6
14 L3 Rh(COD)2OTf THF 1 12 >99 88.9
15 L4 Rh(COD)2OTf THF 1 2 >99 92.2

16 [c] L4 Rh(COD)2OTf THF 1 3 >99 95.5
17 [c] L4 Rh(COD)2BF4 THF 1 4 97 95.4

18 L5 Rh(COD)2OTf THF 1 12 >99 97.9
19 L5 Rh(COD)2BF4 THF 1 12 >99 97.7
20 L5 Rh(COD)2OTf THF 10 2 >99 95.3
21 L5 Rh(COD)2OTf DCM 1 12 >99 97.7
22 L5 Rh(COD)2OTf MeOH 1 12 >99 92.3
23 L6 Rh(COD)2OTf THF 1 12 >99 86.7
24 L7 Rh(COD)2OTf THF 1 1 >99 99.5

25 [d] L7 Rh(COD)2OTf THF 20 4 >99 97.7
26 L8 Rh(COD)2OTf THF 1 12 >99 46.7 (R)

27 [5] (R,S)-Josiphos Rh(COD)2OTf MeOH 1 0.33 >99 96
28 [35] DuPhos Rh(COD)2OTf MeOH 2 (atm) 1 >99 85
29 [16] BoPhoz Rh(COD)2OTf THF 1 1 96 99.5

Reactions were performed on a 0.5-mmol 16a scale; see the Supporting Information for further details. [a] Deter-
mined by 1H NMR spectroscopy of the crude product. [b] Determined by high performance liquid chromatography
using a chiral stationary phase. [c] Reaction performed at 0 ◦C. [d] 0.02 mol % Rh(COD)2OTf and 0.022 mol %
ligand used, reaction performed on 2.5 mmol 16a scale.
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Substrate Scope

With optimum conditions in hand, the activity of a selection of ligands was inves-
tigated with a variety of amino acid precursors (Scheme 3). As the best ligand from the
optimization process, L7 consistently gave excellent results of full conversion and over
99% ee regardless of any electron-rich (16b, 16c, 16j) or electron-poor substituents (16d–16i)
on the β-aryl moiety or the particular substitution pattern of the substrate. The excel-
lent performance also extended to a dehydroamino acid ester without aryl substitution
(16k). Phenyl-substituted ligand L1 was also tested across a selection of the substrates and
gave consistent levels of asymmetric induction (88.5–92.0% ee) but variable conversions
of the starting material from (60–>99%). The rhodium complex of ligand L4 bearing 3,5-
di(trifluoromethyl)phenyl substituents also led to product formation, with full conversions
and remarkably consistent, although lower, enantioselectivities regardless of the starting
material (92.5–96.3% ee).
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Scheme 3. Substrate scope of dehydroamino acid esters 16a–k. Reactions with L1 (1.1 mol %) were
performed using Rh(COD)2OTf (1.0 mol %), 1 bar H2, in THF for 12 h at room temperature. Reactions
with L4 (1.1 mol %) were performed using Rh(COD)2OTf (1.0 mol %), 1 bar H2, in THF for 4 h at 0 ◦C.
Reactions with L7 (0.22 mol %) were performed using Rh(COD)2OTf (0.2 mol %), 10 bar H2, in THF
for 12 h at room temperature. See the Supporting Information for further details.

2.1.2. Rhodium-Catalyzed Asymmetric Hydrogenation of α-Aryl Enamides

With the success of the rhodium complexes in the highly enantioselective reduction
of dehydroamino acids, the efficiency of the ligands was next tested in the rhodium-
catalyzed hydrogenation of a selection of α-aryl enamides. This is a valuable process for
the construction of a variety of amines.

Reaction Condition Optimization

N-(1-phenylvinyl)acetamide 18a was chosen as the model substrate for optimization
studies. Ligand L1 was tested using Rh(COD)2OTf in THF at room temperature with
40 bar hydrogen pressure for 2 h. While full conversion of the starting material was
observed, a disappointing ee for the product of 33.6% (S) was observed (Table 3, entry
2). Decreasing the hydrogen pressure did not have a significant effect on the level of
asymmetric induction (Table 3, entry 3). Shortening the reaction time to 1 h and switching
to MeOH as solvent provided a slight increase to 46.0% ee (Table 3, entry 5). While ligands
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L2 and L3 were similarly ineffective, a dramatic improvement was observed upon using
the 3,5-di(trifluoromethyl)-substituted ligand L4 with an ee of 91.3% (Table 3, entries 6–8).

Table 3. Screening of asymmetric hydrogenation conditions with substrate 18a.
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(bar) Time (h) Conv. (%)

[a] Ee (%) [b]

1 (±)-BINAP THF 40 18 >99 -
2 L1 THF 40 2 >99 33.6
3 L1 THF 20 2 >99 33.4
4 L1 CH2Cl2 20 2 >99 29.5
5 L1 MeOH 20 1 >99 46.0
6 L2 MeOH 20 1 >99 12.5
7 L3 MeOH 20 1 >99 45.6
8 L4 MeOH 20 1 >99 91.3
9 L5 THF 10 2 >99 92.0

10 L5 THF 1 3 42 89.2
11 L7 THF 1 2.5 >99 96.4
12 L7 THF 10 1 >99 96.0

13 [c] L7 THF 10 1 >99 91.0
14 L8 THF 1 2 59 31.7 (R)

15 [36] Me-BPE MeOH 4 (atm) 12 >99 95.2
16 [22] BoPhoz CH2Cl2 10 1 99.5 61.8

Reactions were performed on a 0.5 mmol 18a scale, see the Supporting Information for further details. [a] Deter-
mined by 1H NMR spectroscopy of the crude product. [b] Determined by high performance liquid chromatography
using a chiral stationary phase. [c] 0.2 mol % Rh(COD)2OTf, 0.21 mol % ligand used.

Switching to ligand L5 in THF at 10 bar hydrogen provided the product with similar
levels of asymmetric induction (Table 3, entry 9). Decreasing the pressure further to 1 bar
resulted in decreased conversion of the starting material (Table 3, entry 10). As in our
previous optimization, the best result was observed with ligand L7, with an ee of 96.4%
observed and full conversion after 2.5 h (Table 3, entry 11). A similar ee was observed
with 10 bar hydrogen pressure after 1 h while decreasing the catalyst loading to 0.2 mol
% provided the product in 91.0 % ee (Table 3, entries 12-13). Once again, switching the
axial chirality of the BINOL moiety provided the opposite enantiomeric product in a much-
lowered ee of 31.7 % (Table 3, entry 14). For comparison purposes, the results obtained in
the literature using rhodium complexes of Me-BPE (related to DuPhos) and BoPhoz ligands
are included (Table 2, entries 15–16). Our optimal ligand (96.4% ee) compares closely with
Me-BPE (95.2% ee) but outperforms the level of enantioselectivity exhibited by the BoPhoz
ligand (61.8% ee).

Substrate Scope

The optimized conditions with ligand L7 were tested across a range of α-aryl enam-
ides (18a–f) and, in contrast to the investigation of dehydroamino acids, the results were
substrate-dependent (Scheme 4). Naphthyl (18b) and 4-chloro (18c) substitution of the
aryl ring resulted in full conversions and excellent enantioselectivities (97.4–97.7% ee), but
a lower ee of 93.7% was observed with a 4-methoxy substituent (18d). Ligand L4 was
also tested in the synthesis of 19b and 19c and the products were formed in slightly lower
enantioselectivities (92.0–92.4% ee), while a significant drop in the level of asymmetric
induction was seen for the formation of 19d (77.6% ee). Poor conversion of the starting
material and low level of asymmetric induction were observed in the hydrogenation of
bicyclic N-(3,4-dihydro-1-naphthyl)acetamide 18e with ligand L7 (23% conversion, 48.0%
ee) and ligand L4 (12% conversion, 27.0% ee). A similarly poor result was observed in the
hydrogenation of β-phenyl- β- (acylamino)acrylate 18f with ligand L7 (18% conversion,
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15.3% ee). However, a drastic improvement to full conversion to the product with an ee
of 61.3% was observed with ligand L1. The result demonstrates the need for substrate
dependent optimization with a new class of substrate to maximize the potential of the
ligand series developed.
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Scheme 4. Substrate scope of αaryl enamides 18a–f. Reactions with L1 (1.1 mol %) were performed
using Rh(COD)2OTf (1.0 mol %), 40 bar H2, in CH2Cl2 for 24 h at room temperature. Reactions with
L4 (1.1 mol %) were performed using Rh(COD)2OTf (1.0 mol %), 20 bar H2, in MeOH for 1 h at
room temperature. Reactions with L7 (0.22 mol %) were performed using Rh(COD)2OTf (0.2 mol
%), 10 bar H2, in THF for 1 h at room temperature except for substrate 18f, which was subjected to
Rh(COD)2OTf (1.0 mol %), L7 (1.1 mol %), 60 bar H2, in THF for 2 h at room temperature. See the
Supporting Information for further details.

3. Materials and Methods—Chemistry

Unless otherwise noted, reactions were performed with rigorous exclusion of air and
moisture under an inert atmosphere of nitrogen in flame-dried glassware with magnetic
stirring using anhydrous solvents. N2-flushed stainless steel cannulas or plastic syringes
were used to transfer air and moisture-sensitive reagents. All reagents were obtained from
commercial sources and used without further purification unless otherwise stated. All
anhydrous solvents were obtained from commercial sources (Sigma Aldrich, Glasgow,
United Kingdom) and used as received with the following exceptions: diethyl ether (Et2O),
dichloromethane (CH2Cl2), and toluene (PhCH3) were dried by passing through activated
alumina columns. Powdered activated 4 Å molecular sieves were purchased from Sigma
Aldrich (Glasgow, United Kingdom)and were stored in an oven at 120 ◦C. In vacuo refers
to the evaporation of solvent under reduced pressure on a rotary evaporator. Thin-layer
chromatography (TLC) was performed on aluminium plates pre-coated with silica gel F254
(Merck, Darmstadt, Germany). They were visualised with UV-light (254 nm) fluorescence
quenching, or by charring with Hanessian’s staining solution (cerium molybdate, H2SO4 in
water), basic potassium permanganate staining solution (potassium permanganate, K2CO3
and NaOH in water), or an acidic vanillin staining solution (vanillin, H2SO4 in ethanol).
Flash column chromatography was carried out using 40–63 µm, 230–400 mesh silica gel.

1H NMR spectra were recorded on a 300-, 400-, or 500-MHz spectrometer. 13C NMR spectra
were recorded on a 400- or 500-MHz spectrometer (Agilent, Birmingham, United Kingdom)
at 101 or 126 MHz. 19F NMR spectra were recorded on a 400-MHz spectrometer at 470 MHz.
Chemical shifts (δ) are reported in parts per million (ppm) downfield from tetramethylsilane
and for 1H NMR are referenced to residual proton in the NMR solvent (CDCl3 = δ 7.26 ppm).
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13C NMR are referenced to the residual solvent peak (CDCl3 = δ 77.16 ppm). All 13C spectra
are 1H decoupled. NMR data are represented as follows: chemical shift (δ ppm), integration,
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = double doublet, m = multiplet,
app. d = apparent doublet, app. t. = apparent triplet), coupling constant (J) in Hertz (Hz).
High resolution mass spectra [electrospray ionisation (ESI-TOF)] (HRMS) were measured on
a micromass LCT orthogonal time-of-flight mass spectrometer with leucine enkephalin (Tyr-
Gly-Phe-Leu) as an internal lock mass. Infrared spectra were recorded on a FT-IR spectrometer
and are reported in terms of wavenumbers (νmax) with units of reciprocal centimetres (cm−1).
Microwave experiments were conducted in a CEM Discover S-class microwave reactor with
controlled irradiation at 2.45 GHz using standard microwave process Pyrex vials. Reaction
time reflects time at the set reaction temperature maintained by cycling of irradiation (fixed
hold times). Optical rotation (α) values were measured at room temperature and specific
rotation ([α]D

20) values are given in deg.dm−1.cm3.g−1. Melting points were determined in
open capillary tubes. HPLC analysis was carried out on a Shimadzu LC-10AT vp machine
and Schimadzu LC-2010A machine equipped with a UV-Vis detector employing Chiracel® OD
(Sigma Aldrich) and AD columns from Diacel Chemical Industries (Illkirch, France).

3.1. 4-Chloro-Ferrocenylbutanone (10)

Ferrocene 9 (12.7 g, 68 mmol) was added to a dry 500-mL two-necked room-bottom
flask (RBF) containing a magnetic stir bar under an inert atmosphere. Dry CH2Cl2
(120 mL) was added to the reaction flask which was cooled to 0 ◦C. 4-Chlorobutyryl
chloride (95%, 7.3 mL, 62 mmol) was added to the reaction mixture followed by the slow
addition of aluminium chloride (9.9 g, 74 mmol). The reaction mixture was warmed to
room temperature and stirred for 18 h. Ice-cold H2O (100 mL) was added to reaction mix-
ture followed by 10% Na2S2O4 solution (100 mL). The mixture was stirred for 30 min and
the aqueous layer was extracted with CH2Cl2 (4 × 50 mL). The combined organic layers
were washed with NaOH (2 M, 100 mL) and brine (100 mL), and dried with anhydrous
Na2SO4. The solvent was removed in vacuo, and the crude product was purified by silica
gel column chromatography (pentane/EtOAc) to yield 10 as an orange solid (17.3 g, 96%).
Spectroscopic data are in good accordance to literature [14].

3.2. (R)-4-Chloro-1-Ferrocenylbutanol ((R)-11)

BH3.THF (3 mL, 1.0 M, 3 mmol) was added to (S)-(−)-2-methyl-CBS-oxazaborolidine
(crude residue) in a 250 mL Schlenk flask containing a magnetic stir bar under an in-
ert atmosphere, and the reaction flask was cooled to −55 ◦C. A solution of 4-Chloro-
ferrocenylbutanone (11) (3.67 g, 12.6 mmol) in dry THF (90 mL) was added followed by
another portion of BH3.THF (1.0 M, 6 mL, 6 mmol). The reaction mixture was stirred for
18 h. The reaction mixture was warmed to 0 ◦C and then quenched by slow dropwise
addition of MeOH (20 mL). The solvent was removed in vacuo, and the crude product
was purified by silica gel column chromatography (pentane/EtOAc) to yield (R)-11 as an
orange oil (3.12 g, >99%, 94.5% ee). Spectroscopic data are in good accordance with the
literature [14].

3.3. (R)-4-Chloro-2-Acetoxy-1-Ferrocenylbutane ((R)-12)

(R)-4-Chloro-1-ferrocenylbutanol ((R)-11) (3.60 g, 12.3 mmol), 4-dimethylaminopyridine
(0.075 mg, 0.62 mmol) and triethylamine (75 mL) were added to a dry 300-mL RBF contain-
ing a magnetic stir bar under an inert atmosphere. Acetic anhydride (1.76 mL, 18.6 mmol)
was added to the reaction flask which was stirred at room temperature for 18 h. Et2O
(100 mL) was added to reaction mixture which was subsequently washed with H2O
(100 mL), 10% aqueous NH4Cl (2 × 40 mL), H2O (50 mL) and dried with anhydrous
Na2SO4. The reaction mixture was filtered, and the solvent was removed in vacuo. The
resultant crude orange oil was used directly in the next step without further purification.
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3.4. (R)-N-Allyl-Pyrrolidin-2′-ylferrocene ((R)-13)

(R)-4-Chloro-2-acetoxy-1-ferrocenylbutane (4.20 g, 12.5 mmol), allylamine (6.0 mL,
80.0 mmol) and dry MeOH (6.0 mL) were added to a dry sealed microwave vial contain-
ing a magnetic stir bar under an inert atmosphere. The reaction mixture was heated to
reflux, stirred for 4 h then diluted with Et2O (10 mL), washed with sat. aqueous NaHCO3
(2 × 10 mL), brine (10 mL) and dried with anhydrous Na2SO4. The solvent was removed
in vacuo and the crude product was purified by alumina column chromatography (pen-
tane/EtOAc, 30:1 with 1% triethylamine) to yield (R)-13 as an orange oil (3.61 g, 97%, 92.2%
ee). Spectroscopic data are in good accordance with the literature [14].

3.5. 2-[(2R)-N-Allyl-Pyrrolidin-2′-yl]-(1S)-Diphenylphosphineferrocene (14) and
2-[(2R)-N-Allyl-Pyrrolidin-2′-yl]-(1R)-Diphenylphosphineferrocene (14)

(R)-N-allyl-pyrrolidin-2′-ylferrocene ((R)-13) (4.20 g, 12.5 mmol) and dry Et2O (6.0 mL)
were added to a dry 250-mL RBF containing a magnetic stir bar under an inert atmosphere.
The reaction mixture was cooled to −78 ◦C and s-BuLi (6.0 mL, 80.0 mmol) was added
dropwise. After stirring for 3 h, the reaction mixture was warmed to 0 ◦C and stirred for an
additional 1 h. Ph2PCl (6.0 mL, 80.0 mmol) was added, and the reaction mixture was stirred
for 1.5 h and then quenched with aqueous NH4Cl (10%, 15 mL). The aqueous layer was
separated and washed with CH2Cl2 (2 × 50 mL) brine (10 mL) and dried with anhydrous
Na2SO4. The solvent was removed in vacuo and the crude product was purified by purified
by silica gel column chromatography (pentane/EtOAc, 10:1 to 2:1) then alumina column
chromatography (pentane/EtOAc with 0.1% triethylamine, 40:1 to 15:1) to yield (R,Sp)-14
as an orange solid (0.79 g, 24%, 93% d.e.) and (R,Rp)-14 as an orange solid (1.08 g, 33%,
>99% d.e.). (R,Sp)-14 (0.56 g) was dissolved in 4.5 mL pentane then cooled to −20 ◦C for
30 min. The precipitate was filtered, washed with pentane, dried and collected to yield
(R,Sp)-14 as an orange solid (0.43 g, >99% d.e.).

3.5.1. Spectroscopic Analysis of (R,Sp)-14

Rf = 0.22 (pentane/EtOAc 10:1); m.p. = 136–138 ◦C; [α]D
20 = −232.8 (c 0.63, CH2Cl2); IR

(neat): νmax = 3054, 994 (C=C-H), 2939, 2922, 1443 (sp3C-H), 1628 (Alkene: C=C), 1609, 1587,
1565 (Aromatic: C=C) cm−1; 1H NMR (300 MHz, CDCl3): δ 7.66–7.57 (m, 2H), 7.41–7.35 (m, 3H),
7.35–7.18 (m, 5H), 5.67–5.48 (m, 1H), 4.82 (d, J = 10.1 Hz, 1H), 4.74 (d, J = 17.1 Hz, 1H), 4.57 (s,
1H), 4.37 (t, J = 2.3 Hz, 1H), 3.96 (s, 5H), 3.46 (td, J = 8.0, 3.2 Hz, 1H), 3.12–2.99 (m, 1H), 2.91
(dd, J = 13.3, 5.2 Hz, 1H), 2.50–2.34 (m, 1H), 2.27–2.14 (m, 1H), 2.13–1.96 (m, 2H), 1.93–1.68 (m,
2H) ppm; 13C NMR (126 MHz, CDCl3): δ 139.7 (d, J = 8.6 Hz), 137.9 (d, J = 8.5 Hz), 135.4 (d,
J = 21.9 Hz), 132.9 (d, J = 18.9 Hz), 129.2, 128.2, 128.1 (d, J = 1.6 Hz), 128.1 (d, J = 1.6 Hz), 116.2,
75.4 (d, J = 8.7 Hz), 70.8 (d, J = 4.5 Hz), 70.8, 69.9, 69.7 (d, J = 4.3 Hz), 69.6, 62.1 (d, J = 9.5 Hz),
57.2, 54.0, 35.2, 22.6 ppm; 31P NMR (202 MHz, CDCl3) δ 25.7 ppm; HRMS (ESI-TOF): calcd. for
C29H31NPFe [M + H]+ 480.1544; found 480.1536. See Supplementary Materials, pages 21–22 for
1H, 13C and 31P NMR spectra.

3.5.2. Spectroscopic Analysis of (R,Rp)-14

Rf = 0.34 (pentane/EtOAc 9:1); m.p. = 110–112 ◦C; [α]D
20 = 92.7 (c 0.4, CH2Cl2); IR (neat):

νmax = 3048, 979 (C=C-H), 1611 (Alkene: C=C) cm−1; 1H NMR (300 MHz, CDCl3): δ 7.66–7.48
(m, 2H), 7.45–7.31 (m, 3H), 7.29–7.11 (m, 5H), 5.69–5.49 (m, 1H), 5.12 (d, J = 16.8 Hz, 1H), 4.99
(d, J = 9.9 Hz, 1H), 4.44 (s, 1H), 4.28 (s, 1H), 3.97 (s, 4H), 3.87 (s, 2H), 3.40 (t, J = 7.8 Hz, 1H), 3.04
(t, J = 7.1 Hz, 1H), 2.66 (dd, J = 12.7, 8.2 Hz, 1H), 2.17–1.47 (m, 6H) ppm; 13C NMR (126 MHz,
CDCl3): δ 140.6 (d, J = 9.1 Hz), 138.5 (d, J = 9.2 Hz), 137.1, 135.4 (d, J = 21.7 Hz), 132.6 (d,
J = 18.3 Hz), 129.1, 128.07 (d, J = 7.8 Hz), 127.9 (d, J = 6.2 Hz), 127.7, 115.9, 97.6 (d,
J = 22.5 Hz), 73.3 (d, J = 11.8 Hz), 71.7 (d, J = 4.7 Hz), 71.0 (d, J = 5.1 Hz), 69.7, 68.6, 63.5
(d, J = 3.9 Hz), 58.2, 54.6, 35.3 (d, J = 7.6 Hz), 22.8 (d, J = 1.2 Hz) ppm; 31P NMR (202 MHz,
CDCl3) δ 22.98 ppm; HRMS (ESI-TOF): calcd. for C29H31NPFe [M + H]+ 480.1544; found
480.1563. See Supplementary Materials, pages 23–24 for 1H, 13C and 31P NMR spectra.
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3.6. 2-[(2R)-N-H-Pyrrolidin-2′-yl]-(1S)-Diphenylphosphineferrocene ((R,Sp)-15)

2-[(2R)-N-allyl-pyrrolidin-2′-yl]-(1S)-diphenylphosphineferrocene (R,Sp)-14) (0.41 g,
0.85 mmol), Pd(PPh3)4 (18.8 mg, 80.0 mmol), 1,3-dimethylbarbituric acid (NDMBA) (0.42 g,
2.69 mmol) and dry CH2Cl2 (9.0 mL) were added to a dry 50-mL Schlenk flask containing a
magnetic stir bar under an inert atmosphere. The reaction mixture was heated to 35 ◦C,
stirred for 5 h, and then quenched with sat. aqueous NaHCO3 (10 mL). The organic layer
was separated and washed with sat. aqueous NaHCO3 (10 mL) and dried with anhydrous
Na2SO4. The solvent was removed in vacuo and the crude product was purified by alumina
column chromatography (pentane/EtOAc/MeOH/ triethylamine, 3:1:0.1:0.01) to yield
(R,Sp)-15) as a yellow solid (0.37 g, 98%).

Spectroscopic Analysis of (R,Sp)-15)

Rf = 0.37 (pentane/EtOAc/MeOH, 3:1:0.1); m.p. = 131–132 ◦C; [α]D
20 = −184.4 (c 0.8,

CH2Cl2); IR (neat): νmax = 3049, 990 (C=C-H), 2989, 1432 (sp3C-H), 1662 (Alkene: C=C)
cm−1; 1H NMR (300 MHz, CDCl3): δ 7.59–7.46 (m, 2H), 7.42–7.33 (m, 3H), 7.31–7.15 (m,
5H), 4.46 (s, 1H), 4.34–4.20 (m, 2H), 4.04 (s, 5H), 3.74–3.66 (m, 1H), 2.93 (dd, J = 14.1, 7.7 Hz,
1H), 2.76 (dd, J = 15.3, 8.2 Hz, 1H), 2.27–2.09 (m, 1H), 2.03–1.70 (m, 3H) ppm; 13C NMR
(126 MHz, CDCl3): δ 140.2 (d, J = 10.0 Hz), 137.4 (d, J = 8.9 Hz), 135.4 (d, J = 20.9 Hz),
132.7 (d, J = 18.4 Hz), 129.2, 128.4 (d, J = 6.1 Hz), 128.3, 128.2, 96.04 (d, J = 22.8 Hz), 75.8 (d,
J = 6.5 Hz), 71.4 (d, J = 4.0 Hz), 69.6, 69.5, 69.1 (d, J = 3.9 Hz), 56.4, 56.3, 47.0, 31.6, 25.3 ppm;
31P NMR (202 MHz, CDCl3) δ 23.6 ppm; HRMS (ESI-TOF): calcd. for C26H27NPFe [M + H]+

440.1231; found 440.1243. See Supplementary Materials, pages 25−26 for 1H, 13C and 31P
NMR spectra.

3.7. 2-[(2R)-N-H-Pyrrolidin-2′-yl]-(1R)-Diphenylphosphineferrocene)-(R,Rp)-15)

Prepared according to the same procedure as for (R,Sp)-15 using (R,Rp)-14 (1.80 g,
3.75 mmol), to afford the product as a yellow solid (1.42 g, 86%).

3.7.1. Spectroscopic Analysis of (R,Rp)-15

Rf = 0.37 (pentane/EtOAc/MeOH, 3:1:0.1); m.p. = 139–140 ◦C; [α]D
20 = 239.0 (c

0.75, CH2Cl2); IR (neat): νmax = 3054, 997 (C=C-H), 2987, 1444 (sp3C-H), 1636, 1590 (Aro-
matic: C=C) cm−1; 1H NMR (300 MHz, CDCl3): δ 7.61–7.44 (m, 2H), 7.41–7.33 (m, 3H),
7.30–7.13 (m, 5H), 4.50 (s, 1H), 4.30–4.16 (m, 2H), 4.07 (s, 5H), 3.77–3.66 (m, 1H), 3.13 (dd,
J = 13.3, 8.4 Hz, 1H), 2.93 (dd, J = 16.4, 7.7 Hz, 1H), 2.18 (s, 1H), 1.84–1.45 (m, 3H), 1.21–1.02
(m, 1H) ppm; 13C NMR (126 MHz, CDCl3): δ 140.3 (d, J = 9.9 Hz), 137.4 (d, J = 9.0 Hz),
135.1 (d, J = 20.9 Hz), 132.7 (d, J = 18.5 Hz), 129.1, 128.2, 128.2, 128.1 (d, J = 2.9 Hz), 98.4 (d,
J = 22.5 Hz), 74.8 (d, J = 7.6 Hz), 71.1 (d, J = 4.4 Hz), 69.5, 69.0, 67.8 (d, J = 4.1 Hz), 56.7 (d,
J = 11.3 Hz), 46.8, 34.9, 25.9 ppm; 31P NMR (202 MHz, CDCl3) δ 23.9 ppm; HRMS (ESI-TOF):
calcd. for C26H27NPFe [M + H]+ 440.1231; found 440.1209. See Supplementary Materials,
pages 27–28 for 1H, 13C and 31P NMR spectra.

3.7.2. Typical Procedure A: Phosphine-Coupling

(R,Sp)-15 or (R,Rp)-15 (1.0 equiv.), Et3N (3.0 equiv.) and dry toluene (0.23 M) were
added to a dry 25-mL Schlenk flask containing a magnetic stir bar under an inert atmo-
sphere. The di-substituted chlorophosphine (1.0 equiv.) in dry toluene (0.23 M) was added,
and the reaction mixture was stirred at room temperature for 18 h. Heptane (5 mL) was
added, and the reaction mixture was filtered. The solvent was removed in vacuo and the
crude product was purified by alumina column chromatography (pentane/EtOAc, 99:1 to
pentane/EtOAc/MeOH, 3:1:0.1) to yield the product.

3.8. 2-[(2R)-N-Diphenylphosphine-Pyrrolidin-2′-yl]-(1S)-Diphenylphosphineferrocene (L1)

Prepared according to typical procedure A using chlorodiphenylphosphine 0.075 g,
0.340 mmol) to afford the product as an orange solid (0.165 g, 78%).
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Spectroscopic Analysis of L1

Rf = 0.80 (pentane/EtOAc, 20:1); m.p. = 58–60 ◦C; [α]D
20 = −146.0 (c 0.7, CH2Cl2); IR

(neat): νmax = 3032 (C=C-H), 2969, 1422 (sp3C-H) cm−1; 1H NMR (300 MHz, CDCl3): δ 7.67–7.58
(m, 2H), 7.40–7.34 (m, 3H), 7.29–7.13 (m, 10H), 7.11–6.99 (m, 5H), 4.78–4.66 (m, J = 7.1, 3.4 Hz,
1H), 4.49 (d, J = 1.1 Hz, 1H), 4.36 (t, J = 2.4 Hz, 1H), 3.92 (s, 5H), 3.09 (dtd, J = 10.0, 7.3, 2.6 Hz,
1H), 2.78–2.63 (m, 1H), 2.45–2.16 (m, 2H), 1.90–1.70 (m, 1H), 1.55–1.34 (m, 1H) ppm; 13C NMR
(126 MHz, CDCl3): δ 140.0 (d, J = 7.8 Hz, 2C), 139.7 (d, J = 22.8 Hz), 139.1 (d, J = 9.1 Hz), 135.6 (d,
J = 22.2 Hz, 2C), 133.0 (d, J = 21.0 Hz, 2C), 132.8 (d, J = 17.7 Hz), 132.8 (d, J = 17.7 Hz), 131.4 (d,
J = 18.5 Hz, 2C), 129.1, 128.4, 128.1 (d, J = 8.1 Hz, 2C), 127.9 (d, J = 6.1 Hz, 2C), 127.8
(d, J = 5.3 Hz, 2C), 127.7 (d, J = 6.0 Hz, 2C), 127.4, 127.4, 99.3 (dd, J = 24.7, 5.4 Hz), 75.8
(d, J = 10.0 Hz), 71.4 (d, J = 4.4 Hz), 69.8 (dd, J = 4.4, 2.5 Hz), 69.7, 69.6 (5C), 60.9 (dd,
J = 31.1, 10.0 Hz), 47.7 (d, J = 10.0 Hz), 36.6 (d, J = 6.8 Hz), 26.0 ppm; 31P NMR (202 MHz, CDCl3)
δ 44.8 (d, J = 16.4 Hz), -24.3 (d, J = 16.4 Hz) ppm; HRMS (ESI-TOF): calcd. for C38H36NP2Fe
[M + H]+ 624.1672; found 624.1650. See Supplementary Materials, pages 29–31 for 1H, 13C and
31P and 31P-31P COSY NMR spectra.

3.9. 2-[(2R)-N-Bis(2-Methylphenyl)phosphine-Pyrrolidin-2′-yl]-(1S)-
Diphenylphosphineferrocene (L2)

Prepared according to typical procedure A using bis(2-methylphenyl)chlorophosphine
(0.057 g, 0.230 mmol) to afford the product as an orange solid (0.063 g, 42%).

Spectroscopic Analysis of L2

Rf = 0.79 (pentane/EtOAc 10:1); m.p. = 84–87 ◦C; [α]D
20 = −220.7 (c 0.18, CH2Cl2); IR

(neat): νmax = 3047, 923 (C=C-H), 2921, 2858, 1444 (sp3C-H), 1586, 1563, 1502 (Aromatic: C=C)
cm−1; 1H NMR (400 MHz, CDCl3): δ 7.65–7.54 (m, 2H), 7.40–7.28 (m, 4H), 7.23–6.89 (m, 11H),
6.74 (dd, J = 7.3, 2.6 Hz, 1H), 4.95–4.84 (m, 1H), 4.47 (d, J = 1.1 Hz, 1H), 4.31 (t, J = 2.4 Hz, 1H),
4.03–3.95 (m, 1H), 3.86 (s, 5H), 3.12 (dd, J = 16.7, 6.8 Hz, 1H), 2.68–2.31 (m, 3H), 2.25 (s, 3H),
1.99–1.83 (m, 1H), 1.69 (s, 3H), 1.65–1.45 (m, 1H) ppm; 13C NMR (126 MHz, CDCl3): δ 142.0 (d,
J = 27.9 Hz), 140.5 (dd, J = 7.3, 1.3 Hz), 140.2 (d, J = 25.5 Hz), 139.8 (dd, J = 9.7, 2.1 Hz), 139.0 (d,
J = 11.5 Hz), 136.9 (d, J = 18.2 Hz), 135.6 (d, J = 22.6 Hz, 2C), 132.4 (d, J = 17.2 Hz), 132.4 (d,
J = 17.2 Hz), 131.4 (d, J = 1.1 Hz), 131.0 (d, J = 3.2 Hz), 129.8 (d, J = 24.6 Hz), 129.8 (d,
J = 24.2 Hz), 128.9, 128.0 (d, J = 27.5 Hz, 2C), 127.8, 127.3 (d, J = 12.5 Hz, 2C), 127.3, 126.8, 125.1
(d, J = 15.2 Hz, 2C), 100.1 (dd, J = 25.5, 2.7 Hz), 75.8 (d, J = 10.7 Hz), 71.2 (d, J = 4.6 Hz), 69.8,
69.4 (5C), 69.0 (d, J = 4.3 Hz), 60.3 (dd, J = 32.9, 10.4 Hz), 48.7 (d, J = 9.9 Hz), 36.5 (dd, J = 6.5,
1.9 Hz), 26.9, 21.3 (dd, J = 20.8, 1.4 Hz), 20.7 (d, J = 18.8 Hz) ppm; 31P NMR (202 MHz, CDCl3)
δ 31.6 (d, J = 26.0 Hz), −24.8 (d, J = 26.0 Hz) ppm; HRMS (ESI-TOF): calcd. for C40H40NP2Fe
[M + H]+ 652.1985; found 652.1993. See Supplementary Materials, pages 32–33 for 1H, 13C
and 31P NMR spectra.

3.10. 2-[(2R)-N-Bis(4-fluorophenyl)phosphine-Pyrrolidin-2′-yl]-(1S)-
Diphenylphosphineferrocene (L3)

Prepared according to typical procedure A using bis(4-fluorophenyl)chlorophosphine
(0.054 g, 0.210 mmol) to afford the product as a yellow solid (0.072 g, 50%).

Spectroscopic Analysis of L3

Rf = 0.655 (pentane/EtOAc, 20:1); m.p. = 72–74 ◦C; [α]D
20 = –166.0 (c 0.2, CHCl3); IR

(neat): νmax = 3022, 982 (C=C-H), 2936, 2911, 1486 (sp3C-H), 1647 (Alkene: C=C) cm−1;
1H NMR (300 MHz, CDCl3): δ 7.67–7.57 (m, 2H), 7.41–7.34 (m, 3H), 7.26–7.18 (m, 2H),
7.10–6.82 (m, 11H), 4.83–4.68 (m, 1H), 4.43 (s, 1H), 4.38 (t, J = 2.4 Hz, 1H), 4.03 (d, J = 1.0 Hz,
1H), 3.91 (s, 5H), 3.10–2.96 (m, 1H), 2.76–2.64 (m, 1H), 2.41–2.15 (m, 2H), 1.88–1.72 (m, 1H),
1.55–1.37 (m, 1H) ppm; 13C NMR (126 MHz, CDCl3): δ 164.1, 163.5, 162.1, 161.5, 139.9–139.7
(m), 138.7 (dd, J = 8.8, 1.3 Hz), 135.4 (d, J = 22.2 Hz, 2C), 134.6 (d, J = 22.7 Hz), 134.6 (d,
J = 22.5 Hz), 133.0 (d, J = 19.8 Hz), 132.9 (d, J = 19.8 Hz), 132.7 (d, J = 17.8 Hz), 132.7 (d,
J = 17.7 Hz), 129.0, 128.0 (d, J = 8.2 Hz, 2C), 127.5 (d, J = 6.1 Hz, 2C), 127.3, 115.0 (d,
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J = 6.7 Hz), 114.9 (d, J = 5.9 Hz), 114.8 (d, J = 6.7 Hz), 114.7 (d, J = 5.8 Hz), 98.5 (dd, J = 25.2,
6.3 Hz), 75.8 (d, J = 10.8 Hz), 71.38 (d, J = 4.6 Hz), 69.67, 69.47 (5C), 69.34 (dd, J = 4.4, 2.2 Hz),
60.85 (dd, J = 31.6, 10.6 Hz), 47.2 (d, J = 10.0 Hz), 35.9 (d, J = 3.9 Hz), 25.7 ppm; 19F NMR
(470 MHz, CDCl3) δ −113.1–−113.2 (m), −114.7–−114.8 (m) ppm; 31P NMR (202 MHz,
CDCl3) δ 43.1 (dt, J = 19.5, 5.4 Hz), −25.1 (d, J = 19.5 Hz) ppm; HRMS (ESI-TOF): calcd. for
C38H33NP2 F2Fe [M + H]+ 660.1484; found 660.1481. See Supplementary Materials, pages
34–36 for 1H, 13C, 31P and 19F NMR spectra.

3.11. 2-[(2R)-N-Bis(3,5-Di-Trifluoromethylphenyl)phosphine-Pyrrolidin-2′-yl]-(1S)-
Diphenylphosphineferrocene (L4)

Prepared according to typical procedure A using bis(3,5-di-trifluoromethylphenyl)
chlorophosphine (0.103 g, 0.210 mmol) to afford the product as an orange solid (0.075 g, 40%).

Spectroscopic Analysis of L4

Rf = 0.37 (pentane/EtOAc/MeOH, 3:1:0.1); m.p. = 56–58 ◦C; [α]D
20 = −184.3 (c 0.08,

CH2Cl2); IR (neat): νmax = 3053, 987 (C=C-H), 2970, 1434 (sp3C-H), 1587, 1576 (Aromatic:
C=C) cm−1; 1H NMR (300 MHz, CDCl3): δ 7.76 (s, 2H), 7.68–7.57 (m, 2H), 7.44–7.33 (m,
7H), 7.27–7.17 (m, 2H), 6.93–6.83 (m, 3H), 5.07–4.94 (m, 1H), 4.51 (t, J = 2.4 Hz, 1H), 4.43
(s, 1H), 4.21 (t, J = 2.9 Hz, 1H), 3.91 (s, 5H), 2.89 (dd, J = 16.4, 8.3 Hz, 1H), 2.74–2.60 (m,
1H), 2.57–2.41 (m, 1H), 2.34–2.15 (m, 1H), 2.02–1.85 (m, 1H), 1.82–1.65 (m, 1H) ppm; 13C
NMR (126 MHz, CDCl3): δ 142.1 (d, J = 1.0 Hz), 141.9 (d, J = 1.3 Hz), 141.6, 141.4, 138.9 (dd,
J = 6.1, 1.8 Hz), 138.3 (dd, J = 7.8, 1.7 Hz), 135.3 (d, J = 22.4Hz, 2C), 132.9 (d, J = 18.6 Hz),
132.8 (d, J = 18.6 Hz), 131.8–131.7 (m), 131.7–131.5 (m), 131.4 (d, J = 4.7 Hz), 131.3–131.1
(m, 2C), 131.0–130.9 (m, J = 23.5 Hz), 129.1, 128.1 (d, J = 8.4 Hz, 2C), 127.6, 127.3 (d,
J = 6.7 Hz, 2C), 122.6–122.4 (m), 122.2–121.9 (m), 96.6 (dd, J = 26.5, 5.9 Hz), 76.5 (dd,
J = 10.0, 1.4 Hz), 72.0 (d, J = 4.7 Hz), 70.6, 69.7 (5C), 68.4 (d, J = 3.5 Hz), 60.9 (dd, J = 32.6,
12.7 Hz), 47.3 (d, J = 10.8 Hz), 35.3 (d, J = 5.5 Hz), 26.0 ppm; 19F NMR (470 MHz, CDCl3)
δ -62.3,−61.0 ppm; 31P NMR (202 MHz, CDCl3) δ 40.1 (d, J = 26.2 Hz),−27.1 (d, J = 26.2 Hz)
ppm; HRMS (ESI-TOF): calcd. for C42H32NP2 F12Fe [M + H]+ 896.1168; found 896.1155. See
Supplementary Materials, pages 37–39 for 1H, 13C, 31P and 19F NMR spectra.

3.12. 2-[(2R)-N-(R)-1,1′-Binaphthyl-2,2′-Diylphosphoro-Pyrrolidin-2′-yl]-(1S)-
Diphenylphosphineferrocene (L5)

Prepared according to typical procedure A using (R)-1,1′-binaphthyl-2,2′-diyl phosphorochlo-
ridate (0.21 g, 0.60 mmol, 1.3 equiv.) to afford the product as a yellow solid (0.29 g, 83%).

Spectroscopic Analysis of L5

Rf = 0.47 (pentane/EtOAc, 9:1); m.p. = 219–220 ◦C; [α]D
20 =−241.2 (c 0.29, CH2Cl2); IR

(neat): νmax = 3054, 896 (C=C-H), 2987, 1421 (sp3C-H) cm−1; 1H NMR (300 MHz, CDCl3):
δ 7.93–7.78 (m, 4H), 7.67–7.57 (m, 2H), 7.47–7.27 (m, 10H), 7.25–7.13 (m, 5H), 6.92 (d,
J = 8.8 Hz, 1H), 5.24–5.11 (m, 1H), 4.45 (s, 1H), 4.35 (d, J = 2.3 Hz, 1H), 3.96 (s, 5H), 3.90
(s, 1H), 2.86–2.70 (m, 1H), 2.66–2.54 (m, 1H), 2.51–2.27 (m, 2H), 1.87–1.60 (m, 2H) ppm;
13C NMR (126 MHz, CDCl3): δ 150.4, 149.9, 140.4 (d, J = 8.9 Hz), 138.5 (d, J = 6.4 Hz),
135.6 (d, J = 22.1 Hz, 2C), 132.7, 132.6 (d, J = 1.6 Hz), 132.5 (d, J = 1.9 Hz), 132.4 (d,
J = 2.0 Hz), 131.20, 130.4, 129.8, 129.4, 129.1, 128.4, 128.2, 128.1, 128.1, 128.0, 128.0, 127.9,
127.4, 127.3, 127.0 (2C), 125.8 (d, J = 10.9 Hz, 2C), 124.5, 124.3, 124.3, 123.91–123.81 (m), 122.3
(d, J = 1.8 Hz), 122.2 (d, J = 1.6 Hz), 121.9, 97.1 (dd, J = 24.4, 7.4 Hz), 75.5 (d, J = 11.2 Hz),
71.5 (d, J = 4.4 Hz), 69.7–69.6 (m, 6C), 69.5, 56.1 (dd, J = 33.6, 8.8 Hz), 44.0 (d, J = 6.8 Hz),
34.0, 25.34 ppm; 31P NMR (202 MHz, CDCl3) δ 146.9 (d, J = 56.2 Hz), −23.8 (d, J = 56.2 Hz)
ppm; HRMS (ESI-TOF): calcd. for C46H38NO2P2Fe [M + H]+ 754.1727; found 754.1719. See
Supplementary Materials, pages 40–41 for 1H, 13C, and 31P NMR spectra and page 40 for
X-ray crystallographic data.
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3.13. 2-[(2R)-N-(S)-1,1′-Binaphthyl-2,2′-Diylphosphoro-Pyrrolidin-2′-yl]-(1S)-
Diphenylphosphineferrocene (L6)

Prepared according to typical procedure A using (S)-1,1′-binaphthyl-2,2′-diyl phosphorochlo-
ridate (0.10 g, 0.29 mmol, 1.2 equiv.) to afford the product as a yellow solid (0.12 g, 70%).

Spectroscopic Analysis of L6

Rf = 0.83 (pentane/EtOAc, 4:1); m.p. = 208–209 ◦C; [α]D
20 = −32.5 (c 0.17, CH2Cl2); IR

(neat): νmax = 2939, 2926, 1443 (sp3C-H), 1613, 1588, 1503 (Aromatic: C=C) cm−1; 1H NMR
(300 MHz, CDCl3): δ 7.92–7.81 (m, 4H), 7.65–7.55 (m, 2H), 7.43–7.33 (m, 6H), 7.30–7.19 (m,
9H), 7.15 (d, J = 8.7 Hz, 1H), 5.07–4.93 (m, 1H), 4.60 (s, 1H), 4.42 (t, J = 2.4 Hz, 1H), 4.01–3.97
(m, 1H), 3.95 (s, 5H), 3.03–2.91 (m, 1H), 2.56–2.42 (m, 1H), 2.39–2.23 (m, 2H), 1.82–1.67 (m,
1H), 1.64–1.49 (m, 1H) ppm; 13C NMR (126 MHz, CDCl3): δ 150.1 (d, J = 6.2 Hz), 149.8 (d,
J = 1.8 Hz), 139.6 (d, J = 8.2 Hz), 138.5 (d, J = 9.1 Hz), 135.4 (d, J = 22.1 Hz, 2C), 132.8 (d,
J = 4.4 Hz), 132.8, 132.6 (d, J = 2.8 Hz), 132.6 (d, J = 1.0 Hz), 131.1, 130.9, 130.6, 129.8, 129.4,
129.1, 128.8, 128.2, 128.1, 128.1, 128.0, 127.9, 127.9, 127.6, 126.9 (d, J = 9.1 Hz, 2C), 125.8 (d,
J = 8.2 Hz, 2C), 124.4 (d, J = 7.6 Hz, 2C), 123.8, 122.9, 122.2, 122.2 (d, J = 1.5 Hz), 98.0 (dd,
J = 24.2, 7.7 Hz), 75.6 (d, J = 11.2 Hz), 71.6 (d, J = 4.4 Hz), 69.7 (dd, J = 4.0, 2.2 Hz), 69.6 (5C),
68.2, 57.3 (dd, J = 35.3, 9.7 Hz), 44.1 (d, J = 4.8 Hz), 34.7, 26.0 ppm; 31P NMR (202 MHz,
CDCl3) δ 150.8 (d, J = 29.3 Hz), -24.7 (d, J = 29.3 Hz) ppm; HRMS (ESI-TOF): calcd. for
C46H38NO2P2Fe [M + H]+ 754.1727; found 754.1757. See Supplementary Materials, pages
42–43 for 1H, 13C, and 31P NMR spectra.

3.14. 2-[(2R)-N-(R)-1,1′-Binaphthyl-2,2′-Diylphosphoro-Pyrrolidin-2′-yl]-(1R)-
Diphenylphosphineferrocene (L7)

Prepared according to typical procedure A using (R)-1,1′-binaphthyl-2,2′-diyl phosphorochlo-
ridate (0.15 g, 0.44 mmol, 1.3 equiv.) to afford the product as an orange solid (0.23 g, 90%).

Spectroscopic Analysis of L7

Rf = 0.86 (pentane/EtOAc 9:1); m.p. = 177–179 ◦C; [a]D
20 = −83.5 (c 0.18, CH2Cl2); IR

(neat): νmax = 3052, 947 (C=C-H), 2967, 1434 (sp3C-H), 1588, 1567 (Aromatic: C=C) cm−1;
1H NMR (300 MHz, CDCl3): δ 8.04–7.83 (m, 5H), 7.68–7.55 (m, 3H), 7.47–7.35 (m, 8H),
7.33 (s, 1H), 7.31–7.26 (m, 3H), 7.25–7.19 (m, 2H), 5.32 (dd, J = 11.7, 7.4 Hz, 1H), 4.51 (d,
J = 1.4 Hz, 1H), 4.31 (dd, J = 4.1, 1.7 Hz, 1H), 4.15 (s, 5H), 3.98–3.92 (m, 1H), 3.07–2.90 (m,
1H), 2.79–2.60 (m, 1H), 2.00–1.81 (m, 1H), 1.56–1.32 (m, 3H) ppm; 13C NMR (126 MHz,
CDCl3): δ 151.0 (d, J = 4.7 Hz), 150.0, 140.3 (d, J = 9.1 Hz), 137.6 (d, J = 8.0 Hz), 135.3 (d,
J = 21.6 Hz, 2C), 132.8 (d, J = 15.6 Hz), 132.5 (d, J = 18.1 Hz, 2C), 131.4, 130.5, 130.3, 129.7,
129.2, 128.3, 128.2, 128.1, 128.1, 128.0, 128.0, 127.9, 127.0 (d, J = 10.7 Hz, 2C), 126.1 (d,
J = 4.1 Hz, 2C), 124.8, 124.4, 124.2 (d, J = 5.1 Hz), 122.1 (d, J = 2.0 Hz), 122.0 (2C), 99.9 (d,
J = 28.1 Hz), 71.9 (d, J = 10.4 Hz), 71.5 (d, J = 4.1 Hz), 70.2 (d, J = 4.7 Hz), 70.0 (d, J = 5.7 Hz,
5C), 68.5, 57.4 (dd, J = 34.8, 8.6 Hz), 45.3 (d, J = 6.8 Hz), 36.1 (t, J = 3.7 Hz), 23.91 ppm; 31P
NMR (202 MHz, CDCl3) δ 148.1, −24.4 ppm; HRMS (ESI-TOF): calcd. for C46H38NO2P2Fe
[M + H]+ 754.1727; found 754.1719. See Supplementary Materials, pages 44–45 for 1H, 13C,
and 31P NMR spectra.

3.15. 2-[(2R)-N-(S)-1,1′-Binaphthyl-2,2′-Diylphosphoro-Pyrrolidin-2′-yl]-(1R)-
Diphenylphosphineferrocene (L8)

Prepared according to typical procedure A using (S)-1,1′-binaphthyl-2,2′-diyl phosphorochlo-
ridate (0.15 g, 0.44 mmol, 1.3 equiv.) to afford the product as an orange solid (0.25 g, 98%).

3.15.1. Spectroscopic Analysis of L8

Rf = 0.91 (pentane/EtOAc 9:1); m.p. = 185–187 ◦C; [a]D
20 = 380.2 (c 1.3, CHCl3); IR

(neat): νmax = 3067, 977 (C=C-H), 1619 (Alkene: C=C) cm−1; 1H NMR (300 MHz, CDCl3):
δ 8.04–7.90 (m, 5H), 7.70–7.52 (m, 4H), 7.50–7.34 (m, 8H), 7.33–7.26 (m, 3H), 7.25–7.22 (m,
2H), 5.33 (dd, J = 9.6, 7.9 Hz, 1H), 4.68 (d, J = 1.3 Hz, 1H), 4.41 (t, J = 2.2 Hz, 1H), 4.18 (s,



Molecules 2022, 27, 6078 16 of 20

5H), 4.01–3.95 (m, 1H), 3.27–3.11 (m, 1H), 2.53–2.40 (m, 1H), 1.79–1.61 (m, 1H), 1.55–1.34 (m,
2H), 1.23–1.12 (m, 1H) ppm; 13C NMR (126 MHz, CDCl3): δ 150.1 (d, J = 6.5 Hz), 149.9 (d,
J = 2.1 Hz), 140.3 (d, J = 9.2 Hz), 137.61 (d, J = 8.1 Hz), 135.2 (d, J = 21.5 Hz, 2C), 132.9 (d,
J = 1.3 Hz), 132.7 (d, J = 1.1 Hz), 132.5 (d, J = 18.3 Hz, 2C), 131.3, 130.7, 130.3, 129.9, 129.2,
128.4, 128.2, 128.0, 128.1, 128.0, 128.0, 127.9, 127.0 (d, J = 21.6 Hz, 2C), 126.1 (d, J = 4.9 Hz,
2C), 124.6 (d, J = 5.2 Hz, 2C), 123.8 (d, J = 4.9 Hz), 123.3 (d, J = 2.3 Hz), 122.0, 100.9 (dd,
J = 24.9, 1.9 Hz), 71.8 (d, J = 10.4 Hz), 71.4 (d, J = 4.2 Hz), 69.9 (d, J = 4.7 Hz, 5C), 69.7 (d,
J = 4.9 Hz), 68.4, 59.5 (dd, J = 41.3, 9.3 Hz), 44.0 (d, J = 5.9 Hz), 36.0–35.3 (m), 24.6 ppm; 31P
NMR (202 MHz, CDCl3) δ 150.8, −24.7 ppm; HRMS (ESI-TOF): calcd. for C46H38NO2P2Fe
[M + H]+ 754.1727; found 754.1765. See Supplementary Materials, pages 46–48 for 1H, 13C
and 31P and 31P-31P COSY NMR spectra.

3.15.2. Rhodium-Catalyzed Asymmetric Hydrogenation
Preparation of Substrates/Characterization Data for Substrates and Products

The substrates for catalysis were prepared according to the literature procedures
and all characterization data for the substrates and products were in accordance with
those reported. 16a/17a–16c/7c and 16e/17e and 16g/17g, [27] 16d/16d and 16i/17i and
17k and 17a/19a-18e/19e, [37] 16k is commercially available, 16f/17f, [38] 16h/17h and
16j/17j, [39] and 16f/17f [24].

3.15.3. Rhodium-Catalyzed Asymmetric Hydrogenation of Dehydroamino Acid Esters
Typical Procedure B: Optimization and Substrate Scope
Optimization

The Rh source (0.005 mmol), ligand (0.006 mmol), substrate 16a–k (0.5 mmol), and
the solvent (2 mL) were added to a dry 10-mL Schlenk flask containing a magnetic stir
bar under an inert atmosphere. The reaction mixture was cooled under liquid nitrogen,
the atmosphere was evacuated (high vacuum), and then the reaction chamber was refilled
with hydrogen using a balloon (reactions requiring higher pressures of hydrogen were
quickly transferred to an autoclave). The reaction was stirred for the designated time,
filtered through a plug of Celite®, and washed with the solvent of choice. The solvent was
removed in vacuo to yield the crude product. The ee was determined by chiral HPLC and
conversion of starting material to product by 1H NMR spectroscopy.

Substrate Scope

The reactions were performed with 0.5 mmol of the substrate using the procedure
outlined above for the optimization process, with the following exceptions. Racemic
reactions were performed with (±)-BINAP (1.1 mol %) using Rh(COD)2OTf (1.0 mol %),
2.3 bar H2 for substrate 16a and 40 bar H2 for 16b–k, in THF for 1-18h h at room temperature.
Reactions with L1 (1.1 mol %) were performed using Rh(COD)2OTf (1.0 mol %), 1 bar H2,
in THF for 12 h at room temperature. Reactions with L4 (1.1 mol %) were performed using
Rh(COD)2OTf (1.0 mol %), 1 bar H2, in THF for 4 h at 0 ◦C. Reactions with L7 (0.22 mol
%) were performed using Rh(COD)2OTf (0.2 mol %), 10 bar H2, in THF for 12 h at room
temperature. For the methods and chiral columns used to determine the enantiomeric
excess, and chromatograms for racemic and enantioenriched products, see Supporting
Materials (Table S1) and pages 4–14, respectively.

3.16. (S)-Methyl 2-Acetamido-3-Phenylpropanoate (17a)

Prepared according to typical procedure B to afford the product (>99 % conversion,
99.5% ee with L7) with all characterization analysis in good accordance with the literature.

3.17. (S)-Methyl 2-Acetamido-3-(4-Methoxyphenyl)propanoate (17b)

Prepared according to typical procedure B to afford the product (>99% conversion,
>99.9% ee with L7) with all characterization analysis in good accordance with the literature.
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3.18. (S)-Methyl 2-Acetamido-3-(p-Tolyl)propanoate (17c)

Prepared according to typical procedure B to afford the product (>99 % conversion,
99.4 % ee with L7) with all characterization analysis in good accordance with the literature.

3.19. (S)-Methyl 2-Acetamido-3-(4-Chlorophenyl)propanoate (17d)

Prepared according to typical procedure B to afford the product (>99% conversion,
99.4% ee with L7) with all characterization analysis in good accordance with the literature.

3.20. (S)-Methyl 2-Acetamido-3-(4-Fluorophenyl)propanoate (17e)

Prepared according to typical procedure B to afford the product (>99% conversion,
98.5% ee with L7) with all characterization analysis in good accordance with the literature.

3.21. (S)-Methyl 2-Acetamido-3-(4-Nitrophenyl)propanoate (17f)

Prepared according to typical procedure B to afford the product (>99% conversion,
98.6% ee with L7) with all characterization analysis in good accordance with the literature.

3.22. (S)-Methyl 2-Acetamido-3-(3-Chlorophenyl)propanoate (17g)

Prepared according to typical procedure B to afford the product (>99% conversion,
99.4% ee with L7) with all characterization analysis in good accordance with the literature.

3.23. (S)-Methyl 2-Acetamido-3-(3-Bromophenyl)propanoate (17h)

Prepared according to typical procedure B to afford the product (>99% conversion,
99.0% ee with L7) with all characterization analysis in good accordance with the literature.

3.24. (S)-Methyl 2-Acetamido-3-(2-Chlorophenyl)propanoate (17i)

Prepared according to typical procedure B to afford the product (>99% conversion,
99.7% ee with L7) with all characterization analysis in good accordance with the literature.

3.25. (S)-Methyl 2-Acetamido-3-(Naphthalen-1-yl)propanoate (17j)

Prepared according to typical procedure B to afford the product (>99% conversion,
99.2% ee with L7) with all characterization analysis in good accordance with the literature.

3.26. (S)-Methyl 2-Acetamidopropanoate (17k)

Prepared according to typical procedure B to afford the product (>99% conversion,
99.1% ee with L7) with all characterization analysis in good accordance with the literature.

3.26.1. Rhodium-Catalyzed Asymmetric Hydrogenation of α-Aryl Enamides
Typical Procedure C: Optimization and Substrate Scope

Optimization
Reactions were set up using a glovebox. Rh(COD)2OTf (0.005 mmol), ligand (0.006

mmol), N-(1-phenylvinyl)acetamide 18a (0.108 g, 0.5 mmol), and the solvent (2 mL) were
added to a dry 10-mL Schlenk flask containing a magnetic stir bar under an inert at-
mosphere. The reaction mixture was cooled under liquid nitrogen, the atmosphere was
evacuated (high vacuum), and the reaction chamber was refilled with hydrogen (balloon,
reactions requiring higher pressures of hydrogen were quickly transferred to an autoclave).
The reaction was stirred for the designated time, filtered through a plug of Celite®, and
washed with the solvent of choice. The solvent was removed in vacuo to yield the crude
product. The ee was determined by HPLC and conversion of starting material to product
by 1H NMR spectroscopy.

Substrate Scope
The reactions were performed with 0.5 mmol of the substrate using the procedure

outlined above for the optimization process, with the following exceptions. Racemic
reactions were performed with (±)-BINAP (1.2 mol %) using Rh(COD)2OTf (1.0 mol %),
40 bar H2 in THF for 18 h for substrate 18a and Pd/C (1.0 mol %, 10 wt. % loading),
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20 bar H2 in methanol for 0.5–2 h for 18b–f. Reactions with L1 (1.1 mol %) were performed
using Rh(COD)2OTf (1.0 mol %), 40 bar H2, in CH2Cl2 for 24 h at room temperature.
Reactions with L4 (1.1 mol %) were performed using Rh(COD)2OTf (1.0 mol %), 20 bar H2,
in MeOH for 1 h at room temperature. Reactions with L7 (0.22 mol %) were performed
using Rh(COD)2OTf (0.2 mol %), 10 bar H2, in THF for 1 h at room temperature except for
substrate 18f, which was subjected to Rh(COD)2OTf (1.0 mol %), L7 (1.1 mol %), 60 bar H2,
in THF for 2 h at room temperature. For the methods and chiral columns used to determine
the enantiomeric excess, and chromatograms for racemic and enantioenriched products,
see Supplementary Materials (Table S1) and pages 15–20, respectively.

3.27. (S)-N-(1-Phenylethyl)acetamide (19a)

Prepared according to typical procedure C to afford the product (>99% conversion,
96.4% ee with L7) with all characterization analysis in good accordance with the literature.
The absolute configuration of the product was determined by comparison of the [α]D

20

value to the literature [40]. Reference value; [α]D
20 = 129.5 (c 1.00, CHCl3) for the (R)-

enantiomer (99% ee). Value obtained; [α]D
20 = −52.7 (c 0.33, CHCl3).

3.28. (S)-N-(1-(Naphthalen-2-yl)ethyl)acetamide (19b)

Prepared according to typical procedure B to afford the product (>99% conversion,
97.4% ee with L7) with all characterization analysis in good accordance with the literature.

3.29. (S)-N-(1-(4-Chlorophenyl)ethyl)acetamide (19c)

Prepared according to typical procedure B to afford the product (>99% conversion,
97.7% ee with L7) with all characterization analysis in good accordance with the literature.

3.30. (S)-N-(1-(4-Methoxyphenyl)ethyl)acetamide (19d)

Prepared according to typical procedure B to afford the product (>99% conversion,
93.7% ee with L7) with all characterization analysis in good accordance with the literature.

3.31. (S)-N-(1,2,3,4-Tetrahydronaphthalen-1-yl)acetamide (19e)

Prepared according to typical procedure B to afford the product (23% conversion,
48.0% ee with L7) with all characterization analysis in good accordance with the literature.

3.32. (S)-Ethyl 3-Acetamido-3-Phenylpropanoate (19f)

Prepared according to typical procedure B to afford the product (>99% conversion,
61.3% ee with L1) with all characterization analysis in good accordance with the literature.

4. Conclusions

In summary, we have reported the design and convenient modular synthesis of a series
of novel P,P-ferrocenyl pyrrolidine-containing ligands. Through-space interphosphorus
coupling was observed in the 31P-NMR spectra for ligands L1–6, which bear (S)-planar
chirality, indicative of a close P–P proximity in the solution phase. The potential application
of the ligands was displayed in the rhodium-catalyzed asymmetric hydrogenation of
dehydroamino acids and α-aryl enamides with full conversion of the starting materials
and excellent ee’s observed in almost all cases using the BINOL-substituted phosphine-
phosphoramidite L7. Further investigations of other catalytic asymmetric transformations
are currently underway using these ligands, and progress will be reported in due course.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27186078/s1, including 1H, 13C, 19F, and 31P NMR spectra for novel compounds
(R,Sp)-14, (R,Rp)-14, (R,Sp)-15, and (R,Rp)-15 and ligands L1–L8; Supercritical Fluid Chromatography
chromatograms of racemic and enantioenriched compounds 17a–k and 19a–f; and X-ray crystallo-
graphic details of L5.

https://www.mdpi.com/article/10.3390/molecules27186078/s1
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