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Molecular signal transmission in cell is very crucial for information exchange. How to

understand its transmission mechanism has attracted many researchers. In this paper,

we prove that signal transmission problem between neural tumor molecules and drug

molecules can be achieved by synchronous control. To achieve our purpose, we derive

the Fokker-Plank equation by using the Langevin equation and theory of random walk,

this is a model which can express the concentration change of neural tumor molecules.

Second, according to the biological character that vesicles in cell can be combined

with cell membrane to release the cargo which plays a role of signal transmission, we

preliminarily analyzed the mechanism of tumor-drug molecular interaction. Third, we

propose the view of synchronous control which means the process of vesicle docking

with their target membrane is a synchronization process, and we can achieve the precise

treatment of disease by using synchronous control. We believe this synchronous control

mechanism is reasonable and two examples are given to illustrate the correctness of our

results obtained in this paper.

Keywords: random walk, signal transmission, synchronization, reaction-diffusion system, diffusion coupling,

structure adaptation

1. INTRODUCTION

In recent years, many scientists attempt to understand the mechanism behind the biological
phenomena and how it works. For instance, Maini et al. (1997, 2012) studied the biological pattern
formation in reaction diffusion theory. Hung et al. (2016) introduced the effect of MicroRNA
for zebrafish larvaes’ cold shock in the view of gene regulation. Stepicheva and Song (2016)
showed that miR-31 regulates diverse cellular and developmental processes by targeting genes
involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Brophy and Voigt
(2016) built a synthetic system in Escherichia coli to study how antisense transcription can
change the expression of a gene, and determined the relative contributions of antisense RNA and
transcriptional interference to repressing gene expression and introduce a biophysical model to
capture the impact of RNA polymerase collisions on gene repression.

It’s well known that there is a signal transmission in the biological system at all times, the
correct biochemical reaction can not be separated from these signal transmission. Thompson
and Holbrook (2004) used a previously developed dimensionless model of phloem transport to
demonstrate the mechanism behind the sieve tube’s capacity to rapidly transmit pressure or the
magnitude and axial gradient of apoplastic water potential. Faria et al. (2014) propose a model of
an intra-cellular transmission system of genetic information to identify a mathematical structure in
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DNA sequences where such sequences are biologically relevant,
the characterization of this model may contribute to the
development of a methodology that can be applied in mutational
analysis and polymorphisms, production of new drugs and
genetic improvement. There are many papers discover the drug
molecules’ transmission effect (Khuda-Bukhsh, 2003; Slowing
et al., 2011; Viernes et al., 2014). However, there is little attention
paid to the precise treatment of cancer, such as nerve-tumor.
Although it is very challenging to carry out precise treatment of
tumor molecules in the nervous system, it has greatly improved
the efficiency of tumor treatment. Precision therapy refers to the
combination of drug molecules and cancer causing sites, which
can cause tumor cells to die specifically. Drug molecules are
transported in the body in the form of vesicles wrapped, then
the precision transport of vesicles is also a powerful certification
for the precise treatment of tumor molecules. In 2013, the Nobel
prize in physiology or medicine was awarded to three scientists
who revealed the secrets of how cells organize their transport
systems, that’s to say some molecules which wrapped in vesicles
how to be delivered to the correct cell target at the right time.
Vesicle trafficking is an important component of the material
transport mechanism of cells, it can deliver the right cellular
cargo to the right destination at the right time (such as insulin,
neurotransmitter release). The essence of cellular logistics is the
precise transfer and delivery of goods. The process of precise
transport is just like the refueling of a flying aircraft by an aerial
tanker. When it can refuel, we also call the two aircrafts reached
a state of synchronization. Inspired by this example, we want to
explain the mechanism behind the precise treatment of tumor
molecules from the view of synchronization. For the movement
of tumor molecules, biologists believe that cancer cells follow a
random walk model in the two-dimensional plane (Wu et al.,
2014). So in this work, we try to build the model from the
view of real world by using Brownian motion, and our problem
is how to explain the precise therapeutic mechanism of tumor
molecules through mathematical models. Our work is to realize
the synchronization between them, then the two can interact:
the drug molecules destroy the tumor cells, thereby preventing
normal cell cancerization. It’s like an air refuelling tankers which
has being flying to the target location, is about to start fueling. So
the state of sync also represents an effective treatment.

Motivated by the discussion above, this paper aims to realize
the precise control of neural tumor molecules by drug molecules
which can be modeled as a process of synchronization for a
class of partial differential systems. To this end, we designed two
controllers which contains feedback controller, structure adaptive
controller (Zeng-Rong and Ji-Gui, 2006) and diffusion controller
(Wu and Chen, 2012). The main structure of this paper are as
follows:In section 2, we give the mathematical models for the
neural tumor molecules and the drug molecules respectively,
some necessary assumptions and the definition of structure
adaptation are also given in this section. In section 3, complete
synchronization for the proposed model by using two controllers
will be studied. Then, in section 4, numerical simulation is
presented to show the effectiveness of the theoretical results.
Finally, section 5 provides some conclusions and future research
topics.

FIGURE 1 | Movement path of tumor molecules and drug molecules.

2. THE MODEL

Here we consider the interaction between neural tumor
molecules and drug molecules in the plane, which is a random
walk process and a free diffusion process respectively. Schematic
diagram is shown in Figure 1.

We use the following langevin equation to describe the
trajectory of neural tumor molecules in the bounded plane. In
general, it can be written as:

dx

dt
= f1(x, y)+ ξ1(t)

dy

dt
= f2(x, y)+ ξ2(t) (2.1)

where (x, y) is the coordinates of neural tumor molecules, fi(x, y)
is the viscous resistance from fluid such as cellular fluid. In order
to simplify the model, we choose a simple linear representation
to fi(x, y), that’s to say: f1(x, y) = −k1x, f2(x, y) = −k2y. ξi(t)
is Gauss white noise which satisfies: 〈ξi(t)〉 = 0, 〈ξi(t)ξi(t

′)〉 =

Diδ(t − t′). When the initial value (x0, y0) is given, for each
sample function ξi(t), the system (Equation 2.1) has the only
determinate solution. Because the values of ξi(t) at different
time is random and independent, the trajectory of neural tumor
molecules is aMarkov process. Gao (2010) has introduced how to
translate Langevin equation to Fokker-Planck equation in one-
dimensional space, we can derive the following Fokker-Planck
equation corresponding to Equation (2.1) in two-dimensional
space:

∂P(x, y, t)

∂t
= −

∂

∂x
(f1(x, y)P) −

∂

∂y
(f2(x, y)P)

+
D1

2

∂2

∂x2
P +

D2

2

∂2

∂y2
P (2.2)
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FIGURE 2 | Schematic diagram of coupling effect between neural tumor

molecules and drug molecules.

where P(x, y, t) is the probability density of neural tumor
molecules in the cell. If we assumpted the two noise intensity
D1, D2 in Equation (2.1) are equal to D, two viscous resistance
coefficients are equal: k1 = k2 = K, then Equation (2.2) can be
written in the alternate form:

∂P(x, y, t)

∂t
= f (P)+

D

2
△P (2.3)

where f (P) = 2KP + K(x ∂P
∂x + y ∂P

∂y ).

On the other hand, we use the reaction diffusion equation to
express the concentration of drug molecules, it can be written as:

∂Q(x, y, t)

∂t
= −hQ+ D2△Q. (2.4)

where h,D2 are the absorption coefficient and diffusion
coefficient, respectively. When t = 0, Q(x, y) approximates to
the point source pulse function at injection point, so Q(x, y, 0) =
Lδ(x, y), and L represents injection volume.

Up to now, we have get the concentration equations of
neural tumor molecules and drug molecules respectively, i.e.,
Equations (2.3) and (2.4). Our next work is to disscuss the signal
transmission between the two from the view of synchronization.

3. REALIZATION OF COMPLETE
SYNCHRONIZATION AND CONTROL TERM

Firstly, we give the general description of CS betweenn two
different reaction diffusion systems. Consider the following
system:

∂P(x, y, t)

∂t
= f (P)+ D1△P

∂Q(x, y, t)

∂t
= g(Q)+ D2△Q

(3.5)

where f is defined as Equation (2.3), g(Q) = −hQ, D1 = D
2 .

Our goal is to choose the appropriate controllers for (3.5) so
that the orbit of the P component evevtually synchronized to
the orbit of Q component. In order to realize the CS, the proper
coupling term v(P,Q), u(P,Q) is add to the P component and Q

FIGURE 3 | Simulation results of e at t = 0.

component of Equation (3.5) as usual. The simplified graph is
shown in Figure 2.

So the coupling system is expressed as:

∂P(x, y, t)

∂t
= f (P)+ D1△P + v(P,Q)

∂Q(x, y, t)

∂t
= g(Q)+ D2△Q+ u(P,Q)

(3.6)

such that limt→∞ |P(x, y, t)− Q(x, y, t)| = 0.
Now we propose that the two control terms in Equation (3.6)

can be expressed in the following form:

v(P,Q) = v1(P,Q)+ v2(P,Q)

u(P,Q) = u1(P,Q)+ u2(P,Q)
(3.7)

where v1(P,Q) is the feedback part in the control term, u1(P,Q)
reflects the structure adjustment in the control term and
v2(P,Q), u2(P,Q) express the diffusion coupling in the control
term. They are continuous functions that can be taken as:

v1(P,Q) = ε1(P − Q)

v2(P,Q) = (ε2d − D1)1Q

u1(P,Q) = ε2[f (P)− g(P)]

u2(P,Q) = (ε2d − D2)1P

(3.8)

where d = D1 + D2.
Let e = Q− P, the error evolution equation of Equation (3.6)

reads:

ė = g(Q)− f (P)+ D21Q− D11P + ε1e+ ε2[f (P)− g(P)]

+ (D1 − ε2d)1Q− (D2 − ε2d)1P

= [g(Q)− g(P)]+ ε1e+ (1− ε2)[g(P)− f (P)+ d1e].

(3.9)

For system (Equation 3.9), we give three general assumptions as
follows:
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FIGURE 4 | Simulation results of e at t = 2.

FIGURE 5 | Simulation results of e at t = 5.

(H1) For any m, n ∈ � ∈ R, there exists a constant l > 0
satisfying

|g(m)− g(n)| ≤ l|m− n|

Where � is a bounded set. This condition is called the uniform
Lipschitz condition.

(H2) System (Equation 3.9) is eventually dissipative, namely
there is a bounded set �1 × �2 ∈ R × R such that the orbit
(P(t),Q(t)) starting from any initial point (P0,Q0) eventually
enters �1 × �2. Thus, we can obtain that the functions f and
g satisfy:

|g(P(t))− f (P(t))| < M,

for sufficient large t > 0.
(H3) The Laplasse operator is bounded. There exists a

constant N > 0 such that 1P < N, 1Q < N for any t > 0.

FIGURE 6 | Simulation results of e at t = 10.

Here the control strength ε1 and ε2 will be self-adapted
according to the following update law:

ε̇1 = −e2

ε2 = 1−
e

M + dN

(3.10)

For the 4-system, consisting of the error equation (3.9) and
self-adaptive equation (3.10), we introduce the following non-
negative function:

V =
1

2
e2 +

1

2
(ε1 + L)2,

Where L > l + 1 is a constant. By differentiating the function V
along the trajectories, which enter �1 × �2 after a suffient large
t, of the augmented system, we obtain

V̇ = eė+ (ε1 + L)ε̇1

= e[(g(Q)− g(P))+ ε1e+ (1− ε2)(g(P)− f (P)+ d1e)]

− (ε1 + L)e2

= e[(g(Q)− g(P))+
e

M + dN
(g(P)− f (P)+ d1e)]− Le2

≤ (l+ 1− L)e2

≤ 0 (3.11)

It’s obvious that V̇ = 0 if and only if e = 0. Then
according to the invariance principle of differential
equations, starting from arbitrary initial values of the
augmented system, the orbit converges asymptotically,
i.e., Q − P → 0, ε1 → ε̃1, ε2 → 1 as t → ∞ . The
CS between the two different reaction diffusion systems is
achieved.

In the coupling function, v1(P,Q) represent the feedback part.
Under the effect of this part, the distance between P(x, y) and
Q(x, y) is gradually decreasing until converging to zero. On the
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FIGURE 7 | Difference between P and Q with the change of time at y = 20 in system (Equation 4.12).

other hand, u1(P,Q) plays a role of adjusting the structure of
the Q-subsystem gradually. Its strength ε2 is controlled by e.
When the distance between P(x, y) and Q(x, y) is decreasing
gradually, the effect of structure adjustment strengthens. In
addition, under the effect of the v2(P,Q), u2(P,Q), the distance
between P(x, y) and Q(x, y) result from respective diffusion could
be eliminated, eventually the CS fulfilled.

4. NUMERICAL SIMULATION

In this section, we give the numerical results for the
coupling system of the previous section (Equation 3.6),
that is:

∂P(x, y, t)

∂t
= 2KP + ε1(P − Q)+ K(x

∂P

∂x
+ y

∂P

∂y
)

+ D1△P + (ε2d − D1)1Q

∂Q(x, y, t)

∂t
= −hQ+ ε2[(2K + h)P + K(x

∂P

∂x
+ y

∂P

∂y
)]

+ (ε2d − D2)1P + D2△Q

∂ε1(x, y, t)

∂t
= −(P − Q)2 (4.12)

where ε2 = 1 − Q−P
M+dN

, d = D1 + D2, (K, h,D1,D2,M,N) are
system parameters.

We assume that neural tumor molecules and drug molecules
move in a bounded planar region, that is: (x, y) ∈ [0, 100] ×
[0, 100], and drug injection point is at (1, 1). Morever,
because the P(x, y, t) in system (Equation 2.2) represents the
probability density of neural cancer cells, we define P ∈

[0, 1], Q ∈ [0, 1] in this paper, and error e between
them satisfied: e ∈ [−1, 1]. So we put the boundary
conditions and initial conditions for system (Equation 4.12)

as follows: P(x, y, 0) = sin(2πx)cos(2πy),Q(x, y, 0) = δ(1, 1),
ε1(x, y, 0) = 0, P(0, y, t) = P(100, y, t) = Q(x, 0, t) =

Q(x, 100, t) = 0, Q(0, y, t) = Q(100, y, t) = Q(x, 0, t) =

Q(x, 100, t) = 0, ε1(0, y, t) = ε1(100, y, t) = ε1(x, 0, t) =

ε1(x, 100, t) = 0.
Take (K, h,D1,D2,M,N) = (0.1, 0.1, 0.01, 0.02, 200, 100),

the state e = Q(x, y, t) − P(x, y, t) are shown in the
Figures 3–6 at different times. We can read from these
figures that the coupled systems are of asymptotical
synchronization with the increase of time. In other
words, the signal between the two is effectively
transmitted.

Here we also provide figures to illustrate the difference
between P and Q at some fixed space point. We take y =

20 from Figure 7, and x = 90 from Figure 8, we can also
see the asympotical synchronization of the coupled systems
(Equation 4.12). It also shows that it is reasonable for us to
explain the mechanism of signal transduction in the view of
synchronization.

5. CONCLUSION AND FUTURE RESEARCH
ISSUES

This paper considered the signal transmission between neural
tumor molecules and drug molecules from the perspective
of synchronization, we constructed the synchronization error
dynamic, and turned the synchronization problems of coupled
system to the stabilization problems of the synchronization
error dynamic which can be analyzed via Lyapunov method.
Realization of synchronization is also used to verify the
effective transmission of the signal. So our paper is helpful
to understand the signal transmission mechanism of biological
reaction-diffusion system. In addition, the model has many
parameters, and each parameter represents one or more
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FIGURE 8 | Difference between P and Q with the change of time at x = 90 in system (Equation 4.12).

biometric features, the biologist can relaize the control by
adjusting the different parameter, and our work is of practical
significance.

The characteristic of stochastic dynamics is a remarkable
feature of biological systems. Because of the presence of noise,
the various mechanisms of action in organisms often show great
randomness. Study on the mechanism of these random effects
from the master equation may be any other general type, and
they can explain the mechanisms behind complex interaction
more effectively. How to use the master equation to model the
randommoving objects is challenging, which is our next research
topic.
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