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Abstract

Motivation: Electron tomography (ET) is a widely used technology for 3D macro-molecular struc-

ture reconstruction. To obtain a satisfiable tomogram reconstruction, several key processes are

involved, one of which is the calibration of projection parameters of the tilt series. Although fiducial

marker-based alignment for tilt series has been well studied, marker-free alignment remains a chal-

lenge, which requires identifying and tracking the identical objects (landmarks) through different

projections. However, the tracking of these landmarks is usually affected by the pixel density (inten-

sity) change caused by the geometry difference in different views. The tracked landmarks will be

used to determine the projection parameters. Meanwhile, different projection parameters will also

affect the localization of landmarks. Currently, there is no alignment method that takes interrela-

tionship between the projection parameters and the landmarks.

Results: Here, we propose a novel, joint method for marker-free alignment of tilt series in ET, by

utilizing the information underlying the interrelationship between the projection model and the

landmarks. The proposed method is the first joint solution that combines the extrinsic (track-based)

alignment and the intrinsic (intensity-based) alignment, in which the localization of landmarks and

projection parameters keep refining each other until convergence. This iterative approach makes

our solution robust to different initial parameters and extreme geometric changes, which ensures a

better reconstruction for marker-free ET. Comprehensive experimental results on three real data-

sets show that our new method achieved a significant improvement in alignment accuracy and re-

construction quality, compared to the state-of-the-art methods.

Availability and implementation: The main program is available at https://github.com/icthrm/joint-

marker-free-alignment.

Contact: mxu1@cs.cmu.edu or xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Electron tomography (ET) is an important technology for structural

biology and offers 3D imaging of cellular ultrastructure. The ultra-

structure can be solved from a tilt series of micrographs (projections)

taken with different tilt angles (Fernández, 2012; Frank, 2006;

Lu�ci�c et al., 2013). The fundamental principle of obtaining high-

quality 3D density maps is to keep the consistency between the 3D

model and the 2D projections. However, the instability of the instru-

ment and the deformation of the sample introduce uncertainty in

the projections. Before reconstruction, an accurate refinement of

projection parameters is required to compensate for the transform-

ation and deformation of the tilt series.

According to the availability of fiducial markers in a sample,

alignment methods can be classified into two main types: marker-

based alignment and marker-free alignment. Fiducial marker-based

alignment is currently the most widely used alignment method (Han

et al., 2015, 2018; Kremer et al., 1996; Lawrence, 1992). It is also

called the extrinsic method, which requires fiducial markers to be
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embedded in the sample (Markelj et al., 2012). However, not all the

samples can be embedded with fiducial markers, and undesirable

artifacts may occur due to the interference of the colloidal gold in

the sample (Frank et al., 1987). Marker-free alignment does not re-

quire fiducial markers and can be divided into two categories: cor-

relation methods and feature-based methods. Correlation methods,

such as cross-correlation (Guckenberger, 1982) and common lines

(Liu et al., 1995), provide coarse alignment to calculate large trans-

lation and in-plane rotation. The iterative cross-correlation align-

ment (Winkler and Taylor, 2006, 2013) with parameter-based

stretching produces better results but is sensitive to the choice of ini-

tialization, pitch angle change and large sample thickness. Feature-

based (virtual track-based) methods utilize the image features as vir-

tual markers and align images in a workflow similar to the marker-

based alignment (Brandt and Ziese, 2006; Brandt et al., 2001;

Casta~no-Dı́ez et al., 2007, 2010; Han et al., 2014; Phan et al., 2009;

Sorzano et al., 2009). However, the extracted features may not be

stable enough to cover the entire tilt series, due to the change of

the tilt angle and the impact of noise. Another type of parameter

refinement is the maximum-likelihood estimation based on recon-

struction–reprojection procedure, where the relationship (intensity)

between the 3D volume and 2D projection is considered and itera-

tively refined. Such a solution is also called the intrinsic method,

which has been widely used in computed tomography (CT) and sin-

gle particle analysis (SPA) (Markelj et al., 2012; Scheres, 2010; Tang

et al., 2007).

The key problem in marker-free alignment is to identify and

track the identical objects (landmarks) in different projections, by ei-

ther cross-correlation or features. In feature-based methods, differ-

ent features (Brandt et al., 2001; Han et al., 2014; Sorzano et al.,

2009) have been used to compensate for the projection parameter

change of the views, by organizing a set of identical descriptors.

However, when the tilt angle increases, most features either vanish

or become difficult to track. In addition, the 2D features do not ne-

cessarily correspond to a 3D ultrastructure. Cross-correlation meth-

ods may use large image areas to keep tracking candidate

ultrastructures. Because its comparison is view-to-view, the methods

are sensitive to the pixel intensity change caused by different sample

geometry, resulting in a low localization accuracy. In either method,

tracked landmarks are used to determine the projection parameters.

Meanwhile, different prior information of the projection parameters

will affect the localization of the landmarks. Until now, to our

knowledge, there is no alignment method that takes the interrela-

tionship between projection parameters and landmarks into

consideration.

In this article, we propose a novel, joint solution by explicitly

considering the interrelationship between projection parameters and

landmarks, to achieve a robust and accurate marker-free alignment

of tilt series. Our solution consists of the following steps: (i) auto-

matic calculation of the view-to-view relationship of the tilt series,

(ii) selection and tracking of landmarks along the tilt series, (iii) it-

erative refinement of the landmark locations based on a reconstruc-

tion–reprojection scheme and (iv) projection parameter calibration

based on the landmark tracks. In our solution, the projection param-

eters are refined by the localization of a set of virtual tracks, and the

locations of the landmarks are re-estimated when refined projection

parameters are obtained. This process is implemented by recon-

structing the local ultrastructure of the landmarks and analyzing the

difference between the ultrastructure’s reprojections and the original

micrographs. Step (iii) and (iv) will be iteratively updated in an alter-

nate manner until convergence.

Consequently, the proposed method is a joint solution that com-

bines the extrinsic (track-based) alignment and the intrinsic (inten-

sity-based) alignment. We use landmarks as fiducial markers

(extrinsic information) while refining their localization based on

their intensity information (intrinsic information) in a similar way

as single particle analysis. Because the extrinsic alignment is robust

to different initial parameters and the utility of intensity information

in intrinsic alignment is able to compensate the localization accuracy

loss of the landmarks, the joint method ensures a better reconstruc-

tion for marker-free ET.

The proposed method was compared with the state-of-the-art

methods including IMOD and AuTom on three real datasets. Results

demonstrate that our joint method significantly improves the align-

ment accuracy and reconstruction quality over the existing methods.

2 Preliminaries

2.1 Local consistency of the projections
2.1.1 Basic concept

Generally, the projection process in ET follows an orthogonal pro-

jection model, which is described as follows (conventionally, we de-

note vectors or matrices by bold symbols and denote a 2D point by

2 � 1 vector):

u
v

� �
¼ sRcPRbRa

X
Y
Z

0
@

1
Aþ t; (1)

where X;Y;Zð ÞT is a coordinate representing a spatial point located

in the ultrastructure; a represents the pitch angle along the tilt axis;

b represents the tilt angle; c represents the in-plane rotation within

the projection plane; s represents the scale change of the view; t ¼
t0; t1ð ÞT represents the translation of the view; u; vð ÞT is the meas-

ured projection point and P denotes the orthogonal projection ma-

trix. The detailed Ra; Rb, P and Rc are defined as follows:

Ra ¼
1 0 0

0 cos a sin a

0 �sin a cos a

0
BB@

1
CCA;Rb ¼

cos b 0 �sin b

0 1 0

sin b 0 cos b

0
BB@

1
CCA;

P ¼
1 0 0

0 1 0

 !
;Rc ¼

cos c sin c

sin c cos c

 !
:

Given a tilt series, if the corresponding relationship is configured,

a projection model can be fitted to minimize the deviation between

the measured value and estimated one (parameters). In most cases,

the origin of the reconstructed 3D density map is chosen to be dir-

ectly above the center of the projection (micrograph) of 0
�

tilt angle.

However, a derivation from Equation (1) claims that the optimal

projection model is not unique.

By substituting P, Rb and Ra into Equation (1), the equation can

be rewritten as follows:

u
v

 !
¼ sRc

cos b sin a sin b

0 cos a

 !
X

Y

 !

þsRc

�sin b cos a

sin a

 !
Zþ

t0

t1

 !
:

(2)

Implicitly, the origin O of the spatial coordinate locates at

0;0; 0ð ÞT and it produces the center point on a projection with any

tilt angle if the translation t is set to 0. If we would like to relocate

the origin O inside the sample, for example, with a shift of DZ along

z-axis, the projection model will be reformed as:
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u
v

� �
¼ sRcPRbRa

X
Y

Zþ DZ

0
B@

1
CAþ t 0

¼ sRc

cos b sin a sin b

0 cos a

 !
X

Y

 !
sþ Rc

�sin b cos a

sin a

 !
Z

þsRc

�sin b cos a

sin a

 !
DZþ

t00
t01

 !
:

(3)

Compared with Equation (2), a shift sRc
�sin b cos a

sin a

� �
DZ will

be added to the translation t to compensate for the re-centering of

the spatial coordinate. Here, though the projection parameters have

been changed, the consistency of projection-slice theorem between

the spatial ultrastructure and its projections holds. Similarly, a DX

or DY may also be applied to a projection system.

LEMMA. If a set of suitable translations applied to the projections (micro-

graphs) is given, the spatial coordinate O could be relocated at any

position without the destruction of the consistency of projection-slice

theorem between the spatial ultrastructure and its projections.

PROOF. If the original point of spatial coordinate O is translated from

(0, 0, 0) to XO0 ;YO0 ;ZO0ð Þ, the projection model will be reformed as:

u
v

 !
¼ sRcPRbRa

X

Y

Z

0
BB@

1
CCA�

XO0

YO0

ZO0

0
BB@

1
CCA

2
664

3
775þ t 0

¼ sRcPRbRa

X

Y

Z

0
BB@

1
CCA� sRcPRbRa

XO0

YO0

ZO0

0
BB@

1
CCAþ t 0:

(4)

Now set

t 0 ¼ t þ sRcPRbRa

XO0

YO0

ZO0

0
BB@

1
CCA; (5)

where C ¼ XO0;YO0;ZO0ð ÞT is a constant and a; b; c; s are fixed for a cer-

tain projection. By substituting t 0 to Equation (4), we can find that the

equation is reduced to Equation (1). Therefore, for a tilt series, the sys-

tem could be relocated to XO0;YO0;ZO0ð ÞT with such a translation t 0

applied to any projection.

2.1.2 Local refined landmark within a local tilt series

The conclusion above is simple but important. Figure 1 demon-

strates such an example.

In Figure 1, we assume that the projection parameters for the

projections in the tilt series are already known. Therefore, for a 3D

spatial point in the spatial coordinate, its 2D reprojection can be

easily calculated (i.e. t 0). If we select the local patches around t 0

of the projections, these local patches would recompose a new

tilt series. With a suitable size of the local patch, such a local tilt

series always retain the consistency of projection-slice theorem be-

tween the projections and the 3D ultrastructure. On the contrary,

if the corresponding relationship of the local patches is known

within an unaligned tilt series, we could try to recompose these

local patches into a tilt series with projection parameters consistent

with the spatial object. And the centers of these local patches

can be used to produce the landmarks for the entire tilt series

alignment. Here, we call these center points the reprojection–in-

variant landmarks.

3 Materials and methods

Figure 2 shows the overall workflow of our joint method for

marker-free alignment. The workflow mainly contains four steps,

in which our solution tries to reveal the corresponding relationship

of the projection system from 2D to 3D. The first step is the calcu-

lation of the view-to-view relationship between two consecutive

images along the tilt series. In this step, a coarse affine transform-

ation mapping one image to another is calculated. The second step

is the selection and tracking of the candidate landmarks. In this

step, a set of landmarks with stable structures or randomly selected

coordinates are localized along the tilt series based on the view-to-

view transformation matrix. The third step is the extraction of

local patches, the composition of local tilt series, the refinement of

local projection parameters and the reproduction of these patches’

centers (i.e. reprojection–invariant landmarks). In this step, the
Fig. 1. An example of recentering of a tilt series, in which the local patches

around t 0 of the projections recompose a new tilt series

input tilt series

calculation of view-to-view
relationship of the tilt series

selection and tracking of
the candidate landmarks

extraction of local patches
and refinement of

projection parameters

production of reprojection
invariant landmarkers

bundle adjustment based
on the landmarker tracks

converge?

output

Yes

No

with the features
extracted by SIFT

based on the affine
relationship

with optimization
of iterative re-
construction and
reprojection

with the configured
parameters of local
tilt series

with an orthogonal
projection model

Fig. 2. The workflow of our joint method for marker-free alignment
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landmarks that are coarsely selected from the view-to-view rela-

tionship will be refined and reproduced, according to the current

configuration of the projection model. In the fourth step, a new

projection model will be calculated with the virtual tracks com-

posed by the reprojection–invariant landmarks. If the system con-

verges, the refined projection model will be outputted. Otherwise,

the procedure will return to the third step. In this section, the

detailed implementation of our workflow will be introduced in the

following context.

3.1 Calculation of view-to-view relationship
For marker-free alignment, to obtain accurate landmarks that re-

flect the geometric change of the projection system is very import-

ant. However, this problem has not been solved, in which the main

obstacle is that a point of interest on a projection does not neces-

sarily correspond to a specific point on the spatial ultrastructure.

In addition, the link of the key feature points between projections

is not tight: the points of interest often vanish during the tilt angle

changing. In our joint solution, we will not try to find such

landmarks in a one-pass optimization, but try to find the coarse

positions first and then refine them iteratively in the subsequent

processes.

3.1.1 Affine constraint of two images

According to the most recent theoretical results (Han et al., 2018),

the landmarks upon two projections of a tilt series approximately

follow an affine relationship within a very small deviation. In par-

ticular, given a set of coordinate xijf gi¼1;...;M
belonging to the jth

projection and its corresponding set xij0f gi¼1;...;M
belonging to the

j0th projection, we can always find such a transformation T �ð Þ
(T x0ij; A; t
� �

¼ Axij þ t, where A is a 2�2 matrix and t is the transla-

tion), to make kxij0 � x0ijk < � for any xij0 and xij, where � is a very

small number.

On the contrary, if the affine constraint between two projections

has been revealed, we can find all corresponding coordinate pairs

between the two projections.

3.1.2 Affine matrix calculation based on matched features

Though the direct use of image features will produce short virtual

tracks (Brandt et al., 2001; Han et al., 2014; Sorzano et al., 2009),

the feature technique is very suitable for the discovery of view-to-

view relationship (Saalfeld et al., 2010). In our default implementa-

tion, the scale-invariant feature transform (SIFT) (Lowe, 2004) is

used to recover robust ultrastructure and produce corresponding

coordinates between two consecutive views.

Feature extraction and matching with SIFT: As a descriptor,

SIFT contains the key point of the interesting structure and the de-

scriptor to code the information around the key point. SIFT is able

to localize the stable points in the space of difference-of-Gaussian

(DoG) pyramid as key point and organize the neighborhood infor-

mation around the key point into a 128 dimensional descriptor that

redundantly contains the neighboring gradient and magnification

information.

Given the 128 dimensional descriptor, view-to-view correspond-

ence points can be identified by a kd-tree searching (Bentley, 1975)

with local window constraint. Here, a threshold of 0.7 for ET

images is set as the significance for the Euclidean distance measure-

ment. The left part of Figure 3 demonstrates a matching result with

different projections.

Robust estimation of the affine matrix: As introduced in the be-

ginning, the view-to-view relationship can be estimated from the

matched correspondence of points of interest. However, the descrip-

tor matching results still contain a lot of spurious correspondences.

Here, we propose a random sample consensus (RANSAC) (Fischler

and Bolles, 1981) algorithm to robustly estimate the affine matrix of

two views.

Algorithm 1: Robust estimation of view-to-view relationship

Input: {xij}, {xij }, d
Procedure FindAffineTransform({xij}, {xij }, d)

Calculate maximum iteration count I;
Let i ← 0, Mmax ← ∅;
while i < I do

M ← ∅;
Select {xkj} and {xkj } (k = 1, 2, ..., K);
Solve argminA,t (xkj) − xkj ;
ApplyT (·) to {xij};
foreachxij ∈ {xij} do

if (xij) − xij < d then
M ← M ∪ M(xij , xij );

end
end
if |M | > |Mmax| then

Mmax ← M ;
Refresh I;

end
i ← i + 1;

end
returnT (·) estimated from Mmax.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Algorithm 1 elaborates the details of robust transformation ma-

trix estimation, which requires the correspondence of xijf g and

xij0f g, and a distance threshold d as input and outputs the transform-

ation T �ð Þ:

1. From the xijf g and xij0f g, select random sets of correspondences

xkjf g and xkj0f g (k ¼ 1;2; . . . ;K), and calculate the transform-

ation T �ð Þ between these correspondences.

2. Find the correspondences from xijf g and xij0f g whose model

error is less than d under T �ð Þ, record the result as M xij;xij0ð Þ.
3. If the cardinality of M xijf g; xij0f g

� �
is larger than the current

maximal record Mmax, save the current value and refresh the ter-

mination condition I.

4. Repeat Steps 1�3 until termination, finally return T �ð Þ from

Mmax.

Here, we refresh the maximum iteration count according to

I ¼ log 1� psð Þ= log 1� pK
g

� �
, where ps is the required success rate,

pg is the minimum percentage of inliers and K is the minimum sam-

pling number of the dataset (K¼3). The distance threshold d is set

to sin Db � T (Han et al., 2018), where Db is the tilt angle difference

between the two projections and T is an estimated sample thickness.

The initial affine matrix carries two pieces of useful information:

(i) an initial estimation of the center of each projection and (ii) the

related in-plane rotation between two consecutive views. With the

use of such information, the initial projection model is able to be

estimated.

i252 R.Han et al.



3.2 Selection and tracking of the landmarks
Once the view-to-view relationship is obtained, the common struc-

tures among all the tilt series would be easy to track. Here, we gen-

erate the track of landmarks with the following steps:

1. Select a set of candidate landmarks from the projection of the 0
�

tilt angle.

2. Propagate the landmarks to the consecutive views, based on the

solved affine transformation model.

3. Correspond the landmarks from the projection of the low tilt

angle to the high tilt angle until all the projections have been

visited.

By default, we use a uniform sampling to select the landmarks.

However, the results from any other landmark selection methods

can be used here.

Figure 3 presents a tracking example, where the left part is the

matching result between two consecutive projections and the right

part is the tracked candidate landmarks. Projections of 0
�
; 1

�
; 49

�

and 50
�

tilt angles are selected for demonstration. The matched

points of interest are linked by the green lines across two views and

the tracked candidate landmarks are marked by the green crosses.

Obviously, the projections of the ultrastructures have changed a lot

from the low tilt angle to the high one. Although we can find a large

number of matched correspondences between the two consecutive

projections, it is difficult to find a set of completely traceable fea-

tures that correspond to each other from the image of the low tilt

angle to the one of the high tilt angle. However, with the help of the

view-to-view relationship (affine relationship) solved from the cor-

respondence of points of interest, the landmark locations in the view

of 1
�

can be calculated from the ones in the view of 0
�
. Generally,

according to our tracking steps, the landmark locations in the i-th

view can be calculated from the ones of the i� 1ð Þ-th view based on

the solved affine relationship. As shown in the right part of Figure 3,

we successfully made such a complete tracking, and the positions of

landmarks in the high tilt angle views (e.g. the view of 50
�
) further

reflect the affine relationship between the high tilt angle views and

the view of 0� tilt angle.

3.3 Refinement of the landmarks with local patches
The tracking of landmarks based on the affine transformation of

two views cannot directly reflect the true projection model because

it is limited by the loss of information along the z-axis. A further

refinement is required. With the tracking of local ultrastructures, a

tilt series with local patches can be reformed and refined. Multiple

numbers of local patch’s tilt series comprise the possibility of mul-

tiple correspondences of reprojection–invariant landmarks and the

consequent global refinement of the projection model.

3.3.1 Local patch refinement

Assume in previous object tracking, the interested local ultrastruc-

ture has a localization in projection 1 as (x1, y1), a localization in

projection 2 as (x2, y2) and so on [(xn, yn) in projection n].

Sufficiently large patches (e.g. W�W patch size with W larger than

the thickness of the samples) can be used to include the local ultra-

structure of interest and form a tilt series of the certain local patches

(Fig. 1). For each tilt series of local patches, we try to refine its pro-

jection parameters based on the pixel density (to simplify the calcu-

lation, we only focus on the in-plane rotation c, pitch angle a and

image translation t).

Initialization: The local patch refinement is within the extrinsic

refinement based on landmark tracks (as shown in Fig. 2). The val-

ues of image scale s and tilt angle b are assumed to be accurate in

local patch refinement. If it is not the first turn’s local patch refine-

ment, all the initial parameters are inherited from the previous

bundle adjustment. If it is the first turn’s local patch refinement,

we will set image scale s to 1, tilt angle b to the value read from

the goniometer. The shift t is set to 0 (the global t is an integrated

value of the invariant point x0 of different views that makes

x0 ¼ Ax0 þ t); the pitch angle a and in-plane c are set according to

the decomposition of A ¼ RS, where R is the rotation matrix and

S is the shear matrix (here, A and t are from the view-to-view rela-

tionship T �ð Þ).
Intrinsic alignment: The consequent projection parameter refine-

ment is similar to the process in single particle analysis (Scheres,

2010). However, we do not need an exhaustive search, because we

already have an accurate guess of the initial parameters based on the

extrinsic refinement.

Step 1) With the initial parameters, a coarse alignment based

on the cross-correlation of stretched images is carried out to com-

pensate for large translation, following the principle proposed by

Winkler and Taylor (2006). First of all, a reference is selected

from the original extracted local patches, which is often the pro-

jection (micrograph) with 0
�

tilt angle. Then the parameters of the

adjacent projections will be solved to fit the reference. After the

initialization, the consequent reference will not be a projection

selected from the tilt series, but a specialized reprojection from the

already aligned projections. The process will continue with each

time a projection selected and calibrated into the aligned projec-

tions. Such process continues until all the micrographs are

configured.

Step 2) Next we try to solve the following optimization for the

entire system (Kyme et al., 2003; Yang and Penczek, 2008):

argmin
aj ;cj ;t jf g

XJ

j¼1

X
ux ;uyð Þ2D

jT2d
t j

R2d
cj

Ij

� �� �
ux;uyð Þ � P3d

sj ;aj ;bj
Vð Þ ux;uyð Þj2;

(6)

where Ij is the jth 2D image (projection), (ux, uy) is the pixel of Ij

located in (x, y), D is a selected center area of projection, R2d
c �ð Þ is a

rotation operation applied on an image with c, T2d
t �ð Þ is a translation

operation applied on the image with t, P3d
s;a;b �ð Þ is a projection

Fig. 3. A demonstration from the view-to-view relationship to a set of candi-

date landmarks. The left part is the matching result between two consecutive

projections and the right part is the tracked candidate landmarks

A joint method for marker-free alignment of tilt series in electron tomography i253



operation that projects a 3D object to a 2D plane, and V is a 3D ob-

ject reconstructed from Ij

� 	
j¼1;...;J

.

Algorithm 2: Refine the parameters of local patches

Input: Γ = {Ij |j = 1, ..., J}, Θ = {(sj , αj , βj , γj, tj)|j = 1, ..., J}
Procedure LocalProjectionRefine(Γ, Θ)

← ∞;
repeat

Reconstruct V fromΓ with Θ;
foreachIj ∈ Γ do

Let smin ← ∞ and allocateα+
j , γ+

j and t+j ;
foreachαj ∈ [αj − dα, αj + dα] do

Prαj
← P 3d

sj ,αj ,βj
(V )(ux, uy);

s ← minγj ,tj
|T 2d

tj
(R2d

γj
(Ij))(ux, uy) − Prαj

|2;

if s < smin then
smin ← s;
(α+

j , γ+
j , t+j ) ← (αj , γj , tj);

end
end
Optimize for the internal integral in Eq. 6 with initialαj , γj , tj

value of α+
j , γ+

j , t+
j (gradient-descent);

Updateαj , γj , tj in Θ;
end

←
until converges;
returnΘ.
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First, we reconstruct the object V based on the projections and

their current parameters. Then, we optimize the pitch angle, in-

plane rotation and translation for each projection one by one.

Because the cross-correlation of stretched images can produce a re-

sult within a few pixel deviations, For a projection, we will first

search the pitch angle in a grid way within a small interval

(Zampighi et al., 2005), and then get a suitable optimized value of

translation and in-plane rotation. Then, we further refine the param-

eters based on a gradient descent optimization. We iterate the refine-

ment of projection parameters and the reconstruction of 3D volume

until the residual in Equation (6) converges. Algorithm 2 gives a

detailed description of the process.

3.3.2 Production of reprojection–invariant landmarks

Once the projection parameters for the local tilt series have been

solved, it is very easy to find the new center (i.e. the projection point

of O) of each local patches in the projection system. Because the

local patches closely represent their corresponding 3D ultrastruc-

ture, the original point of the local 3D projection system will locate

inside the ultrastructure. Consequently, the projections of the origin-

al point in the 3D projection system reflect the position change of

the interested ultrastructure under different tilt angles. According to

the proof in Section 2.1, for a tilt series of local patches, its jth pro-

jection’s center point is t j. By substituting the t j back to the location

of each extracted local patch, we could obtain the refined localiza-

tion of the interested ultrastructure in the original tilt series, as

shown in Figure 4. Compared with the location of landmarks

extracted from the view-to-view relationship, here, we thus call

these landmarks ‘the reprojection–invariant landmark’.

3.4 Projection parameter optimization
3.4.1 Bundle adjustment with virtual tracks

With enough tracks of reprojection–invariant landmarks, it is not

difficult to discover the global projection parameters. Given a tilt

series with N projections, for the ith projection, its projection

parameters can be estimated from the optimization of the following

L-2 norm objective function:

argmin
sj ;aj ;bj ;cj ;t jf g

X
i

X
j

Projj X ið Þ � xi;j

� �2
; (7)

where X ¼ X if g is the spatial points that define the spatial geometry

of the sample, Projj �ð Þ is the operation of the orthogonal projection

defined in Equation (1) for the jth micrograph (mapping X i from R
3

to R
2), and xi;j is the reproduced reprojection–invariant landmarks.

In the extrinsic alignment, all the parameters defined in Equation

(1) are supposed to be refined. Because both the projection parame-

ters and the spatial points are unknown, it is a non-linear optimiza-

tion for solving the projection parameters. Considering the sparsity

of the reprojection landmarks in the entire system, the sparse bundle

adjustment (SBA) (Triggs et al., 2000) is adapted to solve the non-

linear least square problem defined in Equation (7). In the intrinsic

alignment, we noticed that some landmarks located on patches with

fewer ultrastructures will not produce high-quality localization.

Therefore, a procedure against these poor landmarks is also adapted

to ensure a robust estimation of the projection parameters (Han

et al., 2019).

During the optimization of bundle adjustment (extrinsic align-

ment), all the landmarks will be assigned with a confidence value.

The bundle adjustment will iteratively interact with the process of

local patch refinement (intrinsic alignment), in which the global pro-

jection parameters serve as the initial value for local patches refine-

ment. When this procedure converges, the joint solution will

terminate and output the final projection parameters.

4 Experiments and results

4.1 Datasets
Three experimental datasets are used to evaluate the proposed

method. The first one is a tilt series with well-distributed fiducial

markers, to show the comparison of our method with the fiducial

Fig. 4. The relocation of the refined original points from local patches to the

entire tilt series

Fig. 5. Illustration of the three test datasets. (A) Filament, (B) mitochondria

and (C) vesicle
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marker-based methods. The second dataset is a tilt series without fi-

ducial markers, which has a relatively large change of pitch angles,

to compare our method with the classic feature-based methods. The

third dataset is a tilt series with a high noise to demonstrate the ap-

plication of our method on the dataset that feature-based methods

are difficult to be applied on.

The first dataset (the filament dataset) is a tilt series of F-actin

filaments (Fig. 5A). It is a negative-stained cryo-ET dataset

with fiducial markers embedded in, provided by the National

Institute of Biological Sciences of China. The data were collected

by an FEI Titan Krios (operated at 300 kV) with a Gatan camera.

The tilt angles of the projection images range from þ60:0
�

to

�58:0
�

at a 2
�

interval. In total, there are 60 images in the tilt ser-

ies. The size of each tilt image is 2048�2048 with a pixel size of

1.01 nm.

The second dataset (the mitochondria dataset) is a tilt series of

mitochondria of mouse hepatic cells without fiducial markers

(Fig. 5B), which is taken with an FEI Tecnai 20, with the voltage at

200 kV. This dataset was collected by the Institute of Biophysics,

Chinese Academy of Sciences, which was used as the benchmark set

for the previous state-of-art feature-based alignment (Han et al.,

2014). The tilt angles of the projection images range from �52:0
�

to

þ59:0
�

at a 1
�

interval. In total, there are 112 images in the tilt ser-

ies. The size of each tilt image is 2048�2048 with a pixel size of

0.4 nm.

The third dataset (the vesicle dataset) is a tilt series of synaptic

vesicles of the calyceal terminal without fiducial markers (Fig. 5C),

which is taken with an FEI Tecnai 20, with the voltage at 200 kV.

This dataset was also collected by the Institute of Biophysics,

Chinese Academy of Sciences. The tilt angles of the projection

images range from �59:0
�

to þ60:0
�

at a 1
�

interval. In total, there

are 120 images in the tilt series. The size of each tilt image is

2048�2048 with a pixel size of 0.2 nm.

Specifically, to ensure a fair comparison between different meth-

ods, in the following context, all the reconstructions of the samples

are carried out by the Simultaneous Algebraic Reconstruction

Technique (SART) (Andersen and Kak, 1984) under the same con-

figuration. SART is a widely used reconstruction method that has

the ability to model the inverse projection problem discretizing the

geometric optics models of the image formation process.

4.2 Results
4.2.1 Demonstration of landmark tracks

The joint method is based on the iterative tracking and refinement

of the landmarks on the local patches. Here, we first use the filament

dataset to demonstrate the landmark tracking of these local patches.

Figure 6 demonstrates the tracking and alignment of landmarks

in the filament dataset. To align the tilt series, 81 grid distributed

landmarks with 256�256 local patch size were used. These land-

marks were first selected from the micrographs of the 0
�

tilt angle

and then propagated from the micrographs of the low tilt angle to

those of the high tilt angle, with the transformation matrix of view-

to-view relationship. After several rounds of refinement of local tilt

series, the reproduced landmarks were used for the final refinement

of the projection parameter estimation. Figure 6A shows the track-

ing process. The bottom part of Figure 6A shows the correspond-

ence of landmarks between the micrographs of the 0
�

tilt angle and

the �58
�

tilt angle. As shown, although the geometry is highly dy-

namic, the location of these landmarks still corresponds to one an-

other. Figure 6B shows the overlay of the location of landmarks in

the image space (y–z coordinates) before refinement. Because the

projection parameters have not been corrected, the locations of

landmarks have a large shift and almost overlap with one another.

Figure 6C and D show the location of the landmarks after refine-

ment (image space with x–y and y–z coordinates). From the view of

x–y coordinates (Fig. 6C), we find that the virtual tracks are clearly

separated with each other as parallel lines (81 parallel lines when

zooming in), due to the correct optimization of projection parame-

ters. From the view of y–z coordinates (Fig. 6D), we can find that

the trajectories behave in a similar way to the trace in a cosine curve,

Fig. 6. The track and alignment of the landmarks in the filament dataset. (A) An illustration of the view-to-view relationship and the tracked landmarks. (B) Overlay

of the locations of raw landmarks in the image space (y–z coordinates). (C) Overlay of the locations of refined landmarks in the image space (x–y coordinates).

(D) Overlay of the locations of refined landmarks in the image space (y–z coordinates)
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which also indicates that the projection parameters of each view

have been successfully calibrated.

4.2.2 Alignment and reconstruction results

The filament dataset: For the filament dataset, the fiducial markers

are available. We further compared the results of our joint method

with IMOD’s fiducial marker-based alignment. To align the tilt ser-

ies, we chose 81 fiducial markers in IMOD and got a mean align-

ment residual of 0.52 pixel. On the other hand, the mean alignment

residual of our joint method is 0.48 pixel, which is on the same level

as the one of IMOD.

Figure 7 demonstrates the tomograms of the filament dataset

reconstructed from both the alignment results of our joint method

and the one of IMOD’s marker-based alignment. To present the

details, here, we only show the center 512�256 areas for both

results, while the large view tomogram is provided in Supplementary

Figure S1. Both the results of IMOD and our joint method have clear

ultrastructure details and round fiducial markers. Judging from the

visual appearance, we can find that the alignment and reconstruction

results carried out by our joint method have almost no difference

from the results obtained by fiducial marker-based alignment. This is

a remarkable result because our method is marker-free, which is often

expected to be much less accurate than marker-based methods.

The mitochondria dataset: The mitochondria dataset was used as a

benchmark dataset to challenge the feature-based alignment in AuTom

(Han et al., 2014, 2017). However, although the work has achieved an

obvious improvement of the reconstruction quality by introducing

SIFT as the feature transform and aligning the tracked features, it still

faced the risk of insufficient calibration in feature-based alignment be-

cause of the relatively short length of the feature tracks (few tracks can

cover more than half projections in the tilt series). If a large change of

the pitch angle exists, the short feature tracks cannot truthfully reflect

the projection parameter change. Here, we demonstrate that the recon-

struction quality of the mitochondria dataset can be further improved

by introducing reprojection–invariant landmarks.

To align the tilt series of the mitochondria dataset, 81 grid dis-

tributed landmarks with 256�256 local patch size were used. After

the refinement of local patches and final projection parameter esti-

mation, a mean alignment residual of 0.78 pixels is obtained.

Specifically, with the help of long landmark tracks, the pitch angle

for each projection is calibrated. Here, we noticed a gradient change

of the pitch angles from 0
�

up to 8
�
. Therefore, the reconstruction

module (vol rec) that considers high pitch angle is used to cope with

these projection parameters (Han et al., 2019).

Figure 8 demonstrates the tomograms of the mitochondria data-

set reconstructed from both the alignment results of our joint

method and the one of AuTom’s feature-based alignment (volume

reconstructed with 300 pixels thickness). Figure 8A and B show the

middle x–y slices of the two tomograms, and Figure 8C and D show

the typical y–z slices of the two tomograms (Different projection

parameter refinements will cause a slight difference in geometry and

the ultrastructure between the results of different methods. Here, we

ensure that the presented slices are the closest one to each other.).

Fig. 7. The reconstructed tomograms of the filament dataset. The presented

tomograms are reconstructed by SART with 40 iterations and 0.2 relaxation

factor. (A, C) The middle and top x–y slices of the tomogram reconstructed

from the result of IMOD’s fiducial marker-based alignment. (B, D) The middle

and top x–y slices of the tomogram reconstructed from the result of our joint

method

Fig. 8. The reconstructed tomograms of the mitochondria dataset. The presented tomograms are reconstructed by SART with 40 iterations and 0.2 relaxation fac-

tor. (A, C) The middle x–y slice and a typical y–z slice of the tomogram reconstructed from the result of AuTom’s feature-based alignment. (B, D) The middle x–y

slice and a typical y–z slice of the tomogram reconstructed from the result of our joint method. The sharpness of details is similar in x–y slice, but the ultrastruc-

ture (membrane) details in y–z slice is much clearer in our joint method
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From the middle x–y slices of the tomograms, we found that the

structure of the mitochondria is very clear in both reconstructions,

and the sharpness of the two tomograms are very similar, except for

some very detailed ultrastructures in which structure difference

exists (red arrows). However, from the y–z slices of the tomograms,

we found that the reconstruction with our joint method shows much

clearer sample boundary and details, and fewer artifacts. Especially,

we can clearly figure out the double membranes on any part of

Figure 8D, while most of the membrane structures are blurry or van-

ished in Figure 8C (red arrows). More examples of the y–z slice dif-

ference can be found in Supplementary Figure S2.

The vesicle dataset: The vesicle dataset is a tilt series with a high

level of noise, which results in an extremely short feature tracks and

makes the classic feature-based alignment fail to process the dataset.

Here, we tried to use our joint method to refine the projection param-

eters for the vesicle dataset, while IMOD’s marker-free alignment

based on cross-correlation is used to compare with our joint method.

To align the tilt series of the vesicle dataset, 49 grid distributed

landmarks with 480�480 local patch size were used. Because the

sample has about 400 thickness in pixels, here, we used a relatively

large patch size for the refinement of local patches, to ensure the re-

tainment of depth information. After the refinement of local patches

and final projection parameter estimation, a mean alignment re-

sidual of 0.82 pixels is obtained.

Figure 9 demonstrates the tomograms of the vesicle dataset

reconstructed from both the alignment results of our joint method

and the one of IMOD’s marker-free alignment (volume recon-

structed with 500 pixels thickness). Figure 9A and B show the mid-

dle x–y slices of the two tomograms, and Figure 9C and D show

typical y–z slices of the two tomograms. In general, the performance

of the cross-correlation method will be affected by such a sample

thickness. From the middle x–y slices of the tomograms, we found

that the structures of the vesicles and membranes are very clear in

the reconstruction of our joint method, with obviously

distinguishable sharpness. On the contrary, the vesicles in the tomo-

gram reconstructed from IMOD’s marker-free alignment appear not

so clear, with parts of the membranes vanished (red arrows). From

the y–z slices of the tomograms, we also found that the reconstruc-

tion with our joint method shows much clearer details and fewer

artifacts. Especially, the obvious artifacts in Figure 9C are signifi-

cantly reduced in Figure 9D.

4.2.3 Quantitative assessment of the performance

We further used two different criteria to comprehensively evaluate

the quantitative performance of the proposed method.

Cross-validation with LOO-NCC: Firstly, we made cross-

validation between each original projection and its corresponding

reprojection calculated from the tomogram reconstructed with all

the projections except for itself (Cardone et al., 2005). This strategy

is also called leave-one-out (LOO) analysis, which is the most un-

biased estimation to the generalization power. Since only one projec-

tion is missing, the resolution of this tomogram should be very close

to that of the complete tomogram. The normalized cross coefficient

(LOO-NCC) is used to compare the similarity between the original

projection and its reprojection. A higher value suggests a better

agreement between the projection and reprojection. In practice,

SART with 10 iterations and 0.2 relaxation factor is used for this

analysis.

Figure 10 shows the curves of the LOO-NCC value for each pro-

jection in the three datasets. In particular, we achieved a mean

LOO-NCC value of 0.9613, 0.9355 and 0.8869 for the filament,

mitochondria and vesicle datasets, respectively. As a comparison,

the mean LOO-NCC values of the classic alignment methods for the

corresponding datasets are 0.9610, 0.9311 and 0.8696, respectively.

From Figure 10A, we can find that the curve of our joint method is

as good as or even better than the one obtained by the marker-based

alignment by IMOD. Figure 10B and C show that the alignment of

our method always has a better consistency (higher LOO-NCC

Fig. 9. The reconstructed tomograms of the vesicle dataset. The presented tomograms are reconstructed by SART with 40 iterations and 0.2 relaxation factor. (A,

C) The middle x–y slice and a typical y–z slice of the tomogram reconstructed from the result of IMOD’s marker-free alignment. (B, D) The middle x–y slice and a

typical y–z slice of the tomogram reconstructed from the result of our joint method. On both the x–y slices and the y–z slices, the background noise is consider-

ably lower and the details are much clearer in our joint method. Especially, the artifacts are notably reduced in the y–z slice
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value) in the tilt series. The special shapes of the curves in

Figure 10B may be caused by the uneven distribution of the tilt angle

and the large change of the pitch angle.

Resolution estimation with FSCe/o: The Fourier shell correlation

comparison between tomograms calculated from the even and odd

projection images in a tomography dataset (FSCe/o) is the most com-

monly used measurement for the determination of resolution in ET

(Cardone et al., 2005; Fernández, 2012), which is adapted from the

idea of gold standard FSC in single-particle analysis (SPA) (Cardone

et al., 2005). Here, we used FSCe/o to further evaluate our

reconstructions.

Assuming that the SNR for each map from a half dataset is half

of that of the full dataset, FSCe/o is defined as follows:

FSCe=o kð Þ ¼ 2FSC kð Þ
FSC kð Þ þ 1

; (8)

where k is Fourier shell correlation, and FSC kð Þ is the corresponding

spatial frequency (i.e. the inverse of the resolution) when Fourier

shell correlation equals to k.

To avoid the influence of edges, we chose the central volume of

the reconstructions for estimation (FSCe=o with the 0.5 resolution

cutoff). As illustrated in Table 1, the resolution obtained by our joint

method is 38.3 Å for filament, 19.3 Å for mitochondria and 27.0 Å

for vesicle. It can be found that our joint method results in the same

resolution with the marker-based alignment in the filament dataset,

and better resolutions than the classic alignment methods in the

mitochondria and vesicle datasets. Specifically, the joint method

achieved a 0.5 Å resolution gain for the mitochondria dataset and

0.6 Å resolution gain for the vesicle dataset. We also show the

detailed FSCe/o curves for each dataset in Figure 11, in which the

FSC curve obtained by our joint method is almost coincident with

the one obtained by the marker-based alignment of IMOD

(Fig. 11A). For the other two datasets, our method has a clear im-

provement over the classic marker-free alignment (Fig. 11B and C).

5 Conclusion and discussion

In this article, we proposed a joint method for projection parameter

calibration of marker-free alignment in ET. Our method combines

the strength of extrinsic alignment and intrinsic alignment. By ex-

trinsic alignment based on these landmark tracks, the high-level in-

formation underlying the projection system could be flexibly

calibrated. On the other hand, the 2D-to-3D relationship of the

ultrastructures in the sample is monitored in every local tilt series.

By intrinsic alignment based on the reconstruction–reprojection re-

finement of the local patches, the intensity information underlying

the shape of the ultrastructure can be well utilized. With the integra-

tion of intrinsic alignment and extrinsic alignment, we overcome the

short length of the virtual tracks in classic marker-free alignments to

make a more accurate and adequate estimation of the projection

parameters.

A B C

Fig. 11. Curves of FSCe/o. (A) Filament, (B) mitochondria and (C) vesicle

Table 1. Resolution estimation by FSC�1
e=o (0.5)

Filament Mitochondria Vesicle

Pixel width (nm) 1.01 0.4 0.2

Selected volume (pixel) 18002 � 180 18002 � 280 18002 � 450

FSC�1
e=o (0.5) of

comparisona

38.3 Å 19.8 Å 27.7 Å

FSC�1
e=o (0.5) of

joint method

38.3 Å 19.3 Å 27.1 Å

aFor the filament dataset, the compared method is IMOD’s marker-based

method. For the mitochondria dataset, the compared method is AuTom’s fea-

ture-based method. For the vesicle dataset, the compared method is IMOD’s

marker-free method.

A B C

Fig. 10. Curves of the LOO-NCC value. (A) Filament, (B) mitochondria and (C) vesicle

i258 R.Han et al.



It should be noted that although we used SIFT in the view-to-

view relationship calibration, SIFT is not directly used to compose

the virtual track as in the conventional paradigm of feature-based

alignment. Other techniques, for example, the tracking of single par-

ticles or deep learning technique (Li et al., 2018), could be used to

discover the view-to-view relationship as well. Another point is that

our joint solution could also be used in the fiducial marker-based

alignment, focusing on the location refinement of the fiducial

markers. This is an important potential application of our joint

method, especially in the case that the fiducial markers do not ap-

pear as a perfect spherical shape. The localization of the fiducial

markers could be further refined by the intrinsic alignment, which

can make the locations of the fiducial markers to be the true center

of mass. Therefore, the paradigm of our joint solution could be

migrated to other solutions to further improve the calibration of

projection parameters.
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