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Summary

To quantify the major environmental drivers of
stream bacterial population dynamics, we modelled
temporal differences in stream bacterial communities
to quantify community shifts, including those relating
to cyclical seasonal variation and more sporadic
bloom events. We applied Illumina MiSeq 16S rRNA
bacterial gene sequencing of 892 stream biofilm sam-
ples, collected monthly for 36-months from six
streams. The streams were located a maximum of
118 km apart and drained three different catchment
types (forest, urban and rural land uses). We identi-
fied repeatable seasonal patterns among bacterial
taxa, allowing their separation into three ecological
groupings, those following linear, bloom/trough and
repeated, seasonal trends. Various physicochemical
parameters (light, water and air temperature, pH, dis-
solved oxygen, nutrients) were linked to temporal
community changes. Our models indicate that bloom
events and seasonal episodes modify biofilm bacte-
rial populations, suggesting that distinct microbial
taxa thrive during these events including non-
cyanobacterial community members. These models
could aid in determining how temporal environmental
changes affect community assembly and guide the
selection of appropriate statistical models to capture
future community responses to environmental
change.

Introduction

Freshwater streams change over time, including in
response to external anthropogenic pressures such as
increased urbanization, land-use disturbances and
related environmental changes (Jeffries et al., 2015;

Labbate et al., 2016; Qu et al., 2017; Kim et al., 2020).
Due to stream water and associated microbial communi-
ties largely originating from the catchments they drain,
the distribution and abundance of stream bacterial com-
munities might provide insights into stream and catch-
ment level ecosystem functional responses to
environmental change (Chapin et al., 2000). Indeed,
freshwater microbial communities are highly diverse
(Battin et al., 2016), play a significant role in ecosystem
functioning and are strongly influenced by changes in
surrounding landscapes (Lear and Lewis, 2009; Kraemer
et al., 2020). Despite this, most studies describing fresh-
water ecosystem health to date have focused on commu-
nities of invertebrates and plants (Sanderson et al., 2007;
Wright and Ryan, 2016; Kim et al., 2020). To understand
and predict the impact of environmental changes
(e.g. abiotic, biotic, anthropogenic, or other processes;
Lear et al., 2008) on bacterial community diversity
(Loreau et al., 2001) and ecosystem functioning, we first
need a baseline understanding of the extent and nature
of temporal patterns influencing their distribution and
abundance.

Advances in molecular methods, including high-
throughput sequencing techniques for determining bacte-
rial community composition and diversity, based on 16S
rRNA gene sequences (Good et al., 2018), provide col-
lective evidence that bacteria exhibit substantial spatial
and temporal patterns in their distribution and abundance
(Lear et al., 2008; Esposito et al., 2016; Gautam
et al., 2020). Highly dominant and diverse bacterial phyla
reported among freshwater environments include Prote-
obacteria, Cyanobacteria, Bacteroidetes, Ver-
rucomicrobia, Actinobacteria and Planctomycetes
(Besemer et al., 2012; Battin et al., 2016), but their domi-
nance varies greatly over time and geographic location.
For example, a greater prevalence of phyla such as the
Cyanobacteria is likely to result from warmer tempera-
tures, reduced flows and high light availability (Salmaso
et al., 2018). Investigating the extent of repeating annual
patterns for multiple bacterial taxa could reveal their
potential to serve widely as predictors of environmental
change, both over time and among catchments. Further-
more, it may aid in better prediction of harmful
cyanobacterial blooms.
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We investigated spatial and temporal patterns in fresh-
water stream bacterial community composition over multi-
ple years. Building on the work of Gautam et al. (2020),
we sampled stream biofilm communities monthly from six
streams over 3 years (2013–2016), collecting a suite of
environmental data from each stream, including
(i) instream measurements such as water turbidity, tem-
perature, pH, total suspended solids and dissolved oxy-
gen concentration, (ii) local climate measurements such
as air temperature, light and rainfall at each study site
and (iii) average soil moisture deficit (i.e. the amount of
rainfall, in mm, required to return the catchment soil to
field capacity) and concentrations of nutrients such as
nitrogen, phosphorus and ammonia in the upstream
catchment. First, we used 16S rRNA gene sequencing
analysis to reveal bacterial community assemblage pat-
terns. Second, we analysed whether the observed pat-
terns in composition and diversity are repeatable over
annual seasonal cycles or if blooms in the abundance of
certain taxa occur. Third, we assessed the extent to
which environmental factors impact the observed tempo-
ral shifts in stream bacterial community dynamics. We
set up a model framework to identify bacterial taxa
responding to either bloom or seasonal patterns over
time. We postulate that freshwater stream bacterial com-
munity dynamics can be predicted by seasonal change
and provide a priori hypotheses for future experiments,
facilitating an efficient approach to understand community
assembly and succession in bacterial communities
across freshwater ecosystems.

Results

Our analysis generated a total of 123 121 quality-
checked 16S rRNA gene sequences. These sequence
data were then rarefied to 2000 reads per sample, after
which we obtained 774 samples from six different
streams. These high-quality sequences were clustered
into 21 216 operational taxonomic units (OTUs) at 97%
sequence similarity. The bacterial OTUs were classified
into 61 phyla, 261 orders, 313 families and 473 genera.
The PRIMER RELATE function found a correlation
(Rho = 0.8) between amplicon sequence variant (ASV)
and OTU resemblance matrices at a significance level of
0.01%. This suggests that both methodologies provide
broadly similar results (whether obtained from OTU or
ASV files) and hereafter we report only the outputs of
OTU table analyses. Diversity index analysis (Supple-
mentary Material 1) showed that streams from highly
impacted urban catchment of Oakley Creek had signifi-
cantly higher relative bacterial richness (OTUs) and diver-
sity compared to the streams draining predominantly
native catchments (Tukey HSD multiple pairwise compar-
isons, p < 0.05).

Bacterial community variation (assessed using
PERMANOVA models)

Multivariate analysis was used to elucidate and display
spatial and temporal variations within the stream biofilm
bacterial communities. Permutational multivariate analy-
sis of variance (PERMANOVA) model 1 revealed that
year is a significant individual factor correlated with the
linear change observed in bacterial community composi-
tion (p < 0.01) along with stream and months
(Supplementary Material 2). The interactions between all
the variance factors [ST(CA)xMO(YExSE)] correlate even
more strongly with the observed changes in community
composition, as shown by their highest square root con-
tribution in this model (Supplementary Material 2). Like-
wise, PERMANOVA Model 2 (Supplementary Material 3)
confirmed significant cyclical patterns in our extended
dataset using monthly covariates with variance compo-
nents (catchment, stream, year). Similar to our previous
findings from this model, our extended dataset captured
change occurring across repeated annual cycles, by
sampling every month, over multiple years. The associa-
tions of catchment type, year and stream were also found
to correlate significantly with the monthly covariates
(Supplementary Material 3; PERMANOVA; p < 0.01). An
nMDS (Fig. 1) ordination based on relative abundance
data was plotted to illustrate the patterns in these data,
where large variability in bacterial community composition
is observed over the years compared to among streams
and catchment types. There was a clear separation of
data collected at different seasons and months, including
cyclical patterns in the data (i.e. in average monthly
data, Fig. 1).
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Fig. 1. nMDS ordination showing relative relationships among the
bacterial community data averaged by (green square) month (where
the numbers 1–12 represent the months January to December)
respectively, (blue circle) year, (pink rhombus) season, (inverted red
triangle) catchment and (blue triangle) stream using Bray–Curtis sim-
ilarities. 2D Stress value: 0.15.
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Bacterial community diversity and composition

The highest proportion of OTUs belonged to the phylum
Proteobacteria across all samples (32.5%), followed by
Planctomycetes (11.2%), Bacteroidetes (9%), Ver-
rucomicrobia (5.5%), Chloroflexi (4.6%), Acidobacteria
(4.3%), Actinobacteria (4%), Firmicutes (3.6%), Cyano-
bacteria (3.6%) and Chlamydiae (1%).
The cyanobacterial order Oscillatoriales was present in

all the streams (except for Wairoa and Oakley creek) dur-
ing summer 2014 and spring 2015, with a high abun-
dance in the rural Mahurangi stream (>90% in October)
(Supplementary Material 4). Planctomycetes made up
9% of the community overall (orders Gemmatales,
Pirellulales, Planctomycetales) largely from February
2013 to September 2014 and then from May 2015 until
the end of the sampling period, with greater representa-
tion during autumn and winter. The phylum Firmicutes
(orders Bacillales, Lactobacillales, Clostridiales) made up
6.3% of the community. Firmicutes were less abundant in
the early sampling period, but their relative abundance
increased significantly in the later summer sampling
period (December 2015–February 2016). This sudden
increase in the order Bacillales appeared to be influenced
by a significant increase of pH and dissolved oxygen dur-
ing that time (Supplementary Material 5). The phylum
Bacteroidetes (orders Saprospirales, Bacteroidales,
Cytophagales, Flavobacteriales, Sphingobacteriales)
contributed 7% of the community and was present in all
the streams. Other well-represented phyla present in the
dataset were Actinobacteria (4.3%) and Verrucomicrobia
(4.2%) (Fig. 2, Supplementary Material 4).

Temporal patterns in bacterial community composition
(time series models)

Examination of temporal trends exhibited by the top
50 most abundant bacterial orders using three concep-
tual time series generalized linear models showed signifi-
cant differences among the bacterial taxa. In terms of
time series model 1 (linear), five bacterial orders fit this
model well (Table 1). Twenty-six bacterial orders signifi-
cantly fit patterns indicative of time series model 2a
(bloom) and 2b (trough) occurring sporadically since the
beginning of sampling; 19 orders followed significant
repetitive seasonal patterns, based on time series model
3 (seasonal). A complete list of orders identified by time
series generalized linear model analysis is provided in
Table 1.
We further visualized shifts and differences in the abun-

dance of bacterial orders (Fig. 3) relating to each of our
time series models by assembling these data into three
groups, represented within a shade plot of taxon abun-
dances (Fig. 4). Orders identified from Model 1 (Table 1)

were maximally abundant from 2013 to 2014, decreasing
in abundance in late 2015–2016 (Supplementary Material 4,
Fig. 3A). We plotted subsets of the bacterial communities
recognized by model 2 against months to distinguish
between communities developing from blooms and troughs
over the years (Fig. 3B). Results from time-series models
were similar to the PERMANOVA models examined in the
previous section, in terms of differences in the relative
abundance of bacterial communities over time (years),
where some orders were more or less dominant with envi-
ronmental and seasonal changes. For example, the orders
Bacillales, Actinomycetales, Lactobacillales,
Pseudomonadales, Deinococcales, SM2F11 and
Nostocales were more abundant in 2014–2016, whereas
Saprospirales, Myxococcales, Methylococcales, Stra-
menopiles were more prominent in 2013 during November,
December, January and February. There were distinct dif-
ferences between autumn and winter bloom communities
of 2013, 2014 and 2015 (Fig. 3B). The outcomes of these
inferences suggest that large variations exist in the condi-
tions required for different taxa to increase in abundance.
Further analysis of seasonal communities from time series
model 3 revealed a greater abundance of Flavobacteriales
and Enterobacteriales during summer; Acidimicrobiales,
Pirellulales, Gemmatales, Clostridiales and Pla-
nctomycetales during winter and autumn, and Cyano-
bacteria, Caulobacterales and Methylophilales during
spring (Fig. 3C).

Influence of physicochemical parameters on bacterial
community composition

Distance-based linear models (DistLM) analysis was per-
formed to examine the relative influence of physicochem-
ical parameters on subgroups of the bacterial
communities identified from analysis of the three time
series GLM models. Light, pH, nitrates, total phosphorus
and water temperature (Table 2) combined were able to
explain 8% (adjusted R2) of the total variation in the com-
position of the subset of taxa identified by model 1 (lin-
ear). The subset of the bacterial community identified by
model 2 (bloom/trough) was found to be significantly
affected by light, pH, deficit, total nitrogen, water temper-
ature, turbidity, total phosphorus, concentration of dis-
solved oxygen, total suspended solids, nitrates, ammonia
and maximum air temperature (Table 2), which explained
12% (adjusted R2) of the total observed variation. Simi-
larly, light, deficit, pH, total nitrogen, ammonia, soluble
phosphorus, nitrates, TKN (total Kjeldahl nitrogen), tur-
bidity, total suspended solids, water temperature and dis-
solved oxygen were significantly correlated with the
subset of the bacterial community identified by model
3 (seasonal), explaining 10% (adjusted R2) of the total
variation (Table 2).
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Discussion

Long-term investigations and temporal predictions of
stream microbiology require new and improved statistical
tools to comprehend temporal variability in freshwater
bacterial community composition and potential environ-
mental drivers that influence these patterns. Here, we
provide a robust statistical approach for analysing bacte-
rial community compositional shifts over time in freshwa-
ter stream biofilms, using data collected monthly. We
developed and tested three time series generalized linear
models by exploiting stream bacterial communities to
investigate temporal patterns (month, year) and seasonal
shifts from our monthly sampling period (February 2013–
February 2016) for 3 years. Our results indicated that
bacterial taxa respond to monthly and seasonal environ-
mental changes, and some may be categorized as bloom
and seasonally responsive taxa. Our models may be
used to reduce the complexity of identifying differences in
bacterial community composition, based on their respon-
siveness to the changing environment and assist with the
prediction of community patterns over the years.

Freshwater stream biofilm bacterial community
composition

PERMANOVA models used previously (Gautam
et al., 2020), but incorporating substantial additional data,
confirmed that the bacterial community composition varied

between streams and over time, supporting observations
from previous studies (Lear et al., 2008; Hassell
et al., 2018). Proteobacteria formed the largest relative frac-
tion of the bacterial community in our dataset; they are rec-
ognized as the most common dominant phylum in benthic
and hyporheic biofilms overall (Battin et al., 2016). Abun-
dant cyanobacterial communities (mainly Oscillatoriales) in
our dataset were correlated with changes in light intensity
and nutrients, as similarly observed by others (McCall
et al., 2017). We also observed a relatively high abundance
of the phylum Firmicutes (order Bacillales) during spring
and summer 2015 and 2016 when dissolved oxygen, water
temperature and pH were higher, creating ideal conditions
for Firmicutes growth (Zhao et al., 2017), since dissolved
oxygen is typically elevated during summer (Schmidt
et al., 2017). We observed a considerable relative abun-
dance of Planctomycetes (11.2%) in our community
dataset despite them being recognized as a less-abundant
bacterial phylum in freshwater ecosystems. It has been
speculated that composition of Planctomycetes in freshwa-
ter ecosystems is associated with seasonal variations
(Brümmer et al., 2004) and influenced by parameters
including water temperature, pH and nutrient concentra-
tions (Pollet et al., 2011).

Temporal patterns in bacterial community diversity

PERMANOVA models and time series generalized lin-
ear models designed and tested in this study provide
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evidence that stream bacterial community composition
is highly responsive to seasonal and environmental
changes. The time series model 1, which identified bac-
terial taxa responding to linear trends over time, com-
prised the least taxa but included some common
Proteobacteria and Bacteroidetes orders (Battin
et al., 2016). With increasing temperature and pH, the
order Sphingomonadales (phylum proteobacteria) and

Cytophagales (phylum Bacteroidetes) were observed at
increased abundance. Members of the phylum Bacte-
roidetes are reported to break down biopolymers that
contribute to the high molecular weight fraction of dis-
solved organic debris in streams (Battin et al., 2016)
and so increased water temperature may have signifi-
cant impacts on Bacteroidete-associated transforma-
tions of organic matter within freshwater systems.

Table 1. Summary of time series generalized linear model analysis obtained from three conceptual models assessing the top 50 most abundant
stream bacterial orders, based on their relative abundance.

Order
Model
1 AIC

Model 1 (linear)
AICcWt

Model
2 AIC

Model 2 (bloom)
AICcWt

Model
3 AIC

Model 3 (seasonal)
AICcWt

Cytophagales 724.04 0.58 724.85 0.34 727.51 0.08
Sphingomonadales 952.1 0.61 953.96 0.21 954.06 0.18
Sphingobacteriales 465.4 0.48 467.16 0.18 465.62 0.34
Pedosphaerales 287.13 0.44 287.42 0.34 288.03 0.22
Oceanospirillales 209.21 0.46 209.83 0.3 210.11 0.23
Rhizobiales 1131.7 0.01 1123.3 0.88 1127.4 0.1
Bacillales 1357.1 0 1330.4 1 1347.5 0
Verrucomicrobiales 760.11 0.02 751.75 0.97 760.27 0.01
Saprospirales 774.78 0.06 769.36 0.86 773.88 0.08
Actinomycetales 680.14 0.03 673.15 0.95 681.1 0.02
Xanthomonadales 632.07 0.05 626.13 0.94 635.44 0.01
Pseudanabaenales 692.91 0 681.38 1 696.37 0
Synechococcales 797.42 0.07 792.04 0.92 800.32 0.01
Chroococcales 697.75 0.02 689.66 0.97 698.83 0.01
SM2F11 580.45 0.14 576.61 0.84 583.88 0.02
Myxococcales 185.37 0.27 183.54 0.6 186.33 0.13
Lactobacillales 220.22 0 202.42 1 220.1 0
Rhodobacterales 974.18 0.09 970.33 0.53 970.77 0.38
Pseudomonadales 1257.3 0.01 1248.1 0.69 1249.5 0.3
Legionellales 384.56 0.02 377.77 0.55 378.05 0.43
Oscillatoriales 1342 0.42 1341.2 0.54 1346 0.04
Rhodospirillales 357.49 0.34 356.23 0.57 359.83 0.08
Deinococcales 471.66 0.32 470.12 0.62 474.45 0.06
Methylococcales 655.06 0.33 653.61 0.61 658.09 0.06
Nostocales 639.18 0.29 637.66 0.56 640.03 0.15
Bacteria 156.51 0.34 155.28 0.57 158.68 0.09
Proteobacteria 350.48 0.32 348.93 0.62 353.39 0.06
Ellin6067 116.8 0.23 114.4 0.68 118.29 0.09
SM2F09 382.05 0.29 380.33 0.61 383.69 0.1
OD1 219.86 0.27 217.87 0.64 221.48 0.09
Stramenopiles 1290.6 0.33 1289.5 0.52 1291.7 0.15
Flavobacteriales 913.24 0.16 914.33 0.08 909.71 0.75
Acidimicrobiales 600.99 0 602.74 0 583.64 1
Burkholderiales 978.72 0.12 979.28 0.08 974.43 0.8
Pirellulales 923.75 0.02 924.22 0.02 915.76 0.96
Gemmatales 788.95 0.01 786.16 0.03 778.78 0.97
RB41 389.19 0 386.69 0 374.15 1
Chthoniobacterales 309.13 0.01 302.66 0.18 299.33 0.82
SC.I.84 472.2 0.01 471.87 0.01 461.54 0.99
WD2101 538.32 0 540.21 0 525.88 1
Ellin6529 422.7 0.09 423.1 0.07 417.72 0.85
Cyanobacteria 244.26 0.13 245.46 0.06 240.1 0.81
Clostridiales 258.44 0.11 259.65 0.06 253.98 0.83
Aeromonadales 182.38 0.06 183.37 0.03 176.42 0.91
MND1 15.202 0.23 16.245 0.12 12.698 0.64
Planctomycetales 379.52 0.02 381.33 0.01 370.78 0.98
Enterobacteriales 1065.3 0.04 1060.9 0.31 1059.2 0.65
Caulobacterales 261.72 0.31 263.62 0.11 260.03 0.58
Methylophilales 198.53 0.17 197.45 0.26 195.57 0.58
Streptophyta 248.25 0.23 247.52 0.3 246.37 0.47

Bold numbers represent the best fit of each order analysed by time series models; (AIC) Akaike’s information criterion; (AICcWt) the probability
that a given model is the best model in the candidate set.
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The relative abundance of cyanobacterial and proteo-
bacterial orders adhered most closely to a blooming pat-
tern of temporal change (time series model 2). Indeed,
the progression of diatoms in spring and a more diverse
community dominated by chlorophytes and

cyanobacteria in spring and/or autumn is a widely identifi-
able trend in freshwater streams (Salmaso, 2000). With
increase in the relative abundances of cyanobacteria par-
ticularly in spring 2014 (Fig. 2), the selection of cyano-
bacteria by time series model 2 is not surprising.
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Fig. 4. Shade plot showing differences in the relative abundance of the 50 most abundant orders of taxa across our stream biofilm dataset over
time (year_month), clustered and categorized based on time series generalized linear model prediction [model 1 (linear), model 2 (bloom/trough),
model 3 (seasonal)]. Shading intensity within the matrix indicates the log (n + 1) transformed relative abundance of each Order (as represented
by the legend in the upper right of the plot). On the x-axis, data from different streams are indicated by symbols, CS (blue triangle), MH (red
inverted triangle), NK (green square), OAK (pink rhombus), OTR (blue circle), WB (plus symbol) from the beginning of sampling in February 2013
until February 2016.
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Representative cyanobacterial orders such as
Pseudanabaenales, Synechococcales, Chroococcales,
Oscillatoriales and Nostocales dominate during spring
and autumn blooms, indicating favourable growth condi-
tions for cyanobacterial blooms in reduced flows and
increased residence time with high temperature (Steffen
et al., 2012). Nostocales’ ability to fix nitrogen is thought
to be a crucial component in their dominance during high
turbidity and bloom conditions, indicative of regional
changes in nutrient loads, as well as due to changes in
various biotic conditions (Wu et al., 2012). Nostocales
has been identified as an indicator of global warming and
is regarded as an effective nutrient competitor (Sukenik
et al., 2012) while being toxic to humans and animals
(Stewart et al., 2011). Pseudanabaenales and Chro-
ococcales, on the other hand, possess the ability to cre-
ate a favourable environment for their growth and
metabolic activities by exchanging specialized chemical
signals (Rasmussen and Givskov, 2006; Muñoz-García
and Ares, 2016). For example, orders Chroococcales
(also regarded as Microcystis species), Oscillatoriales

and Synechococcales are positively associated with
nutrient enrichment. Warming of surface waters, promot-
ing more substantial and longer thermal stratification
periods (Kormas and Lymperopoulou, 2013; Ma
et al., 2016; Salmaso, 2000; Zhu et al., 2019), can also
increase the abundance of Oscillatoriales in late summer,
perhaps as they occupy new ecological niches along ver-
tically segregated environmental gradients
(Salmaso, 2000). Environmental disturbances, for
instance, elevated temperature, high light and eutrophic
conditions (Olapade and Leff, 2005; Simonin et al., 2019;
Zhu et al., 2019) provide ample opportunities that can be
easily and competitively utilized by opportunistic bacterial
taxa, including bloom-forming bacterial communities
(Piehler et al., 2009). Research shows that cyanobacteria
interact with their biotic environment in various ways,
from impacting predator–prey interactions to forming
mutualistic relationships with micro, macroalgae and non-
photosynthetic protists (Bauer and Forchhammer, 2021;
Ma et al., 2017; Mutalipassi et al., 2021; Usher
et al., 2007). Cyanobacteria and proteobacteria coexist in

Table 2. Summary of the relationship between bacterial community composition and physicochemical variables using DistLM analysis of subsets
of the community data, as selected by comparison of three time series GLM models.

Model 1 (variable) Adjusted R2 (cumulative) SS (trace) Pseudo-F p

Light 0.040462 8732.6 8.3795 0.0003
pH 0.07145 6864.5 6.8068 0.0006
Nitrate + nitrite 0.086744 3865.4 3.8971 0.0095
Total phosphorus 0.088667 1349 1.363 0.2401
Water temperature 0.089744 1188.5 1.2022 0.2849

Model 2 (variable)
Light 0.041976 14,320 8.6676 0.0001
pH 0.068711 9628.5 5.9953 0.0003
Deficit 0.080587 5128.4 3.2345 0.0067
Total N 0.092735 5167.9 3.3031 0.0056
Water temperature 0.10319 4630 2.9938 0.012
Turbidity 0.11018 3584.4 2.3359 0.0339
Total phosphorus 0.11478 2866.4 1.8777 0.0817
DO % Sat 0.11663 2057.8 1.3508 0.2101
Total suspended solids 0.11813 1954.6 1.2853 0.2446
Nitrate + nitrite 0.11877 1701.7 1.1198 0.3265
Ammonia 0.12112 2184.1 1.441 0.1782
Mean_Tmax 0.12117 1530.3 1.0097 0.3954

Model 3 (variable)
Light 0.047729 12 414 9.7712 0.0001
Deficit 0.067584 5853 4.7052 0.0005
pH 0.080412 4187.6 3.4133 0.005
Total N 0.084612 2185 1.7892 0.0985
Ammonia 0.087952 1978.7 1.6262 0.1338
Soluble phosphorus 0.090824 1864.3 1.537 0.1723
Nitrate + nitrite 0.093122 1727.9 1.4282 0.1946
TKN 0.097542 2194.7 1.8229 0.0957
Turbidity 0.098554 1428.2 1.1875 0.2856
Total suspended solids 0.10125 1795.3 1.4973 0.1754
Water temperature 0.10166 1290.3 1.0766 0.3466
DO % Sat 0.10221 1318.3 1.1007 0.3444

A forward section approach was utilized to identify environmental variables correlated significantly with observed changes in bacterial community
composition (based on Bray–Curtis dissimilarity). These variables were fitted sequentially in order, with each subsequent variable being included
in the model based on those which precede it in the table. p values were obtained using 999 permutations of the data. Mean Tmax refers to aver-
age daily maximum air temperature.
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>90% of bloom-forming bacterial communities, contribut-
ing equally to the overwhelming majority of functional
genes detected during bloom formation (Steffen
et al., 2012). Indeed, mesocosm studies confirm associa-
tions of various proteobacterial orders, such as Legion-
ellales, Rhizobiales and Rhodobacterales, within
freshwater cyanobacterial blooms (especially Micro-
cystis) (Li et al., 2011). Such interactions make sense
because variables like grazing and viral lysis can cause
blooms to decline (Riemann et al., 2000; Yager
et al., 2001; Löder et al., 2011; Buchan et al., 2014),
thereby supplying a diverse range of nutrient resources
and organic matter that promotes proteobacterial growth
and production (Bird and Karl, 1999). Firmicutes are typi-
cally underrepresented in freshwater habitats and exhibit
low abundance during cyanobacterial blooms. Neverthe-
less, they possess numerous biodegradation competen-
cies that are shown to be associated with cyanobacterial
degradation (Kormas and Lymperopoulou, 2013). With
these findings, we suggest that future bloom predictions
should be based on an improved knowledge of bacterial
community interactions, as well as physicochemical
parameters such as differences in temperature, light, pH
and nutrients, all of which have been shown to influence
bloom-forming bacterial communities in freshwater. To
investigate potential bloom trends in freshwater streams,
regular sampling throughout time is essential, as
changes in the bacterial populations may precede bloom
events.

Our ‘seasonal’ time series model (model 3) was
defined mainly by Planctomycetes (Pirellulales,
Gemmatales, WD2101, Planctomycetales) and Proteo-
bacterial (Burkholderiales, Enterobacteriales, SC-I-84,
Aeromonadales, Enterobacteriales, Caulobacterales,
Methylophilales) orders. Orders Planctomycetes
Pirellulales and Gemmatales, as well as orders
WD2101, Planctomycetales, Methylophilales,
Chthoniobacterales and Acidimicrobiales, were abun-
dant in winter and autumn, presumably due to seasonal
succession from the ground up bacterial community
composition. In contrast, Pollet et al. (2011) and Jinjun
et al. (2006) discovered a greater abundance of
Planctomycetes during the spring and summer sea-
sons. Here, we confirmed that Caulobacterales, Fla-
vobacteriales, Aeromonadales and Enterobacteriales
dominated summer and spring communities; high
Enterobacteriales abundances were positively linked
with bloom-forming Bacillales and Pseudomonadales
orders. Bacillales and Enterobacteriales are facultative
anaerobes that have been previously detected in heavy
metal and faecal contaminated sites and can survive
extreme weather conditions (Humayoun et al., 2003).
We propose that many changes in bacterial community
composition are not continuous over time and that

continual alteration in community composition is
induced by slow environmental change and disparities
in resource availability.

Aquatic microbial communities have been demon-
strated to be temporally dynamic, with repeating patterns
of community structure (Fuhrman et al., 2006; Shade
et al., 2007; Cram et al., 2015; Fuhrman et al., 2015; Yan
et al., 2017; Capo et al., 2019). Various studies have
used culture-independent sequencing approaches and
high-throughput 16S amplicon sequencing to confirm
repeated changes of microbial communities in bloom-
affected freshwater bodies (Eiler et al., 2012; Li
et al., 2015; Woodhouse et al., 2016; Tromas
et al., 2017). However, it is difficult to extrapolate the pre-
dictions from bloom and seasonal effects robustly if the
studies are carried out for only short periods of time.
Therefore, information on whether freshwater bacterial
population dynamics are repeatable and predictable at
different spatial and temporal scales, including incorpo-
rating samples collected over several consecutive years
is highly advantageous.

Light, temperature and nutrients are growth-limiting fac-
tors for freshwater bacterial communities, essentially
bloom-forming and seasonal bacterial communities
(Olapade and Leff, 2005; Paerl et al., 2011; Zhu
et al., 2019). Here, supporting the results of previous
studies, water temperature and average maximum daily
air temperature, along with concentrations of ammonia,
nitrates, phosphorus, dissolved oxygen, light, pH, mois-
ture deficit, total suspended solids and turbidity were
found to be significantly associated with bloom and sea-
sonal patterns (time series model 2, 3) explaining 12%
and 10% of the observed variation [adjusted R2 (cumula-
tive)] respectively. Water temperature, light, pH, total
phosphorus and nitrates were significantly correlated with
abundances of bacterial orders selected by the time
series model 1, explaining 8% of the total variation
observed. These results suggest that seasonal changes
in freshwater, as well as differences in nutrient levels,
provide ideal conditions for the growth of specific bacte-
rial communities to form blooms that can dominate for
short periods while also influencing competition for avail-
able nutrients among other organisms (Mur et al., 1999;
Stewart et al., 2011; Zhu et al., 2019). We demonstrate
that the relative abundances of some bacterial commu-
nity members are cyclically repetitive (Table 2). However,
as we can only explain 12% or less of the total observed
variation, more investigation is required to understand the
underlying cause of these variations, for example relating
to spatiotemporal changes in environmental drivers.
Unmeasured abiotic factors such as water conductivity,
salinity, anthropogenic activities and other biotic factors
such as competition, mutualism and succession could
explain the rest of the variation. Additionally, stochastic
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factors, dispersal limitation, mass immigration effects, as
well as deterministic factors such as species sorting likely
influence bacterial community differences over time.
Future research is needed to confirm community
responses to a greater diversity of environmental, sea-
sonal and successional changes and thus to incorporate
them into conceptual models. An increased sampling fre-
quency including measurements of biotic and abiotic
environmental drivers might enable more accurate pre-
dictions of bloom, pre-bloom and seasonal specific com-
munities. This would further help to predict repetitive
patterns within stream biofilms, and the extent to which
these predictors are stream specific.

Conclusions

Given that there are unexplained drivers of differences in
freshwater steam bacterial community composition, we
recognized that spatially and temporally heterogeneous
bacterial communities cannot be adequately defined by
any one simple statistical model. Using multiple time
series models, we have made first attempts to conceptu-
alize the role of local and regional environmental drivers
of stream bacterial community composition to provide a
more flexible methodology for freshwater ecologists to
understand bacterial community assembly and succes-
sion. Overall, we demonstrate a conceptual framework to
better understand bacterial community assembly, learn
the reasons for changes in the relative abundance of
specific taxa, and quantify their response to environmen-
tal changes.

Experimental procedures

Sample collection, processing and DNA extraction

The six principal sampling locations for this study were
based in the Auckland region of New Zealand, draining
three different catchment types. These consisted of
streams draining two urban, two rural and two native for-
est catchments. Cascades and Wairoa streams
(Supplementary Material 6) drain densely vegetated
native forest reserves and have consistently good water
quality (Foley et al., 2018; Buckthought et al., 2020).
Oakley and Otara Stream catchments drain mostly urban,
bare and lightly vegetated surfaces with significant
human populations and residential and commercial activi-
ties. Mahurangi and Ngakaroa streams are rural streams
and drain catchments dominated by improved exotic
grassland and other herbaceous vegetation used for
grazing livestock. A summary of each stream’s catch-
ment area, land cover distribution and location is pro-
vided in Supplementary Material 7.

We collected five stream biofilm samples within �10 m
reach of each stream, monthly for 36 months (February
2013–February 2016). Biofilm biomass was removed
from five submerged rocks by scraping the upper surface
of each using a separate, sterile Speci-Sponge™
(Nasco, USA) before placement into individual Whirl-
Pak™ bags (Nasco, USA). Bags were sealed and held at
4�C before being transported back to the laboratory and
frozen (�20�C) until further analysis (Lear and
Lewis, 2009). Auckland Council collected physicochemi-
cal stream water attributes, adhering to clear data collec-
tion standards (APHA, 1998) and collated them in a
National Institute of Water and Atmospheric Research
(NIWA; https://cliflo.niwa.co.nz/) database. At each loca-
tion and sample date, the data for this study were col-
lated as described by Gautam et al. (2020).

Each biofilm sample was thawed and thoroughly macer-
ated to separate the biofilm samples from the sponges
using a Lab Stomacher 400 device (Seward, Norfolk, UK).
We extracted DNA from each pelleted biofilm sample using
the method described by Miller et al. (1999). This method
utilizes a bead-beating methodology with chloroform–

isoamyl alcohol extraction (Miller et al., 1999). The protocol
has been described previously for biofilm sample
processing and DNA extraction (Gautam et al., 2020).

PCR amplification and sequencing

To characterize the bacterial communities present in each
sample, we amplified V3/V4 regions of bacterial 16S rRNA
genes in each biofilm DNA extract using modifications of
the Universal 16S rRNA amplicon primers 341F (50-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCT-
ACGGGNGGCWGCAG-30) and 785R (50-
GTCTCGTGGGCTCGGAGATGT GTATAAGAGACAG
GACTACHVGGGTATCTAATCC-30) (Edgar, 2013). The
primers include Illumina adapter sequences (bold and
underlined) that are required for downstream sequencing.
PCR amplification and library preparation were performed
as described in Gautam et al. (2020). Sequencing was con-
ducted by Auckland Genomics (University of Auckland,
New Zealand) on an Illumina MiSeq instrument using
2 � 300 bp chemistry. Before sequencing, the sequencing
provider attached a unique combination of Nextera XT dual
indices (Illumina, USA) to the DNA from each sample to
allow multiplex processing (Illumina, 2013). We deposited
all raw amplicon sequence data in the NCBI Sequence
Read Archive under accession number PRJNA643645.

Bioinformatics and statistical analyses

DNA sequence data were processed as described previ-
ously (Hermans et al., 2020) using the VSEARCH v 7.0
(Edgar, 2013) pipeline. Forward and reverse reads were
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merged using the fastq_mergepairs command.
Sequences with quality scores lower than 20 were
trimmed and those with a length shorter than 150 bp
were filtered out of all the merged sequences using the
fastq_filter command. Finally, we dereplicated sequence
data (derep_fulllength) and removed singleton reads
(-sort by size). The remaining sequences were then clus-
tered into species-level OTUs at 97% similarity cut-off in
QIIME (Quantitative Insights into Microbial Ecology, ver-
sion 1.8) and classified against the Greengenes refer-
ence database v13.8 (McDonald et al., 2012). We also
used DADA2 in R (Callahan et al., 2016) to construct
taxon tables of exact ASVs for comparison with our OTU
data outputs.

Statistical analyses were performed in Primer-E with
the additional add-on PERMANOVA+ (Version 7; Plym-
outh, UK; Clarke and Gorley, 2015) and using the R soft-
ware environment for statistical computing and graphics
(Version 1.3.959; R Core Team, 2020). The OTU table
was rarefied to a sequencing depth of 2000 sequences
per sample to maintain the highest number of samples
possible after removing those poor numbers of DNA
sequence reads, achieved using the ‘rarefy’ function in
the ‘vegan’ package (Oksanen et al., 2013) in R to
achieve an equal and comparable sequence depth
across all samples. After rarefaction, there were 34 440

OTUs across all the samples. The ‘vegan’ package was
also used to compute a Bray–Curtis dissimilarity matrix to
compare bacterial communities’ alpha diversity (OTU
richness, Shannon, Simpson) among all sites. We used
the RELATE routine in PRIMER7 to compare the resem-
blance matrix obtained from both ASV and OTU tables,
based on Spearman rank correlation coefficients, using
9999 permutations.

A total of 892 samples were analysed before rarefac-
tion, but we removed 117 samples from our analysis
because they had fewer than 2000 DNA sequence reads.
After this processing, any site/timepoint combinations
represented by less than three replicates were excluded
to achieve a fair comparison of data collected among dif-
ferent sites and times. Variations in bacterial community
composition were evaluated using pairwise similarities
among samples by calculating Bray–Curtis dissimilarities
from the OTU table. Dissimilarity matrices were visual-
ized using non-metric multidimensional scaling (nMDS),
generating a graphical representation of bacterial com-
munity composition’s spatial and temporal patterns. The
Bray–Curtis dissimilarity data were then statistically scru-
tinized using PERMANOVA models in PRIMER as
described previously (Gautam et al., 2020). Factors were
nested where appropriate and these factors are
highlighted in parentheses [e.g. where ST(CA) denotes
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Fig. 5. Conceptual diagrams of three time series generalized linear models used to investigate temporal cyclicity in stream bacterial community
dynamics across multiple seasons.
(A) Model 1 is based on a linear trend as shown by a straight line; (B, C) Model 2 is based on blooms/troughs as interpreted by a curve;
(D) Model 3 is based on repetitive seasonal trends represented by periodic waves.
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the factor ‘stream’ is nested within the factor ‘catch-
ment’]. The dynamics of the bacterial taxonomy structure
and composition across streams and years were plotted
according to their relative abundance (percentage) and
visualized using the package ‘ggplot’ in R, at phylum and
order levels.
A shade plot/heat map based on the Bray–Curtis similar-

ity matrix was constructed to delineate the abundance and
distribution of the top 50 most abundant bacterial orders
from our dataset across streams and time. The relative
abundances of bacterial community data (orders) were
standardized by log (n + 1) before clustering them via a
Bray–Curtis similarity matrix, done using Primer-E, v.7.
We developed three time series models to identify signifi-

cant correlations and temporal patterns of bacterial commu-
nity distribution and abundance following environmental
change over time using Generalized linear modelling (GLM)
(Myers and Montgomery, 1997) in R. In these models, both
time and space (i.e. streams) were applied as covariables
and as fixed factors. Model 1 (linear) was constructed to
assess linear trends (either increasing or decreasing) in the
data based on ‘days_since’ the start of the experi-
ment. Model 2 (blooms/troughs) is based on
‘days_since + I(days_since^2)’ to identify blooms or
non-linear relationships in the data since first sam-
pling. Model 3 (seasonal trends) is based on
‘days_since + sin(2 � pi � days_since/365) + cos
(2 � pi � days_since/365)’ to recognize seasonal pat-
terns since first sampling, using sine and cosine variables.
To visually inspect the outcomes of these GLM functions,
each bacterial order was compared to our conceptual
models (Fig. 5) and visualized using the function ‘ggplot’.
These models enabled us to identify statistically significant
patterns in bacterial community data over time, quantified by
R2 adjusted values; ggplots provided a visual inspection of
their relationship. Selection of the most plausible model for
each order was carried out by calculating and comparing
Akaike’s information criterion (AIC) (Akaike, 1998) followed
by model averaging (multimodel inference) using
AICcmodavg (Mazerolle, 2020). Later, we used these out-
comes to understand the differential patterns in individual
orders (i.e. to which of the three distinct model categories
data corresponding to these taxa most closely adhere to).
Various physicochemical factors were recorded in-stream at
the time of sampling (i.e. turbidity, water temperature, pH,
total suspended solids, nitrate + nitrite, ammonia as N, TKN
(Total Kjeldahl Nitrogen), TN (Total Nitrogen), DO% sat
(Dissolved Oxygen, saturated), TP (Total Phosphorus) and
SP (Soluble Phosphorus). We obtained average daily mea-
surements of mean_Tmax (mean air temperature maxi-
mum), mean_Tmin (mean air temperature minimum), light,
rain and soil moisture deficit from a NIWA Cliflo database,
which were averaged per month to use as physicochemical
factors. We also coupled our bacterial data with detailed

upstream catchment information. Catchment boundaries
upstream of each river sampling location were delineated
within ARCGIS (ESRI, 2010) (Supplementary Material 6)
based on a river layer from the New Zealand River Environ-
ment Classification system (REC) (Snelder et al., 2004).

A non-parametric DistLM analysis (Anderson et al., 2008;
Chu et al., 2009; Botwe et al., 2015) was performed to
explore the relationships between the various physicochem-
ical variables and bacterial community composition based
upon Bray–Curtis dissimilarities among the latter using
PRIMER. Each of these environmental variables was tested
for significant correlation with the subgroups of bacterial
community data identified from the analysis of each of the
three time series GLM models. We used a forward selec-
tion procedure and adjusted R2 to identify variables that
explain the greatest amount of variation in the bacterial
community, using 999 permutations of the data.
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Supplementary Material 1. Box plots for OTU richness,
Shannon and Simpson diversity indices across streams.
Each colour represents samples from an individual stream.
Native streams: CS (Cascades) and WB (Wairoa); Moder-
ately impacted: MH (Mahurangi) and NK (Ngakaroa); Highly
impacted: OTR (Otara) and OAK (Oakley). A Tukey post hoc
test revealed significantly different data groups, represented
by different letters assigned to each stream; the same letter
represents no significant difference between streams (two
factor ANOVA, Tukey HSD; p < 0.05). The centre line in the
boxplot represents median data value, top and bottom lines
in the box represent the 25th and 75th percentiles; the top
and bottom whiskers mark the 10th and 90th percentiles
respectively. The points at the top and bottom of the box
indicate outlying data points
Supplementary Material 2. PERMANOVA table of results
of model ‘1’ (see Fig. 1), based on Bray–Curtis dissimilarity

distance showing the partitioning of variance factors and
tests for the factors of (CA) Catchment, (ST) Stream,
(YE) Year, (MO) Month and (SE) Season and, where possi-
ble, their interactions.
Supplementary Material 3. PERMANOVA table of model
‘2’ results generated by periodic regression analysis of
Bray–Curtis dissimilarity distance comparisons of bacterial
community data and accompanying tests for seasonality on
the bacterial community. Covariates (CoV 1 and CoV2) gen-
erated from the regression model of the 12-month cycle were
used as ANOVA estimators in this model. Factors used were
(CA) Dominant catchment land-use, (YE) Year, (ST) Stream,
CoV1 and Cov2, and their interaction terms where possible.
Supplementary Material 4. Relative abundances of the top
40 most abundant bacterial orders across our stream biofilm
dataset. Barplot is partitioned into six small plots (rows) rep-
resenting six different streams from the beginning of sam-
pling in February 2013 until February 2016. The x-axis
represents time and each bar represents the relative abun-
dance of the top 40 most abundant orders in each stream.
Bars ordered from left to right by date. Each colour corre-
sponds to a specific order
Supplementary Material 5. Shade plot of measured environ-
mental factors from Feb. 2013–Feb. 2016 from our stream bio-
film sites. Data were normalized for each site and constrained
by month_year before making the shade plot. Each data point
was normalized by subtracting the mean (across all samples)
and dividing by the standard deviations of that variable using
Euclidean distance, so that all variables have values within a
similar range. The normalization scale is shown on the upper
right of the plot. Shading intensity within the matrix indicates
the transformed value of each parameter as represented by
the legend on the right side of the plot. On the y-axis, streams
are indicated by symbols, CS ( ), MH, ( ), NK ( ), OAK ( ),
OTR ( ), WB ( ) from the beginning of sampling February
2013 until February 2016. Lines are added to the figure to sep-
arate data from each stream.
Supplementary Material 6. Map showing the study region
and locations of sampling sites within the Auckland Region
of New Zealand. The geographic location of each stream is
as follows: Cascades Stream, Latitude: �36.89, Longitude:
174.51; Wairoa Stream, Latitude: �37.08, Longitude:
174.95; Mahurangi Stream, Latitude: �36.47, Longitude:
174.73; Ngakaroa Stream, Latitude: �37.11, Longitude:
174.94; Oakley Creek, Latitude: �36.88, Longitude: 174.70;
Otara Stream, Latitude: �36.96, Longitude: 174.87.
Supplementary Material 7. Site description, location, catch-
ment area, land use distribution of the upstream catchment
area (%), and closest climate stations to each sampling site
in the Auckland Region (according to the climate database
www.cliflo.niwa.co.nz)
Supplementary Material 8. nMDS plot showing annual and
seasonal trends followed by bacterial communities using sig-
nificant physiochemical parameters highlighted in Table 2.
Bacterial community data averaged by (a) year (Model
1-linear; Year 2016 was removed due to having only two
data points), (b) month and year (Model 2-bloom), (c) month
(Model 3-seasonal).
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