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Abstract
The antibiotic resistance crisis continues to threaten human health. Better predictions of the evolution of antibiotic
resistance genes could contribute to the design of more sustainable treatment strategies. However, comprehensive
prediction of antibiotic resistance gene evolution via laboratory approaches remains challenging. By combining
site-specific integration and high-throughput sequencing, we quantified relative growth under the respective selec-
tion of cefotaxime or ceftazidime selection in ∼23,000 Escherichia coli MG1655 strains that each carried a unique,
single-copy variant of the extended-spectrum β-lactamase gene blaCTX-M-14 at the chromosomal att HK022 site.
Significant synergistic pleiotropy was observed within four subgenic regions, suggesting key regions for the evolution
of resistance to both antibiotics. Moreover, we propose PEARP and PEARR, two deep-learningmodels with strong clin-
ical correlations, for the prospective and retrospective prediction of blaCTX-M-14 evolution, respectively. Single to
quintuple mutations of blaCTX-M-14 predicted to confer resistance by PEARP were significantly enriched among the
clinical isolates harboring blaCTX-M-14 variants, and the PEAR

R scores matched the minimal inhibitory concentrations
obtained for the 31 intermediates in all hypothetical trajectories. Altogether, we conclude that the measurement of
local fitness landscape enables prediction of the evolutionary trajectories of antibiotic resistance genes, which could
be useful for a broad range of clinical applications, from resistance prediction to designing novel treatment strategies.

Key words: antibiotic resistance, prediction model, β-lactamase, evolutionary trajectories, high-throughput
sequencing.

Introduction
Bacterial antimicrobial resistance (AMR) is a serious global
public health concern associated with significant clinical,
economic, and social impacts. A major contributor to

the dissemination of clinically relevant AMR genes is

plasmid-mediated horizontal transfer, in which mobiliz-

able plasmids facilitate the intra- and interspecies trans-

mission of AMR genes. Additionally, horizontally
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transferred genes can produce allelic variants that confer
increased resistance to more antibiotics. For example,
blaTEM-1, the first plasmid-encoded β-lactamase ever de-
scribed (Datta and Kontomichalou 1965) hydrolyzes only
broad-spectrum penicillins. However, blaTEM-43, a variant
of blaTEM-1 with only three amino acid substitutions
(E102K, R162H, and M180T), confers resistance to all peni-
cillins and cephalosporins (Yang et al. 1998). While many
strategies have been considered for controlling AMR, there
remains an urgent need to better understand and predict
how AMR genes evolve.

The prediction of AMR evolution, particularly among
horizontally transferred genes, may contribute to the stra-
tegic design of appropriate treatments (Raymond et al.
2002; Yeh et al. 2009; Lee et al. 2013; Munck et al. 2014).
There are two main approaches that have been used to
predict the evolution of bacterial AMR. On the one
hand, clinical studies have focused on the identification
of gene variants (the clinical isolates) and evolutionary tra-
jectory prediction by characterizing individual and mul-
tiple substitutions (Novais et al. 2010; Yang et al. 2020).
On the other hand, experimental studies have focused
on the evolutionary theory using in vitro model systems
to investigate genotype–phenotype relationship (Bratulic
et al. 2015; Stiffler et al. 2015; Figliuzzi et al. 2016;
Bratulic et al. 2017), with less emphasis on AMR genes or
variants with greater clinical significance, such as the rap-
idly spreading CTX-M beta-lactamases (An et al. 2016;
Gladstone et al. 2021).

Randomized mutagenesis through approaches such as
error-prone polymerase chain reaction (PCR) is a common
in vitro method of studying plasmid-mediated AMR genes
(Barlow and Hall 2002; Bratulic et al. 2015; Rosenkilde et al.
2019). While large numbers of single substitutions found in
naturally occurring AMR genes can be recovered by
error-prone PCR, the clinical application of these in vitro
evolutionary studies has been limited. In part, this is be-
cause they have covered a relatively low proportion of
single-nucleotide substitutions (hereafter, single muta-
tions), which could have contributed to sequential
AMR development. To comprehensively evaluate
the mutational effect and predict the likely trajectory
of resistance in clinical settings, studies should analyze
all possible mutations. In this regard, it is becoming
increasingly important to develop novel models with
more comprehensive coverage (.90%) of single
mutations.

Here, we presented a novel experimental framework to
study AMR gene evolution by examining blaCTX-M-14,
which is highly relevant to the rapid emergence of multi-
drug resistance in Enterobacterales, a globally common
cause of bacterial infection(Hamamoto et al. 2016; Bevan
et al. 2017; Hayashi et al. 2018). CTX-M-14 primarily con-
fers resistance to cefotaxime, but can mutate to expand
its spectrum of hydrolysis to ceftazidime, another com-
monly used third-generation cephalosporin. Using site-
specific integration, we generated �200,000 Escherichia
coli MG1655 strains, each carrying a variant of the

single-copy blaCTX-M-14 gene at the chromosomal att
HK022 site. We determined, with high throughput and ac-
curacy, the relative growth of �23,000 strains under cefo-
taxime and ceftazidime selection. Our data covered.90%
of single mutations in the blaCTX-M-14 gene, and revealed
key regions for the evolution of cross-resistance to cefotax-
ime and ceftazidime. Utilizing this unprecedented dataset,
we developed a novel deep-learning model for Predicting
Evolution of Antibiotic Resistance (PEAR), and applied it
for the prospective (PEARP) and retrospective (PEARR)
prediction of blaCTX-M-14 evolution. Comparison with
blaCTX-M variants identified in clinical bacterial isolates
suggested that PEARP and PEARR are powerful tools for as-
sessing antibiotic resistance risk and performing the
origin-tracing of novel blaCTX-M variants, respectively.
Collectively, our results provide novel insights into the
evolution of AMR, and our approach can be used to sup-
port the strategic design and evaluation of antibiotic treat-
ments (either singly or in combination) for different
drug-resistant bacteria.

Results
Massively Parallel Measurement of the Relative
Growth of all Proximal Mutants of blaCTX-M-14 Under
Antibiotic Selection
The “fitness landscape” depicts the relationship between
genotype and bacterial fitness (i.e., growth rate); it is there-
fore a major determinant of AMR gene evolution and the
main focus of our study. CTX-M-14 comprises an
N-terminal signal peptide of 26 amino acids and a mature
β-lactamase of 263 amino acids. We aimed to assess the lo-
cal fitness landscape of a mature β-lactamase, that is, the
fitness of all possible single mutations and a fraction of
multi-mutation alleles of blaCTX-M-14. To this end, we
used “doped” oligonucleotides (3% per-site mutation
rate) to generate a blaCTX-M-14 variant library, in which
each variant included a unique 20-nt barcode in the down-
stream region of the rrnB terminator to avoid interference
with CTX-M-14 function (fig. 1A). Using these variants, we
constructed a library of�200,000 EC100DTM pir+ colonies.
We used the PacBio Sequel System to determine both the
789-bp mature blaCTX-M-14 sequence and the 128-bp bar-
code+ terminator sequence for a single molecule. To im-
prove accuracy, circular consensus sequencing (CCS) was
employed, and only sequencing wells with at least five sub-
reads were included (supplementary fig. S1,
Supplementary Material online, see Materials and
Methods). Finally, this library included 1,824 single mu-
tants with specific barcodes, and the accuracy of the se-
quences was �92.9% according to Sanger sequencing of
randomly picked clones (supplementary table S1,
Supplementary Material online). To include all the single
mutants (789× 3= 2,367) of the mature blaCTX-M-14 se-
quence, the remaining 543 single mutants were manually
constructed and then added to the plasmid library (see
Materials and Methods).
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Next, the plasmid library was integrated into the chromo-
somal att HK022 site of E. coliMG1655. Competition experi-
ments were performed under selection by either cefotaxime
or ceftazidime. Genotype frequencies were highly correlated
between two technical repeats at culture stage zero (CS0)
(Pearson’s correlation, R≥ 0.9999) (supplementary fig. S2A,
S2B, Supplementary Material online). To accurately estimate
the relative growth of the variants, �23,000 genotypes with
read counts ≥100 at CS0 were included for further analysis.
Among these genotypes, 2,165/2,367 (91.5%) possible single-
point mutations were represented (fig. 1B). Genotype

frequencies were highly correlated between biological repli-
cates at CS1, CS2, and CS3, and the mean Pearson’s R of all
replicate pairs was 0.9977 (fig. 1C and supplementary fig.
S2C, Supplementary Material online). By comparing the fre-
quency change of a genotype during the competition with
that of the wild-type, we estimated the growth of each vari-
ant relative to wild-type CTX-M-14 (fig. 1A. See alsoMaterials
and Methods). This measure of “relative growth” therefore
captures the degree of antibiotic resistance conferred by
each CTX-M-14 mutant relative to that of wild-type
CTX-M-14, and the relative growths of all captured genotypes

Fig. 1.Determining the fitness landscape of the blaCTX-M-14 gene. (A) Illustration of the experimental workflow for assessing the fitness landscape
of CTX-M-14. The blaCTX-M-14 variant library was generated using “doped” oligonucleotides (3% per-site mutation rate). Then, the variant library
was cloned into the integrated pOSIP-KH plasmid to create the pir+ strain pool. The plasmid library was sequenced with the PacBio Sequel
System after plasmid extraction in order to determine the correspondence between genotypes and barcodes. The plasmid library was then in-
tegrated into the Escherichia coli MG1655 genome. Competition experiments were conducted in LB liquid medium containing cefotaxime or
ceftazidime. After barcode amplification, Illumina HiSeq sequencing was used to obtain the frequency of mutant genotype f (Mutant) or wild-
type f (WT). The relative growth of each genotype was evaluated as the increase in frequency under antibiotic selection relative to wild-type
blaCTX-M-14. (B) Numbers of variants with 1–6 single-nucleotide mutations whose relative growth was determined in our experimental pipeline.
(C ) Mutual comparison of genotype frequencies between biological replicates at CS1, CS2, and CS3 in the presence of 1×MIC ceftazidime. At
each culture stage, three biological replicates are represented, for example, CS1 repeat 1 (CS1-R1). The color scale represents R (Pearson’s cor-
relation coefficient) between samples (see also supplementary fig. S2C, Supplementary Material online). (D) SNR of the relative growth, esti-
mated by variation among barcodes of the same genotype (see Materials and Methods). CS1–CS3 (x axis) represent three culture stages,
with the corresponding OD600 values listed within parentheses. Error bars represent standard error.
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collectively constitute the fitness landscape of CTX-M-14.We
found that the relative growth estimated from different
biological replicates showed significant correlations with
one another, and these correlations strengthened as we con-
sideredmutations with larger effects (supplementary fig. S2D,
Supplementary Material), indicating that mutants with rela-
tive growth ≥2 are highly reproducible among replicates.
Moreover, the signal-to-noise ratio (SNR) calculated by com-
paring different barcodes of the same genotype (seeMaterials
and Methods) revealed that the measured relative growth
was reliable and, as expected, became more accurate as the
competition experiment continued (fig. 1D and
supplementary fig. S2E, Supplementary Material online).

The Local Fitness Landscape of blaCTX-M-14 in E. coli
We first focused on the relative growth of single-
nucleotide blaCTX-M-14 mutants (figs. 2A and B). A few mu-
tations dramatically increased relative growth in ceftazi-
dime (marked by black dots in fig. 2A; supplementary
table S2, Supplementary Material online). These mutations
correspond to some well-known ceftazidime resistance
mutations, such as P167S (Patel et al. 2017) and D240G
(Bonnet et al. 2003). In particular, almost all nonsynon-
ymous single-nucleotide mutants (S, L, H, A, T) of P167 ex-
hibit 100 to over 4,700-fold increases in relative growth in
the presence of ceftazidime compared to that of wild-type
CTX-M-14, strongly suggesting that proline at position 167
constrained the protein flexibility and therefore the hydro-
lytic activity of the enzyme (Poirel et al. 2001; Kimura et al.
2004). In turn, this observation suggested that any amino
acid substitution at P167 may increase resistance to cef-
tazidime (fig. 2C), which was indeed demonstrated by
the minimal inhibitory concentrations (MICs) of all 19
amino acid replacements of P167 (supplementary table
S3, Supplementary Material online). In contrast to the re-
sults observed with ceftazidime, all single-nucleotide mu-
tations had only mild effects (up to 18.8-fold in
cefotaxime, compared to up to 4766-fold in ceftazidime)
on relative growth in cefotaxime (1×MIC) (fig. 2B;
supplementary table S4, Supplementary Material online).
This observation is understandable as CTX-M-14 had al-
ready evolved for some time under cefotaxime selection.
In addition, when the maximum relative growth observed
for the substitutions of each amino acid was overlaid on
the three-dimensional structure of the wild-type
CTX-M-14 enzyme (fig. 2D and E), the structural basis
for the mutational effects became immediately apparent.
For example, both P167 and L169, which had very strong
mutational effects on relative growth in the presence of
ceftazidime, face the active site where hydrolysis occurs
(fig. 2D). Furthermore, the three top regions with the
most significant enrichment of growth-enhancing muta-
tions (supplementary fig. S3A, Supplementary Material on-
line. See also Materials andMethods) were also compatible
their known functional roles. Specifically, region 1 consist-
ing of C69, N104, D163-A172, D179, and G238
(supplementary fig. S3B, Supplementary Material online),

region 2 consisting of V29, L48, G224-P226, V260, and
A280-G289 (supplementary fig. S3C, Supplementary
Material online), and region 3 consisting of L48-V57
(supplementary fig. S3D, Supplementary Material online)
are located in the active site, H11 helix, and B1-B2
β-strand, respectively (supplementary fig. S3,
Supplementary Material online).

To further corroborate the accuracy of our data, we com-
pared the relative growths estimated for different culture
stages and under different concentration of ceftazidime.
We found that the average relative growth of all mutants
was higher at later culture stages during competitive culture
and in the presence of lower concentrations of ceftazidime
(fig. 2F), which suggested that resistant mutants generally
displayed consistent growth advantages as competition
continued or under lower antibiotic stress. We also noticed
an expected decrease of relative growth for mutants
carrying nonsense mutations (supplementary fig. S4A,
Supplementary Material online). Moreover, the codon
adaptation index (CAI) of synonymous mutants was found
to be positively correlated with its relative growth
(Spearman’s ρ= 0.12, P= 0.0002; supplementary fig. S4B,
Supplementary Material online), which was consistent
with the known role of codon usage bias in translational
regulation (Sharp and Li 1987; Plotkin and Kudla 2011;
Chen et al. 2020). Importantly, mutants with increased rela-
tive growthwere apparently enriched formutations that are
also known to be common clinical variants of CTX-M-14
(fig. 2G, see Materials and Methods), indicating the poten-
tial biomedical applications of our measured fitness
landscape.

Genetic Interactions and Genetic/Environmental
Interactions of CTX-M-14
One primary factor governing the sequence evolution of
CTX-M-14 is the environment (Palmer et al. 2015), as
mutations could be pleiotropic (i.e., different phenotyp-
ic effects in different environments). In the realm of
antibiotic resistance, it is also of mounting importance
to assess the cross-resistance of different antibiotics
caused by the same mutation. In this regard, compari-
sons between landscapes of relative growth measured
in the presence of cefotaxime and ceftazidime (1×
MIC) (fig. 3A) showed that the majority of single-
nucleotide mutations displayed synergistic pleiotropy
(i.e., become more resistant or susceptible to both anti-
biotics; blue dots in fig. 3A), whereas only a minority of
these mutations displayed antagonistic pleiotropy (i.e.,
become more resistant to one antibiotic and more sus-
ceptible to the other antibiotic; red dots in fig. 3A) (bi-
nomial P, 10−9). Such bias for synergistic pleiotropy
was further enhanced when only mutations with larger
absolute effect sizes were considered (supplementary
fig. S5, Supplementary Material online). This observa-
tion was explainable by the similar mechanisms of ac-
tion of cefotaxime and ceftazidime and the fact that
they are members of the same antibiotic class (the third-
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generation cephalosporins). Moreover, a closer look at
the cross-antibiotic (i.e., ceftazidime and cefotaxime) re-
sistance for different subgenic regions of blaCTX-M-14 re-
vealed that significant enrichment of synergistic
pleiotropy was limited to four regions spanning nucleo-
tide positions 82–107, 226–236, 705–716, and 812–825,
respectively (highlighted in fig. 3B), located in the H1 he-
lix, H2 helix, B3 β-strand, and H11 helix. On the contrary,
no subgenic regions were detected with significant an-
tagonistic pleiotropy.

Besides varying responses to different antibiotics, the
same mutation may have different effects under different
concentrations of the same antibiotic. Indeed, a compari-
son of relative growth in the presence of different ceftazi-
dime concentrations (fig. 3C and D; supplementary tables
S2, S5, and S6, Supplementary Material online) revealed
that, although the effects of most mutations were highly
reproducible across concentrations (labeled red dots),
some mutations, including a few conferring high-level re-
sistance, were not (labeled gray dots). This finding is in

Fig. 2. Fitness effects of all single-nucleotide mutations in CTX-M-14 under antibiotic selection. (A and B) Fitness landscape of blaCTX-M-14 in the
presence of 1×MIC ceftazidime (A) or cefotaxime (B) at CS3. Each tile represents a variant with one single-nucleotide mutation (x axis) at one
specific position (y axis), whose relative growth is indicated by the color of the tile scaled according to the corresponding color scale bar on top.
In addition, mutants with relative growth .100 are marked with black dots. (C) Functional assay of six mutations in CTX-M-14 essential for
ceftazidime resistance. A representative result from three independent experiments is presented. The bars and error bars respectively represent
the mean and the standard deviation. (D and E) For the relative growth measured in the presence of 1×MIC ceftazidime (D) or cefotaxime
(E), the maximum value of relative growth associated with the nine single-nucleotide substitutions at an amino acid position is indicated by
colors overlaid on the three-dimensional structure of CTX-M-14 (PDB ID: 6D7H). The omega loop of CTX-M-14 required for antibiotic hydrolysis
is highlighted with an oval. (F) The average relative growth of all beneficial (defined as relative growth≥1.2 at CS3) mutants were increased in a
time-dependent manner in the presence of ceftazidime and cefotaxime. The error bar represents the standard deviation. (G) Enrichment of
mutations found in clinical isolates among CTX-M-14 single-nucleotide mutants with elevated relative growth in 1×MIC ceftazidime at
CS3, relative to all but nonsense mutants. The enrichment (y axis) strengthens as the threshold for relative growth (x axis) increases. The P values
of hypergeometric tests are indicated. *P, 0.01, **P, 0.001. The error bar represents the standard error of mean.
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line with the observed nonlinear relationship between bac-
terial fitness and antibiotic resistance (fig. 3E). Such non-
linearity can be understood as another type of
pleiotropy, as it essentially means the same mutation con-
fers greater benefit to the bacterium at low antibiotic con-
centrations, compared with its effect at high antibiotic
concentration.

Using our dataset, we can also gauge the existence of
epistatic interactions within genes, another factor which
has significant effects on evolution (Weinreich et al.
2006; Lehner 2011; Breen et al. 2012). For example, a
resistance-increasing mutation might confer decreased re-
sistance when it occurs in a different genetic background if
(sign) epistasis is prevalent. To this end, we estimated epis-
tasis within blaCTX-M-14 from the relative growth of 4849
N2 mutants (i.e., those with two single-nucleotide muta-
tions) and 2165 N1 mutants (i.e., single mutants) (see
Materials and Methods). We found that only 38% of
the 4849 N2 mutants displayed significant epistasis
(supplementary fig. S6, Supplementary Material online).
A slight bias for negative epistasis could be found among

all N2 mutants (57%, P, 10−20, binomial test), which fur-
ther strengthened among those with significant epistasis
(65%, P, 10−38, binomial test). Furthermore, we found
that individual single-nucleotide mutations conferring in-
creased ceftazidime resistance tended to be more fre-
quently observed in blaCTX-M-14 mutants (containing one
or more single-nucleotide mutations) with relative growth
≥2 (Spearman’s ρ = 0.68, P, 10−5. fig. 3F). This suggests
that key resistance-defining mutations contributed to
AMR irrespective of other prior mutations, and that epi-
static effects within blaCTX-M had a minor effect on the
evolution of AMR in this context. More importantly, the
scarcity of intragenic (sign) epistasis made it more feasible
to computationally predict the evolutionary increase in
AMR on the basis of relative growth.

Prospective and Retrospective Prediction of
blaCTX-M-14 Evolution Using Deep-Learning Models
The accurate prediction of AMR gene evolution has been
challenging but could be highly relevant for the

Fig. 3. Pleiotropy and epistasis of CTX-M-14. (A) Pleiotropy of CTX-M-14 mutations for relative growth in ceftazidime and cefotaxime (1×MIC
at CS3). Blue dots represent synergistic pleiotropy; red dots represent antagonistic pleiotropy. Number of dots within each quadrant is respect-
ively indicated. The binomial P value against the null expectation of equal chances of antagonistic/synergistic pleiotropy is shown. (B) Pleiotropy
of subgenic regions within blaCTX-M-14 on relative growth in ceftazidime and cefotaxime (1×MIC at CS3). Sliding windows of 10 bp (i.e., position
82 denotes the region between 82 and 91, and 83 denotes between 83 and 92, etc.) were used to analyze the whole gene encoding for the mature
β-lactamase. Two-tailed binomial P values corrected for multiple testing (by the Benjamini–Hochberg procedure) are shown for each 10-bp
window (y axis). The black dashed line indicates P= 1, and the gray dashed line indicates P= 0.05. (C and D) Comparison of relative growth
for all single-nucleotide mutants under various concentrations of ceftazidime at CS3. Several mutations previously reported to confer an
“extended-spectrum” phenotype in the CTX-M family among clinical isolates are shown in red with annotations describing the mutations.
(E) The competitive indexes of three Escherichia coli MG1655 strains harboring different CTX-M-14 variants. sfGFP-labeled E. coli MG1655
(pOSIP-KH-CTX-M-14WT) was mixed with mCherry-labeled E. coli MG1655 (pOSIP-KH-CTX-M-14mutant) in a 1 : 1 ratio, and the bacteria
were co-cultured in presence of the designated concentration of ceftazidime (x axis). The mixed population in the log phase of growth was
analyzed by flow cytometry. The competitive index is calculated as (Mt/M0)/(WTt/WT0), whereas Mt and M0 are, respectively, the frequency
of mCherry-labeled mutant cells at the beginning and end of the co-culture, and WTt and WT0 are, respectively, the frequency of
sfGFP-labeled WT cells at the beginning and end of the co-culture. Error bars represent the standard error of the mean (n= 3).
(F ) Single-nucleotide mutations that conferred higher resistance (x axis) tended to appear more often in beneficial variants (relative growth
≥2, including variants with single or multiple mutations). N1 mutants that appeared only once were not considered. N1 mutants are variants
with one single-nucleotide substitution. ρ is Spearman’s rank correlation coefficient, and the related P value and regression line (blue) are shown.
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development of clinical management strategies. Our com-
prehensive fitness landscape with unprecedented coverage
could be used to assist in the development of predictive
models in two ways. First, the prospective prediction of re-
sistant genotypes is fundamental to prioritizing and track-
ing of novel mutations that my pose a risk and to designing
alternative treatment strategies to minimize their emer-
gence. To this end, we combined convolutional neural net-
works and bidirectional long short-term memory (BLSTM)
networks to create a deep-learning model (fig. 4A, see
Materials and Methods) referred to as the PEAR model.
We implemented PEARP, a binary (AMR increased relative
to wild-type blaCTX-M-14 or not) predictor for novel var-
iants of blaCTX-M-14 (fig. 4B). The PEAR

P model was trained
on 80% of phenotypic variants characterized in our experi-
ment and achieved an area under the curve (AUC) of
92.8% in a receiver operating characteristic curve (ROC)
analysis (fig. 4C; see also supplementary fig. S7,
Supplementary Material online; and Materials and
Methods). Furthermore, we constructed 23 blaCTX-M-14

mutants not captured by our high-throughput experi-
ment, of which 11 were predicted by PEARP to conferred
increased ceftazidime resistance compared to wild-type
blaCTX-M-14, and 20 of these predictions were confirmed
by individual experimental assessment of their MICs
(supplementary table S12, Supplementary Material on-
line). More importantly, blaCTX-M-14 variants with one
(N1) to five (N5) single-nucleotide mutations predicted
to confer resistance by PEARP were significantly enriched
among blaCTX-M-14 variants identified in clinical isolates
(fig. 4D).

Second, retrospective prediction can be used to iden-
tify the evolutionary origin/trajectories of newly
emerged AMR gene variants. To accomplish this, we im-
plemented PEARR (fig. 5A), which provides a quantita-
tive score for each genotype, with an intermediate
correlation (Pearson’s R= 0.48, supplementary fig. S8A,
Supplementary Material online) with the actual level
of resistance (MIC). Upon further analysis of the correl-
ation between observed and predicted relative growth
rates, PEARR performed reasonably well for ordinal
(but not quantitative) analysis, especially for predicted
relative growth for mutants with relative growth ≥2
(supplementary fig. S8B, Supplementary Material online).
Although this approach was insufficient for predicting
MICs directly, it may have the necessary accuracy to pre-
dict evolutionary trajectories from ancestral to novel
CTX-M variants, which are essential for the origin-tracing
of drug resistance. We tested this notion using the PEARR

score on a group of 31 blaCTX-M-14 mutants, which con-
tain all combinations of mutations found in a clinically
isolated blaCTX-M-14 strain (blaCTX-M-219, with five muta-
tions from blaCTX-M-14) (fig. 5B). The actual MICs of these
31 blaCTX-M-14 mutants were also experimentally deter-
mined (supplementary table S3, Supplementary
Material online). Under the assumption that each muta-
tional step can only move towards the most resistant
genotype (or multiple equally resistant genotypes,

considering measurement error; see Materials and
Methods), we found that the PEARR score predicted
the evolutionary trajectories of blaCTX-M-14 in a manner
compatible with that revealed by actual MICs. Similar
findings can be made for CTX-M-4M, a CTX-M-14 variant
with four single-nucleotide mutations and dramatically
increased relative growth (supplementary fig. S9, table
S3, Supplementary Material online). Thus, PEARR pro-
vides an accurate indicator of whether it is possible to
evolve from blaCTX-M-14 to a given variant.

Discussion
In this study, we measured the fitness landscape of
blaCTX-M-14 variants by evaluating relative growth under
selection with varying concentrations of ceftazidime and
cefotaxime. The mutations associated with the risk of
cross-resistance to both antibiotics were characterized
along their nonrandom distribution within the gene.
Furthermore, CTX-M-14 mutants that showed a clear
growth advantage in our experiment were enriched
among clinical isolates, highlighting the potential clinical
application of fitness landscape measurements.
Additional studies focused on the resistance-associated
mutations indicated that their effects were generally un-
affected by other mutations, a feature that may facilitate
computation of resistant genotypes. Finally, using themea-
sured landscape, we constructed a sequence-based neural
network in order to predict the antibiotic resistance of
CTX-M-14 mutants. With an AUROC of 92.8%, this pre-
dictor can be used for the preliminary assessment of novel
CTX-M-14 mutants via the prospective prediction of anti-
biotic resistance and for the resolution of their origin via
the retrospective prediction of their evolutionary
trajectory.

There are a few caveats of our study that are worth dis-
cussing. First, we only examined single-copy CTX-M-14
variants in a single host strain background, and as a conse-
quence we were unable to explore the implications of in-
tergenic epistasis (i.e., gene–gene interactions) or copy
number variation, which may occur in nature (Firnberg
et al. 2014). Second, our study focused solely on the effects
of antibiotic selection on bacterial fitness in vitro. There is,
however, evidence that in vivo AMR evolution can be in-
fluenced by additional factors including host immunity
and potentially broader interactions with the microbiome
(zur Wiesch et al. 2011; Folkesson et al. 2012;
Barroso-Batista et al. 2015; Davies et al. 2019). Exploring
these interactions would be an interesting future research
direction. Third, our experimental design focused on cell
autonomous mechanisms of antibiotic resistance. Some
AMR genes, such as NDM β-lactamase, encode lipopro-
teins anchored to the outer membrane in Gram-negative
bacteria and this specific cellular localization could lead
to the secretion of its variants in outer membrane vesicles
(Gonzalez et al. 2016; Lopez et al. 2019). These secreted en-
zymes may provide a growth advantage for neighboring
cells under antibiotic selection. Thus, to measure the
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fitness of such genes with high precision, deletion of signal
peptide to change the cellular localization would be neces-
sary. Fourth, other than plasmid-mediated AMR genes,
many of the drug resistance mutation occurs on the essen-
tial genes of bacteria, which may hamper the measure-
ment of fitness landscape because genetic manipulation
of these genes can be challenging. Developing novel meth-
ods for in situ gene editing, such as CRISPR-guided DNA
polymerase(Halperin et al. 2018), would be an interesting
direction for future research. Fifth, although the observed
scarcity of epistasis facilitated the prediction of AMR gene
evolution in this study, similar attempts targeting other
genes might still be hindered by pervasive epistasis or
the dominance of mutations with weak to undetectable
effects. In addition, the PEARR model we constructed

appeared sufficient for ordinal analysis, but not for quan-
titative analysis. Even for ordinal analysis, the application
of the PEARR model might still be limited given that mu-
tants with relative growth ,2 tend to have lower
Spearman’s correlation between biological replicates
(supplementary fig. S2D, Supplementary Material online).
Therefore, further efforts are apparently needed to im-
prove the accuracy of fitness measurement. Sixth, it has
been suggested that availability of different competitors
might affect intrinsic cell fitness (Marusyk et al. 2014),
thereby altering the fitness measured in different culture
stages here. This phenomenon could at least be partially
resolved by barcode tracking via sampling with higher
temporal densities. Finally, we determined the relative
growth of �23,000 mutants. However, the investigation

Fig. 4. Prospective binary resistance prediction model (PEARP) and its clinical application. (A) Graphical illustration of the PEAR model: first, a
genotype was transformed to a 792× 4 matrix for input. The result was passed to a convolution layer and max-pooling layer to extract features
and reduce the number of parameters, respectively. A subsequent BLSTM layer considers features from different regions, which are output to a
fully connected final layer that summarizes the information learned by the network. (B) Schematic illustration of the prospective PEARP binary
classificationmodel. The inputs are mutant DNA sequences, and the output is a prediction of whether the sequence confers resistance to a given
antimicrobial. (C ) Receiver operating characteristic analysis of the test set of phenotypic variants characterized in our experiments. Ten gray lines
represent ten different receiver operating characteristic curves from different random splits of the total dataset (80% training set, 10% validation
set, and 10% test set). The blue line represents the mean AUC of the 10 gray lines. The light blue area represents the mean+ SD of the AUC.
(D) Enrichment of clinically isolated mutant alleles among variants predicted to confer resistance by PEARP, relative to all mutants without non-
sense mutations. The enrichment (y axis) increases as the maximum number of mutations (x axis) increases (details in section Materials and
Methods). The P values of hypergeometric tests with the null distribution of all mutants are indicated. ***P, 10−6, ****P, 10−9. The error
bar represents the standard error. AUC, area under the curve.
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of an even larger fitness landscape, including intergenic
epistasis that was not covered by our variant library, could
likely improve the performance of the prediction model
further.

Notwithstanding these limitations, our work brings
both technical and conceptual innovations to the field
of AMR prediction. Our experimental framework enabled
the simultaneous measurement of over 20,000 synthesized
blaCTX-M-14-like variants by overcoming two major tech-
nical hurdles. First, the site-specific genomic integration
of a single copy of the blaCTX-M-14 expression cassette en-
sured an even, identical dosage of a givenmutant genotype
in each cell, allowing reasonable comparisons among cells/
genotypes during competitive growth. Specifically, our ex-
perimental pipeline for genomic integration was highly ef-
ficient and reproducible. Second, we combined accurate
barcode-genotype mapping using long reads (PacBio)
with high-throughput barcode frequency measurements
using short reads (Illumina HiSeq), allowing a reliable esti-
mation of the functional landscape of CTX-M-14 variants.
Our experimental framework and the developedmodels of
resistance prediction will likely be widely applicable for the
evaluation of other AMR genes.

We have shown for the first time that subgenic regions
within blaCTX-M-14 are enriched with mutations conferring
cross-resistance to both ceftazidime and cefotaxime. Such
fine-scale resolutions for pleiotropy are essential for clinical
and evolutionary studies focusing on collateral sensitivity/
resistance (Rodriguez de Evgrafov et al. 2015; Baym et al.
2016; Imamovic et al. 2018; Nichol et al. 2019; Rosenkilde
et al. 2019). Our results also suggested that nonlinear
changes in hydrolysis kinetics due to mutations are

pervasive. For example, variant G544A, which has a signifi-
cant growth advantage compared to variant A506G at
high antibiotic concentration (1×MIC), becomes indis-
tinguishable with variant A506G in terms of growth rate
at low antibiotic concentration (0.25×MIC). Traditional
therapies involve treating the infected patients with high
doses of antibiotics for an extended period of time to elim-
inate the infecting bacteria. But this practice may lead to
an increased risk of antibiotic resistance. Our observations
suggest another possible approach in which the most re-
sistant variants can be suppressed by competition with
less resistant variants, thereby allowing the administration
of prolonged antibiotic therapy (Ardal et al. 2020). In ac-
cordance with our theory, multiple studies have shown
that adaptive therapy involving repeated, short interval
applications of antibiotics can significantly stall disease
progression in patients with infectious disease and reduce
the risk of the evolution of antibiotic resistance (Ibrahim
et al. 2004; Nuttall 2012; Baker et al. 2018), although opti-
mal treatment strategies (antibiotic concentration, dosing
timing and frequency, etc.) must be evaluated on a
case-by-case basis.

Finally, as demonstrated in this study, computational
predictions of the evolution of antibiotic resistance based
on the local fitness landscape may have broad clinical ap-
plications. They can be used, for instance, in assessing the
likelihood that novel variants of a given AMR gene will in-
crease resistance. Novel antibiotics can also be evaluated
using these prediction models in order to identify poten-
tial resistance alleles that may emerge after their introduc-
tion into clinical practice. When applied to evolutionarily
intermediate genotypes, this approach could also provide

Fig. 5. Retrospective prediction of the evolutionary path. (A) Schematic illustration of the PEARR regression model, which is able to model plaus-
ible evolutionary trajectories for mutants similar to blaCTX-M-14/14 based on the comparison of the relative growth of input genotypes. The inputs
are ancestral and final genotypes, and the output is a prediction of whether there is a plausible evolutionary trajectory under the assumption
that the predicted changes in relative growth for each mutational step should be the best among all alternatives and not detrimental. (B) The
predicted evolutionary trajectories of a clinical isolate with five single-nucleotide substitutions in the ancestor of blaCTX-M-14. The black numbers
and lines represent log2(MIC) values and corresponding evolutionary trajectories (see Materials and Methods), respectively. The red numbers
and lines represent the log10(relative growth) from predictions and the corresponding evolutionary trajectories, respectively. Filled colored
squares reflect corresponding mutations at the position, as shown in the top right legend.
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insight into the evolutionary origin of novel resistant gen-
otypes by predicting possible evolutionary trajectories.
More importantly, a comprehensive in vitro understand-
ing of the functional landscape of antibiotic resistance,
such as that obtained in our study, can facilitate the design
of evolutionary control strategies (Nichol et al. 2015;
Maltas andWood 2019; Iram et al. 2021) that could poten-
tially prevent the evolution of antibiotic resistance.

Materials and Methods
Construction of the Plasmid Library of blaCTX-M-14

Variants
The template plasmid was constructed via two rounds of
PCR amplification. First, the blaCTX-M-14 gene with its na-
tive promoter was amplified from genomic DNA extracted
from clinical isolates (Tian et al. 2016), and the rrnB ter-
minator was amplified from the integrated pOSIP-KH plas-
mid. After the purification of the PCR product, the two
DNA fragments were concatenated by fusion PCR to ob-
tain the full expression cassette of blaCTX-M-14. The expres-
sion cassette was subsequently cloned into pMD19-T
(Takara, Japan), a high-efficiency cloning vector. Positive
colonies were confirmed by PCR and Sanger sequencing.
The resulting plasmid was named pMD19-CTX-M-Ter
and stored at −20 °C.

The gene variant library was constructed via another
two-step PCR approach; the manufacturers’ instructions
were followed for commercial kits unless otherwise speci-
fied. Phanta Max Super-Fidelity DNA Polymerase (Vazyme,
China) was used in all amplification reactions. Doped oli-
gonucleotides were synthesized by IDT (https://www.
idtdna.com/). Because the length of chemically synthe-
sized oligonucleotides with degenerate sites containing
manually defined nucleotide fractions was limited to
90 nt and invariant regions at both ends of the oligonu-
cleotides were required for PCR, we designed only 50 vari-
able sites for each oligonucleotide, and the leading and
trailing 20 nt were invariant sequences identical to those
of wild-type blaCTX-M-14. In addition, for the doped oligo-
nucleotides, each position contained the wild-type nucleo-
tide at a 97% frequency and a 1%:1%:1% mix of the other
three nucleotides. As a result, the library exhibited a muta-
tion rate of approximately 3% per nucleotide. The PCR
products were used as a template for fusion PCR to
add 20 nt random barcodes and restriction sites to
each variant (primers: CTX[NP]-SOE-5F-BamHI and
CTX-Ter-barcode 3R-PstI; supplementary table S7,
Supplementary Material online). After 30 cycles, the PCR
products were analyzed by gel electrophoresis, and the tar-
get bands were extracted. Purified DNA was digested with
FastDigest BamHI and FastDigest PstI (Thermo Scientific,
America) for 1 h at 37 °C. The digested inserts were puri-
fied with the Cycle Pure Kit (OMEGA, USA). In parallel,
the plasmid backbone was prepared by digesting
pOSIP-KH with the same enzymes at 37 °C for 1 h. The li-
gation reactions were prepared by mixing 68 ng of insert,

110 ng of digested plasmid, and 1 μl of T4 DNA ligase
(Thermo Scientific, USA), followed by incubation for 4 h
at 16 °C. The ligation products were transformed into E.
coli EC100DTM pir+ using a heat-shock method. To allow
plasmid propagation without integration, the Luria broth
(LB) agar plate was incubated at 30 °C for 20 h. Final library
diversity was estimated to be approximately 200,000
clones. All colonies were collected from LB agar plates by
washing with LB liquid medium. Pooled plasmid variants
were extracted with a Plasmid Midi Kit (OMEGA, USA)
and stored at −80 °C.

Site-Directed Mutagenesis
For 543 single-nucleotide blaCTX-M-14 mutations that were
not captured by PacBio CCS, we constructed the corre-
sponding mutants via site-directed mutagenesis (primers
in supplementary table S8, Supplementary Material
online), in which a two-step PCR procedure was carried
out to replace the indicated site. Specifically, two simultan-
eous amplification reactions were performed, and both
PCR products were gel purified using a gel extraction kit
(OMEGA, USA). To obtain full-length mutated fragments
with corresponding barcodes, purified DNA from the first
round of PCR was mixed in equimolar concentrations and
used as a template for the second round of PCR. After puri-
fication by gel electrophoresis, the full-length DNA frag-
ment was digested using FastDigest BamHI and
FastDigest PstI. The digested fragment was cloned into
pOSIP-KH. The ligation product was transformed into
E. coli EC100DTM pir+ competent cells. Recombinant plas-
mids were purified, and blaCTX-M-14 was sequenced to con-
firm any mutations present. EC100DTM pir+ chemically
competent cells were prepared through a modified
Hanahan method (Green and Sambrook 2018). Briefly, a
single colony from a fresh plate of the strain was inocu-
lated into 2 ml LB medium and cultivated at 37 °C at
300 rpm overnight as a seed culture. One milliliter of the
seed culture was transformed into 100 ml of LB liquid me-
dium and cultivated at 37 °C until the OD600 reached a va-
lue of 0.4–0.6. Each 25 ml culture was transferred to a
chilled 50 ml centrifuge tube and incubated on ice for
15 min. The cell pellet was spun down at 4 °C
(4,000 rpm for 10 min), and the supernatant was dis-
carded. The cell pellet was then resuspended in 30 ml of
ice-cold 0.1 M CaCl2-MgCl2 280 mmol/l MgCl2 and
20 mmol/l CaCl2 solution, followed by incubation on ice
for 30 min. After being spun down again 4,000 rpm at
4 °C for 5 min, the cell pellet was resuspended in 2 ml of
iced 0.1 M CaCl2–15% glycerol, and 100 μl aliquots of
the suspension were transferred to 1.5 ml microtubes
and stored at −80 °C.

To assess the accuracy of the measured relative growth,
54 variants of blaCTX-M-14 were also constructed by one-
step cloning. Briefly, two adjacent mutated target frag-
ments with 20–15 bp homologous sequences were ampli-
fied by PCR. The PCR products were gel purified using a gel
extraction kit (OMEGA). The pOSIP-KH plasmid was
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digested with FastDigest BamHI and FastDigest PstI at 37 °
C for 1 h. Ligation was performed at a vector:insert ratio of
1 : 3 using a Seamless Cloning Kit (Beyotime, China). The
product was transformed into E. coli EC100DTM pir+ com-
petent cells and selected on kanamycin (25 μg/ml).
Recombinant plasmids were purified, and the correspond-
ing blaCTX-M-14 variant was sequenced to confirm the
mutation.

Construction of the E. coli MG1655 Strain Pool
To construct the blaCTX-M-14 variant strain pool, the plas-
mid library was transformed into E. coli MG1655 by elec-
troporation. Immediately after electroporation, 1 ml SOC
medium was added, and the culture was recovered at 37
°C for 1 h and then plated on an LB agar plate containing
25 μg/ml kanamycin. Subsequently, LB agar plates were in-
cubated at 37 °C for 12 h. Over 300,000 colonies were col-
lected from LB agar plates by washing with LB liquid
medium.

Competition Experiments
After harvesting the E. coliMG1655 strain pool, 100 μl aliquots
(�2× 109 CFU) of the strain poolwere added to 500 ml of LB
liquid medium containing 1 μg/ml (0.25×MIC), 2 μg/ml
(0.5 ×MIC), or 4 μg/ml (1×MIC) ceftazidime or
128 μg/ml (1×MIC) cefotaxime (supplementary table S9,
Supplementary Material online). Three replicate competition
experiments were performed. To dynamically examine the
change in the phenotype, 50 ml of each sample was collected
at the indicated culture stage (when the OD600 was 0.23, 0.4,
or 0.7). At each culture stage, bacterial cells were diluted
tenfold and plated on LB agar media. CFUs were counted
after 14 h of incubation (supplementary fig. S10,
Supplementary Material online).

Library Preparation
For PacBio sequencing, the plasmid library was used as the
template, and 25 cycles of PCR were performed to amplify
the expression cassette, including the barcode. The PCR
product was run on an agarose gel and purified with a
gel extraction kit (OMEGA).

For HiSeq sequencing, genomic DNA was extracted
from the sample of interest. Two rounds of PCR were per-
formed to amplify the barcode from the E. coli MG1655
genome. In brief, 20 cycles of PCR were performed to amp-
lify the barcode-containing fragment, and the purified
product was used as the template for the second round
of PCR. Twenty-five additional cycles of PCR were then
performed to amplify the barcode sequence using primers
that also added Illumina TruSeq adapters.

Flow Cytometry Analysis
E. coli MG1655 electrocompetent cells were transformed
with plasmids containing the fluorescent markers
pACY-sfGFP (p15A ori, CmR) and pACT-mCherry (p15A
ori, CmR). To ensure that the expression of the fluorescent
protein did not affect the experimental outcome, a

validation experiment was performed in which the growth
of sfGFP-labeled E. coli MG1655 versus that of
mCherry-labeled E. coli MG1655 was evaluated in the
absence of ceftazidime. Before each experiment,
sfGFP-labeled E. coli MG1655 (pOSIP-KH-CTX-M-14WT)
and mCherry-labeled E. coli MG1655 (pOSIP-KH-
CTX-M-14mutant) were grown separately until they
reached the exponential growth phase in each population.
Then, the cell cultures were mixed at a 1 : 1 ratio and
grown in the presence of ceftazidime. The ratio of labeled
cells was confirmed by flow cytometry in the initial culture.
The mixed population in the log phase of growth was ana-
lyzed by flow cytometry to immediately assess the ratio be-
tween mCherry-positive and sfGFP-positive cells. The
competitive index is calculated as (Mt/M0)/(WTt/WT0),
whereas Mt and M0 are, respectively, the frequency of
mCherry-labeled mutant cells at the beginning and end
of the co-culture, and WTt and WT0 are, respectively,
the frequency of sfGFP-labeled WT cells at the beginning
and end of the co-culture. Results of this experiment
were shown in fig. 3E.

Antimicrobial Susceptibility Testing
TheMICs of cefotaxime and ceftazidime for E. coliMG1655
carrying the blaCTX-M-14 or blaCTX-M-14 mutant were deter-
mined using the agar dilution method and interpreted
using breakpoints defined by the Clinical and Laboratory
Standards Institute.

Associating Barcodes and blaCTX-M-14 Genotypes via
PacBio Sequencing
We used three single-molecule real-time cells on the
PacBio Sequel platform to sequence the constructed plas-
mid pool and obtained a total of 3.5× 107 raw subreads
(supplementary fig. S1A, Supplementary Material online).
There was a non-negligible probability of the presence of
heterologous dsDNA molecules since the ssDNA mole-
cules of different mutants in the plasmid pool were highly
similar and therefore capable of forming heterologous du-
plexes. To avoid base-calling errors caused by heterologous
dsDNA, we used BLASR with default parameters (Chaisson
and Tesler 2012) to map all subreads of each zero-mode
waveguide to the wild-type sequence of blaCTX-M-14 and di-
vided them into positive and negative strands. We then
used the CCS algorithm (–min-length 900 –max-length
1600 –min-passes 5) (Wenger et al. 2019) to call consensus
sequences separately from the subreads derived from posi-
tive and negative strands, with at least five subreads each,
which corresponded to a base-calling error rate ≤1%
(supplementary fig. S1B, Supplementary Material online).
From each CCS without any indels, we extracted the asso-
ciated barcode-genotype pair. Due to the occurrence of
template switching events during PCR amplification, one
barcode might be assigned multiple genotypes to some ex-
tent. To improve the quality of barcode matching to spe-
cific genotypes, we applied a maximal parsimonious
strategy to accept only one association supported by
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most PacBio reads or discarded the barcode if this strategy
failed.

To verify the accuracy of the PacBio-derived association
between a given mutant genotype and barcode, we ran-
domly picked 14 transformant colonies and used Sanger
sequencing to determine the barcodes and the associated
mutant blaCTX-M-14-like genotype. Among the assigned
barcode-genotype pairs, 13/14 were in complete agree-
ment with the Sanger sequencing results; the remaining
mismatched barcode-genotype pair was compatible with
a template switch during PCR.

HiSeq Sequencing and Relative Growth Estimation
We performed paired-end 150 bp sequencing on each
sample on the Illumina HiSeq XTen platform, with an esti-
mated sequencing depth of 100, to obtain the frequency of
each barcode within a sample. Barcode sequences of 20 nt
were extracted from the sequencing reads, and the
barcodes with nonidentical sequences from matching
forward and reverse sequencing reads were excluded
from further analysis. In addition, barcodes captured by
PacBio technology were included in the downstream ana-
lysis. Barcode counts across technical repeats or biological
replicates were combined (supplementary table S10,
Supplementary Material online). To ensure accurate
estimation of the relative growth, 25,520 genotypes with
a total of at least 100 reads from the three technical re-
peats at CS0 were analyzed.

Relative growth at each culture stage of each competi-
tive growth assay was calculated for individual mutations
as [ ft(Mutant)/f0(Mutant)]/[ ft(WT)/f0(WT)], where ft is
the frequency of the barcode of a certain genotype in a
postcompetition sample; f0 is the frequency of the barcode
of the same genotype at CS0; ft(WT) is the frequency of the
wild-type barcode in a postcompetition sample; and
f0(WT) is the frequency of the wild-type barcode at CS0
(supplementary fig. S10, Supplementary Material online).

To estimate the reliability of the relative growth mea-
surements, we used genotypes with at least three barcodes
to calculate the SNR. We calculated the observed standard
deviation (SD) of the ft/f0 for different barcodes of each
genotype. We then randomly perturbed the correspond-
ence between genotype and barcode and recalculated
the perturbed SD (SD′) of the ft/f0 for different barcodes
of each genotype. We repeated the perturbance 1,000
times to obtain 1,000 SD′ values, whose average value
was represented as SD′. The SNR was then calculated as
SNR = 1

n

∑n
i = 1

SD′
i

SDi
, where n is the number of genotypes

with at least three barcodes.

Analysis of Three-Dimensional Structure
Three-dimensional structure data with the highest
available resolution (Protein Data Bank [PDB]: 6D7H-
CTX-M-14 apoenzyme) were downloaded from the PDB
database. To identify the enriched regions of the antibiotic
resistance mutants, we calculated the mean log10(relative
growth) value for all amino acids within 10 Å interval for

each position. The relative growth of each amino acid is
the maximum relative growth of focal-codon single-
nucleotide mutants. The distance between two amino
acids is represented by the distance between their alpha-
carbon atoms in three-dimensional space, as extracted
by PyMOL 2.3.2.

Calculating the CAI
The coding sequence of MG1655 (https://www.ncbi.nlm.
nih.gov/nuccore/NC_000913) was downloaded to calcu-
late the CAI according to the following formula:

wi = fi
max( fj)

CAI =
∏L
i=1

wi

( )1
L

For each amino acid, wi represents the weight of each of its
codons as the ratio between frequency of the codon fi and
frequency of the codon of maximal frequent synonymous
codon fj for that amino acid. L represents the number of
codons of a variant, and the CAI is defined as the geomet-
ric mean of the weight associated to each codon over the
length (L).

Estimating Epistasis from Relative Growth Values
Epistasis is determined as ɛ= rAB− rArB, where rAB is the
relative growth of a N2 mutant and rAand rB are the fitness
of the two corresponding N1 mutants. To examine if ɛ var-
ies significantly from 0, we assessed from each of the three
biological replicates and conducted a t test.

Neural Network Construction and Evolutionary
Trajectory Prediction
To estimate the complicated genotype–phenotype rela-
tionships, we constructed two neutral networks using
the Keras module of TensorFlow 2.2.0. The first neutral
network is a binary classification model named PEARP,
which was used to classify a given genotype as resistant
or not. According to the relative growth values in 0.5×
MIC ceftazidime (supplementary tables S5 and S11,
Supplementary Material online), we divided the genotypes
according to two classification labels: nonresistant mu-
tants (log10(relative growth), 1) and resistant mutants
(log10(relative growth)≥ 1). We split our dataset into a
training set, a validation set, and a test set (80%, 10%,
and 10% of the total data by stratified random sampling,
respectively) and used binary-cross-entropy as the loss
function to predict labels from the observed genotypes.
This model included six main layers: the input, convolu-
tion, max pooling, recurrent, dense, and output layers.
The input layer consisted of a 792×4 one-hot encoded
matrix of genotypes, in which mutants were recorded as
1 and wild-type genotypes as 0. The convolution layer
with rectified linear unit activation (ReLU) extracted
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sequence-feature information using 32 filters of 5 kernel
sizes. The max-pooling layer included 13 pool sizes and
13 strides to reduce computational complexity and pre-
vent overfitting. The subsequent BLSTM network layer
could process sequences in both the forward and back-
ward directions using two separate LSTMs, improving
the recognition of features in different regions and inte-
grating them. The dense layer (also consisting of rectified
linear units) was then used to integrate information
from the BLSTM networks. The final layer transforms the
classification probability using a sigmoid nonlinear func-
tion. Since the number of nonbeneficial and beneficial gen-
otypes (nonbeneficial: beneficial= 23660 : 123) was highly
imbalanced, we adopted upsampling and higher weighting
to correct the training set’s imbalance. A drop-out layer
was also added to prevent overfitting. All optimizations
were performed using five replicates from several random
initial weights, and the results showing the lowest loss (loss
function= binary-cross-entropy) for the validation set
were chosen.

We randomly repeated the procedure ten times to split
the total dataset (80% training set, 10% validation set, and
10% test set) to build different PEARP models. Then, the
PEARP model exhibiting the highest AUC with the test set
was used to predict whether a genotype was resistant. All
mutants containing one single-nucleotide mutation (N1=
2308) or two single-nucleotide mutations (N2= 2657862)
or a randomly selected subset of genotypes with three
(N3= 3000000), four (N4= 4000000), and five (N5=
5000000) single-nucleotide mutations (excluding nonsense
mutations) as well as clinical isolates with 1–5 single-
nucleotide mutations were included as the subjects for pre-
diction. We considered the mutants with a resistance prob-
ability≥ 0.955, such that the false positive rate was
minimized while the true positive rate remained above 0.5.

The second neutral network was a regression model re-
ferred to as PEARR, which was used to predict the log10-
(relative growth) of a given genotype. We randomly split
our relative growth dataset obtained in the presence of
0.5×MIC ceftazidime into training, validation and testing
sets (80, 10, and 10% of total data, respectively) and used
the mean-square error (MSE) as the loss function. The ba-
sic structure of PEARR was otherwise the same as that of
PEARP, but these two models are in fact different since
PEARR is a regression model; specifically, 1) the convolu-
tion layer with leaky rectified linear units (leaky ReLUs)
contained 32 filters of 21 kernel sizes; 2) the max-pooling
layer included three pool sizes and three strides; and 3)
all optimizations were also performed with five replicates
from several random initial weights and the results with
the best MSE for the test set were chosen.

To trace the possible evolutionary trajectories, we as-
sumed that for each mutational step, only the most resist-
ant genotype(s) will be evolutionarily fixed. The logic
behind this assumption is that the most resistant genotype
wins the competition with other mutational candidates.
Nevertheless, given the measurement error, we might
not be able to pin-point exactly the one genotype that

is the most resistant. We therefore considered, among
the mutational candidates for one particular mutational
step, that any genotype whose resistance metric [log2-
(MIC) or log10(relative growth)] was within one SD of
the highest value as equally resistant. On the basis of this
assumption, we aimed to test the performance of PEARR

using a clinical isolate with CTX-M-14 variant with mul-
tiple mutations (mutation≥ 4). To this end, we found
four clinical variants of CTX-M-14 with five mutations,
including CTX-M-16, CTX-M-51, CTX-M-214, and
CTX-M-219. The ceftazidime MICs of these four mutants
were experimentally determined (supplementary table
S3, Supplementary Material online) and we found that E.
coli MG1655 carrying CTX-M-51, CTX-M-214, and wild-
type CTX-M-14 had similar MICs. E. coliwith CTX-M-16 ex-
hibited a 4-fold increase in ceftazidime MICs, and notably,
the CTX-M-219-producing strain showed the highest MIC
of ceftazidime, that is, a 32-fold increase relative to wild-
type CTX-M-14. In addition, CTX-M-219 is a novel variant
of the CTX-M-14 group. Therefore, CTX-M-219 was used
to validate the performance of the model. Next, 31
CTX-M-14 mutants of CTX-M-219 containing all possible
combinations of mutations were generated. The MICs of
these 31 CTX-M-14 mutants were also experimentally
determined. The log2 (MIC) or log10 (relative growth)
SD was calculated for 31 genotypes meeting these criteria,
as shown in fig. 5B. Additionally, CTX-M-4M, a CTX-M-14
variant with four single-nucleotide mutations, which dra-
matically increased relative growth in our library, was
used to further validate the performance of the PEARR

model. Similarly, the evolutionary trajectories of CTX-
M-4M matched with PEARR score (supplementary table
S3 and fig. S9, Supplementary Material online).

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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