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Abstract: Colon cancer-associated transcript 2 (CCAT2) is an intensively studied lncRNA with
important regulatory roles in cancer. As such, cumulative studies indicate that CCAT2 displays a high
functional versatility due to its direct interaction with multiple RNA binding proteins, transcription
factors, and other species of non-coding RNA, especially microRNA. The definitory mechanisms of
CCAT2 are its role as a regulator of the TCF7L2 transcription factor, enhancer of MYC expression, and
activator of the WNT/β-catenin pathway, as well as a role in promoting and maintaining chromosome
instability through the BOP1–AURKB pathway. Additionally, we highlight how the encompassing
rs6983267 SNP has been shown to confer CCAT2 with allele-specific functional and structural
particularities, such as the allelic-specific reprogramming of glutamine metabolism. Additionally, we
emphasize CCAT2’s role as a competitive endogenous RNA (ceRNA) for multiple tumor suppressor
miRNAs, such as miR-4496, miR-493, miR-424, miR-216b, miR-23b, miR-34a, miR-145, miR-200b,
and miR-143 and the pro-tumorigenic role of the altered regulatory axis. Additionally, due to its
upregulation in tumor tissues, wide distribution across cancer types, and presence in serum samples,
we outline CCAT2’s potential as a biomarker and disease indicator and its implications for the
development of resistance against current cancer therapy regiments and metastasis.

Keywords: CCAT2; lncRNA; competitive-endogenous RNA; miRNA; non-coding RNA; cancer

1. Introduction

While the existence of non-coding species of RNA has been acknowledged for sev-
eral decades already, the advent of modern sequencing techniques has allowed their de-
tailed characterization and classification. As such, ncRNAs have been mainly categorized
based on size, structure, and specific cellular function [1]. Smaller species of ncRNA are
mainly represented by microRNA (miRNA), which are considered to range between 19 and
25 nucleotides and are mainly involved in regulating gene expression post-transcriptionally,
targeting specific mRNAs based on the presence of complementary seed sequences [2–5].
On the other hand, long non-coding RNAs are a more recent class of non-coding RNAs,
longer than 200 nucleotides, that are involved in a wide array of biological processes,
ranging from early phase physiological developmental to intricate disease-associated and
molecular cancer mechanisms [6,7]. Unlike miRNAs, lncRNAs are subjected to polyadeny-
lation and splicing, and they mostly display preferential nuclear localization and highly
cell-specific expression patterns. As such, lncRNAs have been widely investigated in
different developmental [8,9] and pathological processes [10,11], which indicated their high
functional variability. As a relevant example, the lncRNA HOTAIR, initially highlighted as
a trans epigenetic regulator [12] of the key developmental HOX genes through its direct
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interaction with the Polycomb Repressive Complex 2 (PRC2), was proven several years later to
be a bona fide tumor-promoting lncRNA through the alteration of its regulatory mechanism
in the case of metastatic breast cancer. In addition, the lncRNA NEAT2 (also known as
MALAT-1) was initially indicated as a prognostic indicator for early-stage non-small-cell
lung cancer [13]. Later investigations confirmed its regulatory involvement in mRNA
metabolism based on the association with the SC35 [14] and serine/arginine (SR) splicing
factors [15].

Colon cancer-associated transcripts 1 and 2 (CCAT1 and CCAT2) are two of the
more recently identified transcripts with reoccurring implications in different types of
cancers. First described in colon cancer, CCAT1 and CCAT2 both originate from the 8q24.21
chromosomal region, in close proximity with the MYC gene (500 kb and 300 kb upstream,
respectively) and encompassing the cancer risk-associated rs6983267 single nucleotide
polymorphism (SNP) (Figure 1) [16–18].
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Figure 1. Overall schematic of the main tumor-promoting regulatory mechanisms of CCAT2 described to date.

CCAT1 was the first one to be identified of the two, highlighted as a potential pre-
malignant indicator for colorectal cancer (CRC), being identified as overexpressed in
pre-tumoral tissues (adenomatous polyps and tumor-proximal colonic epithelium) but
also in later stage tumor tissue [18]. Further investigations indicated that the CCAT1 gene
encodes two isoforms for the lncRNA, a long one (CCAT1-L), with preferential nuclear
localization, and a short (CCAT1-S) isoform, mainly localized in the cytoplasm, which is
presumed to be a processing result of the long variant [17–19]. Functionally, CCAT1 is
a transcriptional regulator for MYC and acts as a long-distance enhancer element via its
interaction with the transcription factor and chromatin organizer CTCF, thus promoting
and stabilizing chromatin looping formation at the MYC locus [20]. CCAT1 is elevated
in various types of cancers, including gastrointestinal cancers, hepatocellular carcinoma,
lung cancer, melanoma, and multiple myeloma, where it was correlated with the activation
of essential cancer biologic processes including proliferation, invasion, metastasis, and
treatment resistance [18,19,21]. Other identified cancer-specific mechanisms involve the
formation of a complex with the TP63 and SOX2 with transcription factors. The triplex can
then bind both the CCAT1 promoter, determining its transcription, and the super-enhancer
domains of epidermal growth factor receptor (EGFR), thus activating downstream MAPK
signaling cascade with the effect of promoting small cell carcinoma tumorigenesis [22,23].
CCAT1 shows many functional similarities with its sister transcript, as we highlight further
throughout this review.
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Similarly, CCAT2 was first identified in colon cancer during investigations aiming to
identify the functional elements associated with the rs6983267 SNP [16], a locus on the 8q24
“gene desert” often associated with increased predisposition to the development of colon,
ovarian, and prostate cancers [24]. Referring specifically to the encompassing rs6983267
SNP, the genetic variants identified in multiple populations consist of the three GG, TT,
and GT alleles, the latter being considered the wild type. The presence of a specific allele
appears to have functional effects, which are discussed further in the latter chapters of this
manuscript. Since then, CCAT2 has been investigated in multiple oncologic malignancies
and is emerging as a relevant lncRNA. Therefore, the implications of CCAT2 in different
cancer types, emphasizing all the influential cancer-specific mechanisms and highlighting
its potential biomarker and therapeutic use, are within the scope of this review.

2. Cancer-Associated Regulatory Activity of CCAT2
2.1. MYC and WNT Pathway Activation

The first indication of CCAT2 being a tumor-associated transcript came from the study
of its encompassed SNP, rs6983267. Ling et al. highlighted that the novel transcript, originat-
ing from the 8q24.21 chromosomal region, was significantly enriched in microsatellite-stable
colon cancer samples. Initial in vitro and in vivo investigations confirmed that overexpress-
ing CCAT2 increased both the proliferation and metastatic potential of colon cancer cells.
Based on its genomic proximity to MYC, the group investigated whether CCAT2 had any
regulatory effect on its expression [16]. Multiple validation studies confirmed a positive
correlation between CCAT2 and MYC, both at the RNA and protein level, also indicative
of a similar, although unconfirmed, enhancer activity similar to CCAT1 and a previous
indication of chromatin looping associated with the rs6983267 locus [25]. Further investiga-
tions of the regulatory mechanisms indicated that the TCF7L2 transcription factor interacts
directly with CCAT2, an event confirmed by immunoprecipitation and supported by its nu-
clear co-localization. Previous studies highlighted the regulatory activity of TCF7L2 on the
expression of MYC via the presence of multiple TCF7L2 binding sites on the MYC promoter.
Moreover, TCF7L2 is a known activator of the pro-tumorigenic Wnt/β-catenin, one of the
ubiquitous pathways constitutively overactivated and considered a critical driver of CRC.
On the other hand, MYC is one of the downstream targets of the Wnt/β-catenin pathway,
highlighting the dual potentiating role of CCAT2 in this tumor-promoting feedback loop.
Moreover, downstream of the Wnt/β-catenin pathway, the Wnt-induced-secreted-protein-1
(WISP1) was also significantly upregulated in CCAT2 active cancers. In the downstream
pathway, high WISP1 levels stimulate the expression of its effectors VEGF-A, MMP2, and
ICAM-1, with important roles in angiogenesis, epithelial-to-mesenchymal transition (EMT)
and metastasis [26]. This interplay between CCAT2, MYC, and WNT molecules has been
explored and confirmed in multiple cancers in recent years and is responsible for the main
pro-tumorigenic roles of CCAT2. Similar studies confirmed the presence of the mechanism
in the case of thyroid [27], ovarian [28], clear cell renal cell carcinoma [29], and breast
cancers [30].

2.2. Allele-Specific Metabolic Reprogramming

As previously mentioned, the allelic variant defined by the rs6983267 SNP has func-
tional effects on the secondary structure and the enrichment levels of CCAT2. The first
functional differences were first reported by Ling et al. in 2013 [16]. Following the charac-
terization of the allelic distribution of rs6983267 in the studied cohorts, the group wanted
to investigate whether the rs6983267 status affected CCAT2 expression in patient samples.
While there were no noticeable differences in patient samples, cell lines with heterogeneous
rs6983267 genotype expressed the GG variant at a significantly higher level. Furthermore,
the group indicated that the variation of G and T alleles influenced the secondary structure
of the lncRNA [16].

A more intricate characterization of the functional consequences of the allele distri-
bution came several years later when Redis et al. indicated that CCAT2 promotes an
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allelic-specific metabolic reprogramming of glutamine metabolism in CRC [31]. Specifically,
the interaction between the G-allele CCAT2 and two subunits (CFIm25 and CFIm68) of
the cleavage factor I (CFIm) promoted the alternative splicing of the glutaminase (GLS)
enzyme [31]. The upregulation of the glutaminase enzyme acted as a metabolic switch
resulting in an acceleration in glutamine metabolism, thus promoting proliferative and
metastatic programs, confirmed both in vitro and in vivo. Additionally, the CCAT2-G-
CFIm-GLS regulatory axis was identified in more than half (61%) of the investigated
clinical samples, highlighting the potential clinical utility of this allelic-dependent process.

2.3. Chromosomal Instability

The first indication of CCAT2s as a promoter of chromosomal instability was high-
lighted in 2013 when Ling. et al. reported that CRC cell lines that overexpressed CCAT2
displayed a higher percentage of abnormal metaphases and aberrant centrosomes num-
bers. Additionally, the group reported a positive correlation score between CIN score
and CCAT2 expression levels in 218 breast cancer patients with lymph node-negative
disease [16]. Further details on the related mechanism were reported several years later
in the case of microsatellite stable CRC, with the extending implications of the develop-
ment and sustainability of cancer-associated chromosomal instability in the therapeutic
resistance to 5-fluorouracil and oxaliplatin. Investigations confirmed that the mechanism is
dependent on CCAT2’s interaction with the BOP1 ribosomal biogenesis factor, which were
both upregulated as a result of CCAT2’s upregulation of MYC and stabilized following
a direct interaction. Upregulation of BOP1 increased the active form of Aurora kinase B,
causing chromosomal mis-segregation errors. Inhibiting this regulatory axis, both CCAT2
or BOP1 knockdown decreased the invasive phenotype of the cells both in vitro and in vivo.
Additionally, higher expression of CCAT2 and BOP1 correlated with shorter survival times
in CRC patients [32].

2.4. RNA Editing and CCAT2-Associated RNA–DNA Differences at the rs6983267 Locus

The concept of RNA editing consists of a conserved process of post-transcriptional
modifications in the RNA transcripts that result in varying degrees of sequence mod-
ifications when compared with the originating DNA sequence [33]. Both coding and
non-coding RNAs are subjected to different types of RNA editing, resulting in increased
transcriptional diversity and various functional effects, dependent on the type of RNA
modified and the nature of the modification. The general pattern (also known as canonical
editing) of modifications consists of adenine to inosine (A to I) and cytosine to uracil (C to
U) and is dictated by adenosine (ADAR) and cytidine (APOBEC) deaminases, respectively.
Adenine to inosine is the most commonly occurring ADAR adenosine deaminase, mainly
represented by ADAR1 and ADARB1, catalyzing the RNA editing predominantly in RNA
duplexes formed in either the UTR regions of mRNAs, introns, and repetitive sequences,
such as Alu repeats [34].

CCAT2 is subjected to a particular non-ADAR, non-APOBEC type of editing, specif-
ically at the rs6983267 locus. Shah et al. first indicated the existence of a DNA-to-RNA
allelic imbalance after observing discrepancies between the genomic DNA (gDNA) and the
reverse-transcribed CCAT2 RNA sequences (cDNA) originating from the same myelodys-
plastic syndrome patients [35]. After the exclusion of any sequencing or technical errors,
the group confirmed that the event, named RE (RNA Editing), was occurring specifically
at the rs6983267 locus and consisted in the variation between the G and T alleles of CCAT2
not falling into the previously described canonical RNA editing patterns. Additionally,
other non-physiological allele variations, such as C or A, were not identified. Further
investigation indicated that the editing event was disease-specific, being identified at a
much higher rate in the blood marrow and peripheral blood of myelodysplastic syndrome
(MDS) and myeloproliferative syndrome (MPS) patients when compared with healthy
controls. Further in vivo investigations confirmed the similar occurrence rate of RE in
CCAT2 transgenic models, which was also correlated with increased splenomegaly and
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blood marrow hypercellularity in individuals in which RE was identified (RE+). As for
the in vivo functional implications of rs6983267-RE, bone marrow-derived cells from RE+
mice were found to have significant alterations in immune-related pathways, especially
genes involved in B-cell receptor, IL22, and IL4 signaling. Further immune profiling of RE+
hematopoietic stem and progenitor cells highlighted D22, CD19, and H2-Ob as the main
dysregulated genes in both cell types. All things considered, while the exact RNA editing
mechanism to which CCAT2 is subjected has not yet been uncovered, there is significant
evidence pointing towards its role in the modulation of immune signaling in MDS and
MPS [35].

2.5. ceRNA Activity of CCAT2 and miRNA Sponging

A commonly described role of lncRNAs in different pathologies is their complementarity-
based interaction with different species of RNA, especially miRNAs [36,37], thus creating
complex regulatory networks that involve both the interacting miRNAs and their mRNA
targets [38]. Also called “miRNA sponging”, the competitive endogenous RNA mechanism
(ceRNA) implies the competitive binding via a complementary sequence of a single or mul-
tiple miRNAs to the lncRNA rather than its mRNA target, thus mitigating the regulatory
function of that miRNA [39]. The miRNA binding sites are named MRE (miRNA response
elements) and consist of short sequences (under 10 bp) in the lncRNA transcript [40].

Recent studies have also highlighted CCAT2 as having multiple miRNA regulatory
targets (Figure 2, Table 1), acting as one of the main pro-neoplastic drivers in various
human cancers [39,41–43]. For example, CCAT2 promotes its neoplastic regulatory func-
tions through extensive ceRNA networks involving multiple tumor suppressor miRNAs,
including miR-424, miR-145, miR-23b-5p, and miR-143 [39,42,44–46].

In glial tumor cells, CCAT2’s role in angiogenesis and apoptosis was investigated
through mechanistic studies that revealed that CCAT2 is encapsulated by tumor cells in
exosomes, which are subsequently internalized by endothelial cells. Exosomes enriched in
CCAT2 promoted the translation of proangiogenic genes (VEGF, TGF β, FGF, and KDR)
and antiapoptotic gene BCL-2 by inhibiting the proapoptotic genes BAX and CASPASE-3.
Following the CCAT2 activation, the endothelial cells enhance the angiogenesis pathway,
which leads to downstream upregulation of VEGF, TGFβ, and FGF protein secretion.
Moreover, Lang et al. showed that the inhibitory effect on apoptosis of endothelial cells is
enhanced under hypoxic conditions. Endothelial cells pre-exposed to hypoxia and then
transfected with CCAT2-enriched exosomes showed increased expression of BCL-2 and
lower BAX and CASPASE-3 expression [71]. Additional studies revealed that part of the
CCAT2 regulatory effect on the VEGF gene is modulated through direct induction of the
PI3K/AKT signaling pathway and via sponging of the miR-424 [43]. The ceRNA regulatory
network is based on both CCAT2 and the VEGFA mRNA sharing a miR-424 MRE [43].
This ceRNA relationship between CCAT2 and miR-424 was first described in epithelial
ovarian cancer, where the tumorigenic effects of CCAT2 were found to be modulated via the
inhibition of the tumor suppressor activity of the miR-424. Knockdown of CCAT2 reduced
cellular proliferation, migration, and angiogenesis through upregulation of miR-424 and
consequent inhibition of VEGF, confirming that CCAT2 is a crucial element of the processes
via this regulatory axis [39].
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Table 1. Currently known regulatory targets and biological effects of different expression patterns of CCAT2 in various cancer types.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Colorectal cancer

Tissue: 191 CRC and ANTT
Cell lines: COLO320D, MHCT116,

RKO, HEK293
↑

↑Wnt/β-catenin
↑MYC, ↑TCF7L2

↑ MS status
Invasion, Distant Metastasis [16]

Cell lines: HCT116, KM12C,
KM12SM, COLO320, DLD-1, HT29
In vivo model: CCAT2 transgenic

mice, WT mice

↑ ↑BOP1
↑AURK B

Chromosomal instability,
Chemoresistance to 5 fluorouracil

and oxaliplatin
[32]

Tissue: 218 CRC and ANTT ↑

Differentiation grade
TNM stage, Lymph nodes metastasis,
Distant metastasis, Vascular invasion,

Poor prognosis

[47]

Tissue: 149 CRC and ANTT ↑ Distant metastasis [48]

Cell lines: HCT-116, HT-29 ↑ ↓ pre-miR-145,
↑ miR-21 Proliferation, Invasion [49]

Tissue: 280 CRC and ANTT ↑ ↑MS status
↑ MYC

Poor prognosis, Lymph nodes
metastasis, TNM stage [50]

Blood: 63 CRC and 40 Controls N/A - - [51]

Tissue: 60 CRC, 30 Colon polyps, and
60 non-cancers.

↑ along with CCAT1, CCAT2,
H19, HOTAIR, HULC, MALAT1, PCAT1, MEG3,

PTENP1, and TUSC7

Part of a stool lncRNA panel for CRC
detection [52]

Tissue: 80 CRC and ANTT
Cell lines: FHC, HT29, Lovo, HCT-116. ↑ - Cellular growth, Proliferation,

Antiapoptotic [53]

Tissue: 150 CRC and ANTT ↑ ↑MYC Metastasis [54]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Esophageal cancer

Tissue: 229 ESCC and ANTT ↑ - Poor prognosis, Lymph node
metastasis, TNM stage [55]

Tissue: 57 ESCC and ANTT
Cell lines: TE13, KYSE410, ECA109,

TE1/N: HEEC

↑TE1, TE13, KYSE410
↓ ECA109 - CCAT2 expression correlated with

smoking status [56]

Cell lines: Eca-109, EC9706, KYSE150,
TE-1/N: HEEC ↑ ↑BCL-2, ↓BAX, ↓CYCLIN

D1, ↑Wnt pathway Proliferation, Migration, Invasion [57]

Tissue: 62 OSCC and ANTT
Cell lines: Tca8113, Cal27/hNOK ↑ ↑CCND1, ↑MYC,

↑Wnt/β-catenin
Poor prognosis, Invasion

proliferation, T stage differentiation [58]

Tissue: 60 ESCC and 21 esophageal
mucosa

Cell lines: HEEC, TE-1, TE-3, ECA109,
KYSE410, KYSE520

↑ ↓miR-145, ↑p70S6K1,
↓p53 pathway

Radiotherapy resistance, cellular
proliferation. [59]

Tissue: 33 ESCC and ANTT
Cell lines: KYSE-410, KYSE-150,

TE10, TE11, TE13/HET-1A
↑ β -catenin/

WISP1 signaling pathway
Cell proliferation, Invasion, Poor

prognosis. [26]

Tissue: 93 ESCC and ANTT
Cell lines: Eca109, TE-1, EC-1,

ESC410/HET-1A
↑ ↓miR-200b ↑IGF2BP2/TK1

Axis Migration, Invasion, Tumorigenesis [60]

Gastric cancer

Tissue: 85 GC and ANTT ↑ - Lymph node metastasis
Distant metastasis, Poor prognosis [61]

Tissue: 108 GC and ANTT
Cell lines: Tu: SGC7901,

MKN45, BGC-823, MKN-28/N: GES-1
↑

↑ZEB2, ↑VIM, ↑CHD1,
↑CHD2

↑EZH2, ↑3K27me3 ↑LSD1,
↑LATS

Poor prognosis Proliferation
Migration, Invasion, EMT [62]

Tissue: 60 GC and ANTT
Cell lines: GES-1, RGM-1, SGC-7901,

SNU-1, HGC-27
↑ ↑mTOR signaling Proliferation, Metastasis [63]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Serum: 167 GC and 110 controls ↑ - Tumor stage, Invasion, Lymph node
metastasis [64]

Hepatocellular
carcinoma

Tissue: 50 HCC and ANTT
Cell lines: Tu: HepG2, HEP3B,

HCCLM3, HuH7/L02
↑ - Proliferation, Migration

Antiapoptotic [65]

Tissue: 60 HCC and ANTT
Cell lines: SMMC-7721, PLC/PRF/5,

Huh7, SK-Hep-1, Hep3B
↑ ↑FOXM1

↓ miR-34a
Poor prognosis, Proliferation, Tumor

growth, Antiapoptotic [66]

Tissue: 96 HCC and ANTT
Cell lines: HepG2, SMMC772,

MHCC97H /MIHA
↑

↑CDH1,
↑CDH2,

↑VIM, ↑SNAI2

Poor prognosis, TNM stage, Vascular
invasion, Alcoholism history,

Migration, Invasion, EMT
[67]

Cell lines: SMMC7721, SK-hep1,
HepG2, Huh7/L02 ↑ ↑NDRG1 promoter Proliferation, Migration, Invasion [68]

Cell lines: Hep3B, HepG2, and
THLE-3, MHCC97H ↑ ↓miR-145

↑MDM2 Proliferation, Metastasis [45]

Tissue: 61 HCC and ANTT
Cell lines: HepG2 HCCLM3 ↑ ↓miR- 4496

↑ELAVL1
Advanced stage, Venous invasion,

Migration, Invasion [69]

Pancreatic cancer
Tissue: 80 PDAC and ANTT
Cell lines: PANC-1, SW1990,

PC-3/HPDE6-C7
↑ ↑KRAS,

↑MEK/ERK
Poor prognosis, Proliferation, Invasion

Tumor growth [70]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Glioma

Cell lines: A172, U87-MG, U251,
T98G/HUVECs ↑VEGF, ↑TGFβ, ↑FGF Angiogenesis, Migration

Proliferation [71]

Tissue:134 Glioma and ANTT
Cell lines: U87-MG, U251 ↑ ↑Wnt/β-catenin

TNM stage, Proliferation
Cell cycle, Migration

Tumor growth
[72]

Tissue: 134 Glial tumors and ANTT
Cell lines: U87, U251, A172,

SHG44/Normal human astrocyte cell
line

↑ ↑CDH1, ↑CDH2, ↑VIM,
↑TWIST, ↑ SNAI1

Poor prognosis, Tumor grade, Tumor
size, Proliferation, Migration,

Invasion, Apoptosis, EMT
[73]

Tissue: 74 PA and ANTT
Cell line: HP75 ↑ ↑E2F1

↑PTTG1

Poor prognosis, Proliferation,
Antiapoptotic, Cell cycle, Migration,

Invasion
[74]

Tissue: 138 Gliomas and ANTT
Cell lines: U251, U87, A172, SHG44. ↑ ↓ miR-424

↑CHK1

Proliferation, Invasion, Migration via
miR-424 sponging and CHK1

regulation
[44]

Cell lines: A172, U251 ↑ ↓ miR-424
↑ VEGFA Proliferation, Migration, Angiogenesis [43]

Neuroblastoma
Tissue: 96 Neuroblastomas and ANTT

Cell lines: SH-SY5Y,
SK-N-SH/HUVEC

↑ ↓P53
↑BCL-2

Antiapoptotic, Cell growth, Poor
prognosis [75]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Lung cancer

Tissue: 57 NSCLC and ANTT
cell lines: A549, NCI-H1975,

NCI-H358, NCI-H1650, NCI-H1299,
SK-MES-1, Pc-9/HBE

↑
↑ H1975, Pc9, NCI-H358
↓NCI-H1299 NCI-H1650,

A549 SK-MES-1

Proliferation, Invasion [76]

Tissue: 112 SCLC and ANTT
Cell lines: DMS-53, H446/16 HBE ↑

Poor progression, Clinical stage,
Tumor size, Distant metastasis

Proliferation, Invasion
[77]

Tissue: 36 NSCLC and ANTT
Cell lines: NCI-H1975 ↑ ↑Wnt/β-catenin Tumor size, Lymph node metastasis [78]

Cell lines:A549, SPC-A- 1, H1395,
H441, H1975/BEAS-2B ↑ ↑FOXC1

↓ miR-23b-5p Proliferation, Migration [42]

Tissue: 32 NSCLC and ANTT N/A - - [79]

Serum: 438 LC and 438 controls ↑ - - [80]

Osteosarcoma

Tissue: 50 OS and ANTT
Cell lines: SAOS-2, MG63,

U2-OS/Normal osteoblast cell line
↑ ↑GSK3β/β-catenin Tumor size, Poor prognosis,

Proliferation [81]

Tissue: 40 OS/ANTT
Cell lines: SOSP-9607, MG-63, U2OS,

SAOS-2/hFOB
↑ ↑LATS2, ↑MYC ↑CDH1,

↑CHD2, ↑SNAI1
Poor prognosis, Proliferation.

EMT [82]

Cell lines: SOSP-9607, MG-63, U2OS,
SAOS-2 /hFOB ↑ ↓miR-143, ↑FOSL2 Proliferation, Metastasis [83]

Thyroid cancer

Tissues: 30 pairs TC and ANTT
(papillary, follicular, and anaplastic)
Cell lines: TPC- 1, TH83, IHH4, FTC-

133, FTC- 238/Nthy-ori3-1

↑ ↑Wnt/β-catenin Proliferation, Migration, Invasion,
Apoptosis [84]

Tissue: 60 anaplastic and papillary TC
and ANTT

Cell lines: TC cell lines
↑ - Doxorubicin and cisplatin resistance,

Increased tumor size, Poor prognosis, [85]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Multiple myeloma Serum: 106 MM and 106 matched
normal controls ↑ - ISS stages, Renal dysfunction, Serum

creatinine [86]

Acute myeloid
leukemia

Bone marrow samples: 46 patients
and 46 healthy volunteers

Cell lines: KG-1
↑ Cell cycle arrest in S phase Cellular proliferation, Poor prognosis [87]

Breast cancer

Tissue: 997 BC and ANTT and 56 BC
and ANTT

Cell lines: MDA-MB-231,
MDA-MB-436

↑ - Poor prognosis, Therapeutic response [88]

Tissue: 67 BC and ANTT
Cell lines: MDA-MB-231,

MCF-7/Hs578Bst
↑

↑Wnt/β-catenin
↑CCND1
↑MYC

Poor prognosis, Proliferation,
Invasion,

Tumorigenesis
[30]

Cell lines: MCF-7, T47 D tamoxifen
resistant/MCF-7, T47D–tamoxifen

responsive

↑ tamoxifen-resistant cell
lines

Suppressing CCAT2 expression
improves sensitivity to tamoxifen in

resistant cells
[89]

Tissue: 48 BC and ANTT ↑ - Lymph node metastasis [90]

Tissue: 67 BC and ANTT
Cell lines: MDA-MB-231,

MCF-7/MCF10A
↑ ↑P15

↑EZH2

Poor prognosis, Proliferation,
Invasion,

Cell cycle, Tumor growth
[91]

Tissue: 60 BC and ANTT
Cell lines: LCC9, MDA-MB-231

MCF-7/HCC1937
↑ ↑TGF-β, ↑Smad2, ↑α-SMA

Lymph node metastasis
Proliferation, Invasion, Migration,

Apoptosis, Cell cycle
[92]

Endometrial cancer Tissue: 30 EC and ANTT
Cell lines: HEC-1-A and RL95-2 ↑ ↓miR-216b

↑PI3K/AKT
Proliferation, Migration,

Invasion, Apoptosis [41]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Cervical cancer

Tissue: 123 SCCC and ANTT ↑ - FIGO stage, Lymph node metastasis,
Cervical invasion, Poor prognosis [93]

Cell lines: CaSki, HeLa, SiHa ↑ - Proliferation, Apoptosis [94]

Serum: 115 SCCC, 79 CIN, and 110
healthy controls ↑ CCAT2, LINC01133, LINC00511 upregulated in serum of SCCC and

CIN patients. [95]

Tissue: 30 SCCC and ANTT
Cell lines: GH329, CaSki, HeLa, SiHa,

C4-1.
Xenografts: 2 groups pSilencer,

pSilencer/sh-CCAT2

↑ ↓miR-493-5p
↑CREB1 EMT, Proliferation [96]

Ovarian Cancer

Tissue: 31 EOC and ANTT
Cell lines: SKOV3, MC685, A2780,

HO8910/IOSE 386
↑ ↓miR-424 Proliferation, Apoptosis [39]

Cell lines: SKOV3, A2780,
HO8910/HOSE, HUM-CELL-0088 ↑

↑CDH1, ↑CHD2, ↑SNAI1,
↑SNAI2, ↑TWIST1,
↑Wnt/β-catenin

Migration, Invasion,
EMT [28]

Tissue: 109 EOC and ANTT
Cell lines: SKOV3, IGROV1, A2780,

OVCAR3/HOSE 6.3
↑ -

FIGO stage, Tumor grade, Distant
metastasis, Poor prognosis,

Proliferation
Migration, Invasion

[97]

Cell lines: SKOV3 and A2780 ↑ ↑TCF7L2, ↑MYC Vitamin D suppresses CCAT2
expression [98]
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Table 1. Cont.

Cancer Type Study Samples CCAT2 Expression Regulatory Targets Biological Effect Ref.

Prostate cancer Tissue: 96 PC and ANTT
Cell lines: DU-145, 22RV1/WPMY-1 ↑ -

Poor prognosis, Proliferation,
Migration

Invasion, EMT
[99]

Renal cell cancer
Tissue: 61ccRCC and ANTT

Cell lines: 786-O, AHCN
ccRCC/HK-2

↑ ↑Wnt/β-catenin
Poor prognosis, Proliferation,

Migration,
Apoptosis, Invasion

[29]

Bladder cancer Tissue: 48 BC and ANTT
Cell lines: SV-HUC-1/T24, 5637 ↑ - Tumor grade, TNM stage,

Proliferation, Migration, Apoptosis [100]

AML, acute myeloid leukemia; ANTT, adjacent non-tumor tissue; BC, bladder cancer; CC, cervical cancer; ccRCC-clear cell renal cell carcinoma; CRC, colorectal cancer; EC, endometrial cancer; HCC-
hepatocellular carcinoma; MS status, microsatellite status; EMT, epithelial–mesenchymal transition; GC, gastric cancer; EOC, epithelial ovarian cancer; ESCC, esophageal squamous cellular carcinoma; MM,
multiple myeloma; PC, prostate cancer; PDAC, pancreatic ductal adenocarcinoma; TC, thyroid carcinoma.
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A new regulatory axis between CCAT2/miR-424 and the protein checkpoint kinase
1 (CHK1) gene was described in glioma, with roles in the tumor chemoresistance [44].
Previous studies reported that miR-424 tumor suppressor activity relies on interfering with
genes (including CHK1) that are essential to the G1/S cell cycle transition, thus limiting
cellular proliferation and promoting apoptosis. In cervical cancer, miR-424 expression was
inversely correlated with the CHK1 gene, and high Chk1 protein levels and reduced levels
of miR-424 were associated with aggressive behavior and poor outcome [101].

EMT is responsible for tumor aggressive behavior and acquisition of the ability to de-
velop distant metastasis. CCAT2 is an enhancer of EMT and cellular proliferation through
downregulation of E-cadherin and upregulation of N-cadherin and vimentin [28,62]. Addi-
tionally, CCAT2 was found to modulate the EMT phenotype through cAMP-responsive
element-binding protein 1 (CREB1) expression modulation [96]. CREB1 is an oncogene
that was shown to promote tumor cell proliferation, EMT transition, and metastasis in
gastric cancer, CRC, and prostate cancer [102,103]. CREB1 was shown to be a target of the
tumor suppressor miR-493-5p. In prostate cancer cell lines, upregulation of miR-493-5p
inhibited CREB1 expression and inhibited EMT via AKT/GSK-3β/Snail signaling [103].
Wang et al. investigated the regulatory loop between CCAT2/miR-493-5p/CREB1 in cervi-
cal cancer, revealing that CCAT2 sponges miR-493-5p leading to upregulation of CREB1,
which promotes proliferation and EMT [96].

Bioinformatic sequence prediction analysis revealed the possible interaction between
CCAT2 and miR-23b-5p based on a putative binding site in the 3′-untranslated region
(3-UTR) of CCAT2. miR-23b-5p was described as acting as a tumor suppressor in a
variety of cancers, most importantly by inhibiting the FOXC1 gene, a known oncogene
with important roles in signal transduction and tumor progression [104,105]. The direct
interaction between CCAT2 and miR-23b-5p was evidenced using the dual-luciferase
reporter assay in non-small-cell lung cancer cell lines (NSCLC). The expression level of
CCAT2 was further investigated in relation to the expression of miR-23b-5p target gene
FOXC1. A direct correlation between CCAT2 expression level FOXC1 gene expression and
an inverse correlation between CCAT2 and miR-23b-5p was described. These data support
that CCAT2 coordinates a loop that enhances the expression of the FOXC1 gene by direct
sponging of the tumor suppressor miR-23b-5p. Moreover, the increased levels of FOXC1
further promote cellular proliferation and migration [42].

In hepatocellular carcinoma (HCC) cell models, CCAT2 was reported to promote
cellular migration, proliferation, and decreased apoptosis by interaction with another
member of the FOX gene family, FOXM1 [65,66,106]. Referring to FOXM1, it was previously
shown to be an important tumor promoter in HCC progression, and its upregulation is
correlated with a poor prognosis [106]. Recent investigations suggest a connection between
CCAT2 and FOXM1 via a regulatory loop involving miR-34a. The study highlighted that
increased levels of FOXM1 were correlated with CCAT2 in HCC cell lines. Bioinformatic
analysis indicated miR-34a as the regulatory link between CCAT2 and FOXM1, as both
transcripts have the competing binding ability for miR-34a. The direct interaction between
CCAT2 and miR-34a was evidenced by dual-luciferase reporter assay analysis using miR-
34a and CCAT2-WT and CCAT2 miR-34a mutated binding site [66]. Thus, overexpression
of CCAT2 might be responsible for the mitigation of the tumor suppression ability of miR-
34a, which has been also shown to promote the activation of cellular senescence programs
by downregulating the FOXM1 oncogene independent of CCAT2 [107].

A different study on the role of CCAT2 in HCC has highlighted its involvement in au-
tophagy and metastasis programs via a bimodal cytoplasmic and nuclear mechanism [69].
The CCAT2 localization in the HCC cell cytoplasm promotes its ceRNA interaction with
miR-4496, a previously described tumor suppressor [69]. On the other hand, CCAT2 inter-
acts with the RNA binding protein (RBP) ELAVL1/HuR at the nuclear level, a key factor
involved in mRNA stabilization, previously shown to promote proliferation, apoptosis, and
differentiation in multiple types of cancer [108]. Shi et al. showed that ELAVL1 knockdown
decreased Agt5 expression, this effect being restored through CCAT2 upregulation. These
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findings indicate that CCAT2 promotes the proliferative processes by targeting miR-4496
and the activation of autophagy via, and interacting with ELAVL1, and downregulating
Agt5. [69].

One of the CCAT2s main regulatory ceRNA targets is miR-145, a tumor suppressor
described in various solid human cancers, including colon, gastric, and prostate can-
cers [109,110]. In these cancers, miR-145 inhibits tumor proliferation by inhibiting the
MYC and Friend leukemia virus integration 1 (FLI-1) genes [111,112]. The opposite regulatory
effects between miR-145 and CCAT2 on the MYC pathway suggested a possible modula-
tory relationship between these two ncRNAs that was further investigated. Considering
miR-145 biogenesis and using bioinformatic analysis, interaction with the pre-miR-145 was
found. This relationship was confirmed on cellular models that support downregulation of
the mature miR-145 by direct interaction between CCAT2 and pre-miR-145 at the nuclear
level [49]. Additionally, a direct bidirectional modulatory relationship between miR-145
and the oncogenic miR-21 was shown, in which miR-145 negatively regulates miR-21 in
colon cancer cell lines [113]. Therefore, by inhibiting miR-145 maturation, CCAT2 indi-
rectly upregulates the miR-21, which promotes proliferation and is associated with a poor
prognosis [49].

The CCAT2/miR-145 regulation axis was also described in HCC progression via
modulation of the MDM2 gene [45]. MDM2 is an oncogene previously reported in epithelial
cancers, high-grade tumors, being a signature biomarker in multiple soft tissues [114]. In
HCC, the MDM2–p53 pathway is an essential pathway in tumorigenesis, being altered in
25% of cases [115]. In physiological conditions, p53 enhances miR-145 activity, which was
shown to act on MDM2. In human epithelial cancers, when an alteration of the p53 gene
is produced, the miR-145 is downregulated, which removes the inhibition on the MDM2
oncogene [116]. In HCC, miR-145 expression was inversely correlated with MDM2 and
was shown to directly interact with it by dual-luciferase reporter assay [45].

Further analysis into the mechanisms by which CCAT2 promotes human esophageal
carcinoma cell (ESCC) progression led to the identification by bioinformatics analysis of
miR-200b as a possible target. The direct interaction between CCAT2 and miR-200b was
confirmed by a dual-luciferase reporter assay [60]. Functionally, miR-200b is a tumor sup-
pressor miRNA that was reported in ESCC to act as an inhibitor of cellular proliferation and
invasion [117,118]. Moreover, miR-200b was shown to have a complementarity sequence
with the insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) oncogene [60].
IGF2BP2 and thymidine kinase 1 (TK1) are two important oncogenes with aberrant expres-
sion in ESCC that are associated with advanced disease and poor prognosis. IGF2BP2 was
shown to act as a reader on the N6-methyladenosine (m6a) to modulate tumor progres-
sion [119]. Wu et al. confirmed by in vitro experiments the indirect positive regulatory
effect of CCAT2 on the IGF2BP2 through sponging of miR-200b. Moreover, the regulatory
loop includes the modulation of TK1 mRNA methylation by the IGF2BP2, which stabilizes
the TK1 and enhances its expression. Therefore, the tumor promoter effects of CCAT2 in
ESCC are directed by the CCAT2/miR-200b sponging, which limits the miR-200b levels
and inhibitory effect on IGF2BP2. Increased IGF2BP2 protein levels recognize TK1 m6a
modification and maintain its stability, inducing cellular proliferation and invasion [60].

CCAT2 was highly expressed in endometrial cancer tissue and cell lines; its expression
is correlated with increased cellular proliferation and metastasis. The antiapoptotic effect
of CCAT2 is switched on by sponging off the tumor suppressor miR-216b. At normal levels,
miR-216b is an inhibitor of the anti-apoptotic gene BCL-2. CCAT2 contains the binding
site for miR-216b and was revealed to directly interact with the miRNA. The increased
levels in CCAT2 via the inhibition of miR-216b enhanced the activity of BCL-2, which in
turn activated the PTEN/PI3K/AKT and mTOR signaling pathways that promote cellular
proliferation and malignant transformation [41].

As another ceRNA target of CCAT2, miR-143 is a tumor-suppressor miRNA with
important roles in the inhibition of major oncogenes involved in proliferation and treatment
resistance. miR-143 was investigated in colon, breast, and cervical cancers [46]. Bi et al.
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predicted by bioinformatic analysis that miR-143 was a possible target for CCAT2 [83]. The
direct interaction between CCAT2 and miR-14 was revealed in osteosarcoma cell lines. Fur-
thermore, miR-143 is known to interact with the FOSL2 [120]. FOSL2 is a known oncogene
that promotes metastasis and angiogenesis in breast and lung cancer [121,122]. Therefore,
a regulatory axis between FOSL2, CCAT2, and miR-143 was described, with CCAT2 upreg-
ulation modulating metastasis and proliferation through indirect upregulation of FOSL2
oncogene via sponging of the miR-143 [83].

2.6. Therapeutic Resistance

The expression level of CCAT2 was associated in several cases with chemotherapeutic
and radiotherapeutic resistance in gliomas, CRC, thyroid, breast, and esophageal can-
cers [32,59,89,123,124]. The roles of lncRNA CCAT2 on modulating therapeutic resistance
in these cancers are presented in Table 2.

Table 2. CCAT2 regulatory roles on therapeutic resistance in human cancers.

Cancer Type Role of CCAT2 in Therapeutic Resistance Ref.

Thyroid cancer Upregulation is associated with chemoresistance to
doxorubicin and cisplatin. [85]

Colorectal cancer Upregulation is associated with chromosomal instability and
chemotherapy resistance to 5-fluorouracil and oxaliplatin. [32]

Lung cancer
Presence of the rs6983267 SNP was associated with reduced
hematological toxicity to platinum-based chemotherapy and

platinum-based chemotherapy response.
[123,125]

Breast cancer Upregulation enhances tamoxifen resistance in breast cancer
cell lines. [89]

Glioblastoma Upregulation in glioblastoma cell lines increases resistance to
teniposide, temozolomide, vincristine, and cisplatin. [44]

Esophageal squamous cell carcinoma
Upregulation promotes radiotherapy resistance in ESCC cell

lines by inhibiting miR-145, the expression level of P70
ribosomal protein S6 kinase 1, p53, and p21.

[59]

The regulatory roles of CCAT2 in cancer therapeutic resistance are related to its di-
rect inhibition of tumor suppressor miRNAs and through its effect on the DNA damage
response pathway and chromosomal instability [32,44,59]. The regulatory axis between
CCAT2/miR-424/CHK1 was proven in gliomas, showing a direct correlation between
CCAT2 expression direct inhibition of miR-424 and upregulation of CHK1. Interestingly,
CHK1 was described as an important modulator of chemotherapy and radiotherapy resis-
tance in acute myeloid leukemia and glial tumors and via its effect in the DNA damage
response [124,126,127]. The CCAT2 upregulation in glioblastoma cell lines was associated
with upregulation of the CHK1 gene and increased resistance to teniposide, temozolomide,
vincristine, and cisplatin [44].

The previously described regulatory axis between miR-145 and CCAT2 was further
investigated in ESCC lines, focusing on the axis’s role in promoting radiotherapy resistance.
miR-145/p53 pathway downregulation was shown to promote radioresistance by altering
the normal response to DNA damage and inhibiting apoptosis [128]. Additionally, miR-145
was shown to inhibit the expression level of P70 ribosomal protein S6 kinase 1 (p70S6K1),
an important effector on the mTOR pathway that is involved in radioresistance [129,130].
p70S6K1 upregulation induces downstream activation of the Akt/ERK/p70S6K1 signaling
pathway, enhancing cellular viability and proliferation [59]. Moreover, the enhancing effect
of CCAT2 on radioresistance is influenced through its negative regulatory roles on p53 and
p21 proteins, which are essential for cell cycle arrest, DNA repair, and promotion of apop-
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tosis [59]. Targeting CCAT2 in ESCC demands further investigation to better understand
its implications on tumor progression and involvement in tumor radioresistance [58].

2.7. CCAT2 Enhancer Activity and Interactions with RBPs

CCAT2 was upregulated in pituitary adenomas in comparison with adjacent normal
tissue and associated with an aggressive tumor phenotype. CCAT2 overexpression was
partly explained by the increased E2F1 factor, which binds to the CCAT2 promoter re-
gion and facilitates CCAT2 transcription. Increased CCAT2 levels were shown to inhibit
degradation of the Securin protein, which could explain the aggressive phenotype of the
pituitary adenomas [131]. Additionally, in a different study, inhibiting CCAT2 reduced
proliferation, invasion, and increased cellular apoptosis—effects correlated with reduced
expression of TGF-β, MAD homolog 2, and α-SMA proteins. These results highlight the
CCAT2 regulatory role on the TGF-β signaling pathway [92]. Moreover, CCAT2’s positive
effect on cellular proliferation is induced by suppressing p15 protein, a tumor suppressor
protein that arrests the cell cycle in G1 by interacting with the histone methyltransferase
EZH2 [91].

A recent study by Zang et al. investigated the mechanisms by which CCAT2 promotes
cellular proliferation and showed that it directly binds to YAP protein and inhibits its
phosphorylation, which further promotes YAP nuclear translocation and activation of
YAP’s downstream oncogenic targets CTGF, CYR62, and AMOTL2 [132].

Investigations into the CCAT2 modulatory role on HCC proliferation and metastasis
revealed that its expression is closely correlated with the NDRG1 gene. CCAT2 promotes
the expression of the NDRG1 gene by enhancing its promoter activity [68]. NDRG1 is
an important oncogene in HCC and is involved in promoting proliferation, metastasis,
and poor prognosis [133]. Similar to other cancers, upregulation of CCAT2 enhances the
EMT and is associated with a poor prognosis. HepG2, SMMC772, and MHCC97H cell
lines were used to investigate the promoter role of CCAT2 on the EMT showing that its
expression is positively correlated with Vimentin and Snail2 and negatively correlated with
E-cadherin [67].

In vitro downregulation of CCAT2 in pancreatic cell lines PANC-1, SW1990, and PC-3
hindered proliferative and invasive capabilities of the cells, presumably due to regulatory
interaction with the mitogen-activated protein kinase (MAPK) pathway [70], an important
pathway involved in the translation of the signals extracellular messengers to intracellular
responses [23].

In neuroblastoma, a malignant embryonal solid tumor that most frequently affects
children, CCAT2 was found at increased levels in tumor tissue compared with adjacent
normal tissue, and its expression was associated with increased cellular proliferation and
lower three-year survival. Chen et el. revealed that part of the CCAT2 effect on cellular
proliferation is due to inhibition of tumor suppressor protein p53 and enhancement of the
anti-apoptotic protein Bcl-2 [75].

CCAT2 upregulation promotes EMT by upregulating ZEB2 gene expression and
decreasing the expression of the E-cadherin gene. CCAT2 modulates EMT by interacting epi-
genetically with EZH2, H327me3, and LSD1. Increased occupancy of these genes decreases
their binding affinity across the promoters of E-cadherin and LATS2. These results were
validated on in vivo models in which inhibition of CCAT2 was associated with increased
expression of E-cadherin and LATS2 and slower tumor growth [62].

Moreover, CCAT2 expression in gastric cancer modulates the expression of the
POU5F1B, a retrogene located adjacent to MYC that inhibits apoptosis and stimulates
angiogenesis and metastasis [134,135]. CCAT2 silencing is increasing apoptosis and au-
tophagy in vitro through a downregulation of PI3K and mTOR pathways, suggesting that
CCAT2 has also a regulatory effect on the PI3K/mTOR signaling pathways [63,134].

Inhibition of CCAT2 in ovarian cancer cell lines reduced invasiveness and cellular
progression and inhibited EMT by downregulating vimentin and N-cadherin and upregu-
lating E-cadherin [28]. Interestingly, treatment with calcitriol (vitamin D) on ovarian cancer
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cell lines had the same inhibitory effect that was achieved by silencing CCAT2. Calcitriol
stimulation highlighted an inhibitory effect on CCAT2’s regulatory activity by decreasing
the affinity between the transcription factor TCF7L2 and the MYC promoter, hindering its
expression [98] and therefore supporting a possible place for calcitriol as an inhibitor of
CCAT2 in cancer.

3. CCAT2 as a Potential Biomarker

CCAT2 expression levels and their influence on cancer progression have been assessed
in various cancer types and compared with survival data and prognostic factors, including
proliferation, tumor size, migration, and metastasis (Table 1) [50,136]. Various studies
analyzed the association between CCAT2 expression level in cancer, identifying a direct
association between CCAT2 upregulation and disease progression, invasion, positive
lymph nodes, and metastasis [17,137]. When comparing the tumor tissue with adjacent
normal tissue in solid cancers, CCAT2 expression was upregulated in the tumor tissue,
supporting its role as a potential biomarker [17,137]. A meta-analysis by Jing et al. indicated
the correlations between CCAT2 expression level in tumor tissue and the clinical stage and
outcome and identified a positive correlation between CCAT2 expression level and the risk
of developing distant metastasis, positive lymph nodes, shorter progression-free survival,
and poorer overall survival [138].

CCAT2 expression was reported as being elevated in the plasma of cancer patients with
cervical cancer, gastric cancer, colon cancer, lung cancer, and multiple myeloma [64,80,86,95,139].
The serum expression levels of a 3 lncRNA panel, which includes CCAT2, were able to
distinguish early-stage cervical cancer patients from normal controls, with an area under
the curve of 0.894, 67.1% sensitivity, and 96.1% specificity [95]. Therefore, this model
validates a simple non-invasive procedure that has the potential to use serum samples to
better identify early-stage cervical cancer. In gastric cancer, CCAT2 was investigated as
part of a 5 lncRNAs (TINCR, CCAT2, AOC4P, BANCR, and LINC00857) plasma panel.
Their lncRNA-based index managed to outperform the CEA-based index (p < 0.001) when
distinguishing gastric cancer patients from healthy patients. Additionally, the expression
levels of the lncRNAs part of the index decreased post-surgically, suggesting their role in
dynamic monitoring of the patients for relapse [64]. In multiple myeloma, CCAT2 was
upregulated in both peripheral blood and bone marrow when comparing patients with
healthy controls. The CCAT2 expression level was correlated with International Scoring
System stages, kidney function, and light chain concentrations. Moreover, when CCAT2
expression level was associated with classical multiple myeloma biomarkers such as IgA,
β2MG, and HGB, the area under the curve (AUC) was significantly improved up to 0.974
(95% CI 0.958~0.990; p < 0.001). In addition, integrating the CCAT2 expression with classical
biomarkers improved the sensitivity and specificity of multiple myeloma diagnoses [86].

In CRC, CCAT2 was investigated as part of 10 lncRNAs panels including CCAT1, H19,
HOTAIR, HULC, MALAT1, PCAT1, MEG3, PTENP1, and TUSC7 as potential biomarkers
for early detection of CRC from stool samples. The diagnostic performance of the combined
lncRNA model when distinguishing the CRC from non-malignant samples had an area
under the ROC curve of 0.8554 in the training set and 0.8465 in the validation set [52].
Although more in-depth studies on the intricate regulatory functions of CCAT2 in cancer
are needed, it has the potential to be used as a prognostic biomarker and as a possible
therapeutic target in CRC [50,139,140]. On the other hand, when CCAT1, CCAT2, and MYC
expression levels were assessed as risk factors for predicting early-stage CRC metastasis, the
results were limited for two lncRNAs. Even though, the individual expression of CCAT2
was individually upregulated in CRC tissue when compared with the adjacent control, its
expression did not improve a 19 gene classifier, ColoMet19, previously proposed by the
same authors for early-stage CRC metastasis. Nevertheless, CCAT2 expression was higher
in metastatic patients compared with metastatic negative patients. Even though these
results support the differential expression of CCAT2 in CRC samples when comparing with
normal tissue and in metastatic vs non-metastatic CRC, they show that when integrating
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the CCAT2 expression level into the global genomic alterations that occur in cancer, its role
fails to significantly influence the previously described ColoMet19 predictor [54].

4. Conclusions

The role of CCAT2 in either initiating or promoting the oncological phenotype of
multiple cancer types is still an expanding niche in the area of tumor-associated non-
coding RNAs. Currently, the main highlighted and reoccurring regulatory interactions
with tumor-promoting signaling pathways are Wnt/β-catenin and MYC. Additionally,
novel insight regarding CCAT2’s implication in promoting cancer-associated genomic
instability hints towards the multiple implications of these transcripts across the various
types of cancers associated with chromosomal abnormalities. It is worth mentioning both
the direct (ceRNA activity) and indirect (transcriptional regulation) interactions with other
species of ncRNAs, especially miRNAs, which add a layer of complexity in the regulatory
axis in which CCAT2 is involved. In most described studies, CCAT2 was highlighted
as a transcript with both biomarker and prognostic potential, as its overexpression was
correlated with poor prognosis, presence of metastases, and reduced progression-free and
overall survival. Therefore, CCAT2 could be considered a valuable pan-cancer biomarker
that is associated with a more aggressive disease course, one with potential as a therapeutic
target of new treatments or for use in strategies for overcoming chemoresistance and
radioresistance [136–138].

Although most studies offer similar results regarding CCAT2 expression in cancer
tissue and adjacent control, with significant differences between the study samples, recent
studies on Saudi and Iranian populations that investigated CCAT2 expression in CRC and
lung cancer failed to reproduce the results. The divergence in results should be further
investigated in similar populations or studied in a larger sample to understand whether the
cause was due to study sample characteristics or due to differences in etiology or lncRNA
signatures [51,79].
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