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Bioinformatics approaches are becoming ever more essential in translational drug discovery
both in academia and within the pharmaceutical industry. Computational exploitation of the
increasing volumes of data generated during all phases of drug discovery is enabling key
challenges of the process to be addressed. Here, we highlight some of the areas in which
bioinformatics resources and methods are being developed to support the drug discovery
pipeline. These include the creation of large data warehouses, bioinformatics algorithms to
analyse ‘big data’ that identify novel drug targets and/or biomarkers, programs to assess the
tractability of targets, and prediction of repositioning opportunities that use licensed drugs
to treat additional indications.

Introduction
Recent estimates suggest that it takes approximately 13 years and a ‘capitalized’ cost of approximately
US$1.8 billion to bring a new drug to the market [1]. This cost includes the development of the licensed
drug, and also incorporates the cost of the compounds that failed to make it to the market. Projects can fail
in all the different steps of drug discovery process and in particular, during the later stages of development.

Common reasons for this high attrition rate include lack of clinical efficacy of the potential drug (ap-
proximately 30%), unexpected toxicities (>20%) as well as the inherent commercial concerns (>20%) of
being able to successfully position a new drug within a competitive market [2].

Reducing costs and amount of time required for each of the different steps in the drug discovery pipeline
is the key to deliver better drugs to patients in a timely manner [3]. One approach that has the potential to
increase the efficiency of the drug discovery process involves maximizing the information acquired from
the basic science. Translational drug discovery involves the effective conversion of advances in basic bio-
logical and chemical science research into the production of new drugs and treatment options for patients,
i.e. the development of new drugs from ‘bench-to-bedside’. Translational approaches also come with the
additional benefits of enabling new treatments and research knowledge to reach the patient subpopula-
tions for whom they are intended, inform better clinical trial design, and help to reduce the often severe
side effects of treatments. Figure 1 sets out the steps of the process and the bioinformatics techniques that
can be brought to bear on them.

In this review, we illustrate how the recent advances in computational methods, together with ever
growing access to publicly available medical big data are revolutionizing translational drug discovery, re-
sulting in the development of better drugs and therapies. This revolution is happening both from the clin-
ical perspective of disease or its pathology the ‘disease-based’ approach and from a chemical perspective,
the so-called ‘drug-based’ approach.

Disease-based bioinformatics approaches
Disease-based bioinformatics approaches in translational drug discovery are dependent upon the type of
disease under consideration, with different strategies implemented to analyse cancer, genetic and infec-
tious diseases [5].

Cancer cells are characterized by a diverse set of genetic and epigenetic changes, and by chromosomal
instability. Bioinformatics approaches can be used to identify the key drivers of cancer in each particular
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Figure 1. Translational bioinformatics opportunities in the drug discovery pipeline

A schematic diagram of the drug discovery process. Each phase of the drug discovery pipeline (discovery, clinical and postlaunch) is shown

as an orange arrow. Underneath the pipeline, shown as blue rectangles, are the types of ‘big data’ that can be generated in each step of

the pipeline. Highlighted below the data types are the potential opportunities to improve the pipeline using bioinformatics techniques. For

example, during the discovery phase, the focus is on identifying the druggability of potential target proteins. During the clinical trials, phase

personalized medicine and patient selection can be used to better sample and categorize subjects while the use of biomarkers can improve

efficacy measurements. Finally, at the post-launch phase of a drug’s life cycle drug safety monitoring and disease subtyping can be used to

both improve the quality of life for patients as well as help to identify the opportunities for modified interventions that may be more effective

for certain subtypes of a given disease. Adapted from [4], Copyright (2011), with permission from Elsevier.

patient. So, they have the potential to enable a more personalized approach to cancer therapy, paving the way for novel
and repurposed drugs that target specific proteins, killing or disabling just those cells that are diseased [6,7].

Our genetic makeup affects our likelihood of developing a wide range of diseases, our responses to a variety of drug
treatments and the progression of many infectious diseases [8-11]. For genetic diseases, the emphasis of bioinformat-
ics techniques is often on identifying opportunities for gene therapies, as well as identifying noninvasive diagnostic
and prognostic tools.

Bioinformatics is also implemented within translational drug discovery in infectious diseases. For instance, the
presence of viral or bacterial infection gives rise to specific profiles of gene expression within the cell. Comparing
these profiles with those of other diseases and with drug-induced genetic profiles offers repositioning opportunities
for existing drugs [12-16].

Target identification in cancer
Since the human genome was first sequenced, genomic, proteomic and metabolomic high-throughput platforms have
increasingly allowed analyses of large datasets across many different diseases. Data science, machine learning and/or
statistical approaches are used to identify abnormal patterns that correlate with the disease process, often with the
ultimate aim of identifying actionable targets that are druggable [3].

Over 200 forms of cancer have been described [17]. Each involves dynamic changes in the genome, including a
wide range of different genetic aberrations such as somatic mutations, copy number variations, as well as changes
to gene expression profiles, and different epigenetic patterns. Not only do these anomalies vary among cancers, but
there is also a significant variation within patient cohorts within the same cancer, with continuing changes as tumours
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Table 1 Bioinformatics resources to help identify the functional impact of mutations and tools designed to
analyse cancer mutations*

Tool Reference Comments URL

CHASM* [27] Probability that the mutation gives the cells a
selective survival advantage

http:
//wiki.chasmsoftware.org/index.php/Main Page

Condel [28] Combines FATHMM, mutation assessor etc. http://bg.upf.edu/fannsdb/

FATHMM* [29] Distinguishes between cancer promoting and
‘neutral’ germline polymorphisms using hidden
Markov models

http://fathmm.biocompute.org.uk/about.html

Mutation
assessor*

[30] Based on evolutionary conservation of the
affected amino acid in protein homologues

http://mutationassessor.org/r3/

Polyphen-2 [31] Uses straightforward physical and comparative
considerations

http://genetics.bwh.harvard.edu/pph2/

SIFT [32] Based on sequence homology and the physical
properties of amino acids

http://sift.bii.a-star.edu.sg/

TransFIC* [23] Transforms functional impact scores provided by
other tools by taking into account the differences
in basal tolerance to germline single nucleotide
variants (SNVs) of genes that belong to different
functional classes

http://bg.upf.edu/transfic/home

evolve, for instance when tumours develop resistance to specific drugs [18]. The complexity of these changes means
that the application of bioinformatics techniques is often critical in identifying the type of cancer presented, with each
characterized by a different molecular profile that requires a unique therapeutic strategy.

Within the field of cancer research, there are several large repositories storing multiplatform cancer data including
the International Cancer Genomics Consortium (ICGC) [19], the National Cancer Institute Genomics Data Com-
mons (GDC) and The Cancer Gemome Atlas (TCGA) [17]. For example, the GDC [20] provides curated storage for
over 14,531 cases previously curated by the TCGA [17], and this is expected to grow to over 30,000 cases with the in-
clusion of data from Foundation Medicine Inc.. The benefit of such resources is not only the access to raw sequencing
data, but also the application of state of the art methods for generating high level data (e.g. mutation calls, structural
variants etc.), that allow the first steps of analysis to be standardized for reproducibility as well as clinical data. It
provides access to multiple ‘omic’ data types such as mRNA expression, somatic mutations, copy number variation
and protein abundance.

Drawing this information together provides a better molecular characterization and understanding of the biological
basis for diseases. The use of such ‘big data’ to search for novel drug targets splits into several key elements, including
identifying the genes that are driving the cancer, and then determining which of these are actionable.

Identification of genes that may be driving cancer
Within any tumour, only a minority of the genetic changes enable and drive the progression of the disease. The
other mutations provide no growth advantage and are often described as passenger mutations. Vogelstein et al. [21]
identified approximately 140 potential genes that act as drivers of tumorigenesis. However, as the number of analyses
grow so does the list of potentially significant driver genes [22].

A number of methods have developed to separate true driver genes from the more commonly mutated passengers.
One approach (e.g. MutSigCV [18]) is to modify the putative mutation background rate to take in account the replica-
tion time of the DNA region and incorporating information about gene expression levels. In cancers with particularly
high mutation rates, most genetic changes are incidental to the development of the cancer, so it is helpful to assess
the functional impact of modifications. There are a number of existing algorithms that can help with this and these
are outlined in Table 1. These methods use a variety of approaches to predict the tolerance of amino acid substitu-
tions (or indels) within the protein [23] and several were specifically developed to assess the importance of particular
missense mutations within cancer samples [23]. An alternative, powerful approach is to look at the events in a given
genetic pathway. Results from such studies can be easier to interpret as they may suggest causal mechanisms relating
to concepts such as inflammation or DNA damage response [24-26].

Targeting oncogenes and tumour suppressor genes
Bioinformatics can not only help to identify genes that may drive cancer, but can also help to classify them, according
to whether they must be activated (proto-oncogenes) [33] or alternatively inactivated (tumour suppressor genes)
before they cause harm. The patterns of mutations seen in these two classes of genes differ considerably and have
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been used to separate genes between these classes when the biological function of the protein product of the gene in
a cancer setting is still unknown [34-36].

Many targeted anticancer drugs work by directly inhibiting activated oncogenes, particularly proteins that contain
protein kinase domains or proteins that are nuclear receptors [33,37,38]. For example, dabrafenib has been approved
for the treatment of late-stage melanoma, and targets the constitutively activated kinase oncogene BRAF V600E.
Whereas cetuximab, panitumumab, gefitinib and erlotinib are the licensed inhibitors of the EGFR tyrosine kinase
and crizotinib is an ALK inhibitor, all of which are licensed for the treatment of lung cancer [39-42].

A substantively different approach is needed to provide therapies aimed at controlling the damage done by inac-
tivated tumour suppressor genes. It is not usually feasible to repair the protein products of these genes, if they are
inactivated by truncation, although there are on-going attempts to reactivate or restore function to a small subset of
p53 missense mutant proteins [43]. While targeting a tumour suppressor gene, it is now becoming common to look
for a synthetically lethal partner gene that can be drugged. Two genes are said to be synthetically sensitive or lethal
(SSL) if the function of either gene can be disrupted without causing cell death, while alterations in both genes cause
cell death [44]. By drugging synthetic lethal partners, it is possible to target only those cells that have the mutation
while leaving normal cells viable [45,44].

Genes involved in the DNA damage response are prime candidates for synthetically lethal interactions as there are
multiple complementary pathways for repairing DNA [46]. The best example of the therapeutic exploitation of SSLs
is the pharmaceutical inhibition of PARP1 [47], a key enzyme in single-strand break repair (SSBR), which is SSL with
genetic defects in the BRCA1, BRCA2 or PALB2 homologous recombination (HR) proteins observed in hereditary
breast, ovarian, pancreatic and prostate cancers. The furthest progressed PARP inhibitor, olaparib (AZD-2281), was
approved by the EMA and the FDA in late 2014 for BRCA-mutated advanced ovarian cancer patients [48] and is in
further clinical trials for a variety of other SSBR-deficient cancers.

Targeting genes in genetic disorders
Genetic disorders are generally caused by genetic variants that ultimately induce a detrimental change in protein
function within the cell. Genome-wide association studies (GWAS) are undertaken to statistically associate the pres-
ence of particular genetic variations with the onset of disease. Early GWAS, based on linear regression models, were
successful at identifying Mendelian traits [49-52] and disorders that are highly heritable such as coeliac disease [53]
and type-1 diabetes [54,55].

Gene therapies offer a potential way to translate the results from GWAS into new treatments. Early successes were
reported in 2000 for a gene therapy to treat X-linked severe combined immunodeficiency (SCID-X1). However, other
gene therapy trials were placed on hold following cancers caused by insertional mutagenesis associated with the gene
vectors used. More modern vectors have improved safety features, new trials have started [56], and ADA-SCID gene
therapy was endorsed by the European Medicines Agency in June 2016 [57].

GWAS are now frequently employed to identify rare variants that contribute to multifactorial diseases, but it is
harder to identify the relevance of their significance. This is because there are complex confounding factors in the
relationships among individuals, and the relationships among the mutation loci [58,59]. GWAS have not directly iden-
tified the existing drug targets for a disease. However, Cao and Moult [60] suggest that new targets will be discovered
using GWAS, by combining the techniques with protein interaction network data and machine learning.

Increasingly, the data from GWAS are being used as the starting point for a variety of different machine learning
techniques. This work has potential within the clinic to provide noninvasive diagnostic tools. For example, diagnosis
of coeliac disease traditionally requires exposure to the allergen gluten. However, Abraham and Inouye [54] used
genetic profiling to enable the noninvasive prediction of coeliac disease without recourse to gluten sensitivity testing.
Results from 1390 GWAS have been brought together and re-annotated to provide GRASP, a database of over 6.2
million SNP–phenotype associations [61].

Very occasionally, it is also possible to find the deletion of a gene that is associated with unusually good health. The
2010 Longevity Genes Study enabled Barzilai et al. [62] to study the relationship between gene polymorphisms and
age. In particular, longevity was found to be associated with a deletion at in the adiponectin (ADIPOQ) gene.

Infectious diseases
There are many infectious diseases that have no effective treatment or where treatment is only effective for a subset
of the patient population. Moreover, variants of diseases continue to emerge, threatening the progress already made
[63].
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Several bioinformatics approaches have been used to stratify the patient populations. For example, GWAS have
enabled researchers to identify subpopulations that have genetic variants associated with different patterns in disease
progression [63,64]. Alternatively, it is possible to map the gene expression profile that is associated with disease and
compare it with pre-existing profiles that are associated with drugs [65].

In 2015, a large GWAS by the Malaria Genomic Epidemiology Network found that approximately 33% protection
against severe malaria is provided by genetic variants at a novel genetic locus, which is either in or close to genes
encoding the production of glycophorins [66]. Therapies for infections such as HIV have been developed that target
host factors [67] and it is now hoped that the same approach can be taken to improve therapies for malaria [68].

As well as enabling identification of differences between patients, ‘omic’ data can be used to identify distinguish
related strains of viruses and bacteria, both by looking at evolution of the pathogen genomics, and by looking for
changes in the metabolites that they express. For example, the variants of Escherichia coli found in the gut and urinary
tract differ in the expression of two small molecules, yersiniabactin and salmochelin, that are known to support
bacterial survival. Targeting the metabolic pathways or the strains that produce these molecules may provide a good
strategy for preventing recurrent urinary tract infections [69]. Fontana et al. [70] provided a useful overview of this
large and growing area.

‘Omic’ data also provide a fast and cheap way of identifying drugs that have potential for repurposing. The publicly
available Connectivity Map allows easy comparison of any gene expression profile against the expression profile gen-
eration by over 1300 compounds, most of which are drugs that have already been approved for other purposes. The
program calculates a connectivity score, an assessment of the positive or negative correlation between gene expression
signatures [13]. The later DMAP extends this search to over 289,571 chemical entities [71]. In 2010, Josset et al. [14]
identified antiviral agents that are broadly effective against influenza A, a virus noted for its genetic diversity. They
reasoned that a viral infection could be treated by manipulating the cell environment away from the optimal condi-
tions required for the viral life cycle [14]. This approach also has the potential to identify candidate small molecules
to reverse or prevent the biological responses induced by ZIKV infection, which could have therapeutic benefits for
ZIKV-infected individuals [15]. Alternative approaches looked for similarities between two diseases or two drugs by
comparing the induced gene expression profiles [16].

Drug-based approaches
Drug repositioning and open source drug discovery
Repositioned drugs, in which the preclinical and safety studies in humans have already been evaluated, enable a
faster, cheaper and more efficient translation into the clinic [72]. The use of an existing drug for a new condition
is not completely risk free and still requires a drug development phase [72,73]. However, repositioning an already
licensed drug can reduce the drug development cycle from 10 to 17 years to as short a time frame as 3–12 years [74].

Iorio et al. [33] mapped cancer-driven alterations on to human cancer cell lines allowed sensitivity testing with
265 existing drugs. The result of this work is the identification of a series of alterations that result in sensitivity and
resistance to particular drugs, providing datasets that can act as a resource for researchers looking for therapeutic
options for particular cancer subpopulations.

Data sharing, focused around a particular disease or a group of diseases, can also improve the efficacy of drug
discovery and allow links to be made to other related conditions. For example, the Malaria Box provides open access
to information on safety and effectiveness of compounds that kill malarial parasites in vitro, encouraging collabo-
ration between academia and industry [75]. The resulting drug development programmes suggest that some of the
compounds may have much wider therapeutic benefits against other pathogens and have led to the development of a
wider initiative–the Pathogen Box [66]. A similar approach was taken by the TDR targets database that provides data
and predicted druggability relating to tropical disease pathogens [76].

Target tractability
Bioinformatics techniques are also used to assess whether a target is ‘druggable’. By carrying out such analyses in the
early stages of drug discovery, it is possible to reduce the risk of project failure later on in the discovery process [77,78].

Ligand-based druggability
Protein druggability is defined as the protein’s ability to bind small drug-like molecules with high affinity. These
interactions depend strongly on both ways in which the protein is folded in space and other physical attributes of the
protein such as the distribution of charge. The structure of the small ‘drug-like molecule’ is equally important. An
ideal drug should be able to be orally administered in small quantities. Thus, as well as being potent, the drug should
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Table 2 Properties of small molecule drug-like compounds

Lipinkski’s rule of 5 [80]

- Molecular weight �500

- logP �5

- Hydrogen bond donors �5

- Hydrogen bond acceptors (all N and O atoms) �10

Further considerations [81]

- PSA �140 A2

- Rotatable bonds �10

successfully cross both the intestinal and cell membranes, be transportable through the blood, diffuse quickly and
excreted successfully. Potential drugs that do not have these pharmacokinetic properties are a big factor of overall
attrition rates [79]. These properties are well expressed and quantified in Lipinski’s ‘rule of 5’ (see Table 2) [80], and
this can be improved by putting in place further restrictions on the polar surface area (PSA) and the number of
rotatable bonds [81].

Introduced in 2002, the concept of the ‘druggable genome’ identified the genes within the human genome that
coded for proteins that could be modulated by small drug-like proteins [82]. This bioinformatics analysis evaluated the
‘druggability’ in all human proteins by calculating their sequence identity to known therapeutic targets and predicted
that less than 10% of the human proteome was druggable [82]. Of these targets, only 10% are then associated with an
FDA-approved drug. The Illuminating the Druggable Genome (IDG) program aims to provide comprehensive access
to data on these protein targets in order to stimulate research [38].

The ability of a protein to bind drug-like compounds can be assessed by analysing the chemical qualities of known
inhibitors or predicted through virtual screening and docking of inhibitors on these proteins [83]. The CanSAR
database [84] provides a ligand-based druggability scores for human proteins estimated from the chemical prop-
erties and bioactivity parameters of small molecule compounds deposited in the ChEMBL database [85]. The score
is derived from the affinity, diversity, ligand efficiency and other qualities of all compounds tested against both the
target and all its family members [84].

Where enzymes have similar ligand-binding profiles, this can indicate that they have similar function. For exam-
ple, the family of cytochrome P450 enzymes (P450s) play important roles in Mycobacterium tuberculosis. Using
fragment screening, Kavanagh et al. [86] identified similarities in the ligand-binding profile of CYP121A1, which is
known to be important for M. tuberculosis viability, and the orphan enzyme CYP144A1. An assessment of the sim-
ilarities and differences in binding between the two enzymes provides insight into both the function of the enzyme
and potential inhibitors [86].

Hajduk et al. [87] experimentally showed that the druggability of a binding site is related to its ability to bind
small ligands. The same principles were then applied in silico by a virtual screen of over 11,000 fragments on 152
protein-binding sites. This work demonstrated that a small ligand based virtual screen can be effective at predicting
druggability of protein-binding sites [88].

Structure-based druggability
Knowing the 3D structure of a target protein greatly assists small molecule drug discovery, enabling analysis of
the druggability of each protein pocket, virtual docking with small molecules and comparison of similar proteins
[89]. Structure-based druggability calculations starts with a crystallographic or modelled 3D structure. All the
ligand-binding sites on the surface of the protein are identified and the probable druggability of each pocket is assessed
based on physicochemical parameters such as size, shape and hydrophobicity. Results from these tools correlate well
with predictions from NMR screens of fragment libraries [87,90] and drug discovery projects are more likely to fail
if they target proteins that have only low scoring pockets [91].

Methods for identifying pockets either assume that the 3D protein structure is static, employ energy-based al-
gorithms or use molecular dynamics simulations [92]. These techniques have been reviewed [93-95] and the main
algorithms that search for binding pockets have been summarized by Villoutreix and colleagues [95]. The druggabil-
ity of each pocket is then assessed by calculating properties such as hydrophobicity, volume, amino acid composition
and electrostatics, and then using these features to train a machine learning model on validated drug binding/not
drug-binding pockets [90,96-99]. Some of these programmes are automated and score binding pockets on the like-
lihood of their druggability. An overview of these automated druggability assessment methods is summarized in
Table 3. Figure 2 demonstrates the potential to drug the bromodomains BRD1 and TRIM24 using DoGSiteScorer.
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Table 3 Programs that can be used to calculate structure-based druggability

Name References Pocket search method Druggability score
Function Descriptors

fPocket [92] Geometric criteria based on
distance to predetermined points

Partial least square analysis Hydrophobicity, normalized polarity
and local hydrophobicity density

DoGSiteScorer [100] Geometric criteria based on 3D
image enhancement techniques

Support vector machine Depth, volume and relative number
or apolar amino acids

SiteMap [101] Geometric and energetic criteria
on 3D grids

Weighted sum of three
descriptors

Hydrophilicity, degree of enclosure,
number of site points

Figure 2. Prediction of druggable pockets in bromodomains

The acetyl-lysine (KAc) binding pockets of two human bromodomains were identified by DoGSiteScorer. (A) shows the non-druggable KAc

binding site of the bromodomain from TRIM24 (PDB: 2YYN A) (druggability score =0.49). (B) shows the druggable KAc binding site of the

bromodomain from BRD1 (PDB: 3RCW A) ( druggability score =0.68). A score greater than 0.50 is indicative of a druggable pocket [102].

Although the proteins appear indistinguishable to the eye, nevertheless the analysis identifies that BRD1 has a
bromodomain-binding pocket (shown as a mesh) more likely to bind a small molecule.

Understanding the resemblance between binding pockets can aid in the design of target selective compounds,
preventing mistakes in assigning druggability. To aid this understanding, a number of tools have been developed that
compare protein-binding sites by representing binding sites through specific features [95,103,104]. Computational
druggability investigations have also been undertaken to compare and contrast the druggability of binding sites such
as bromodomains that have a similar function [105-108].

Network-based druggability
A number of different networks have been built to represent molecular interactions including drug–target,
drug–drug, drug–disease, protein–protein, transcriptional and signalling networks (for an example, see Figure 3).
Features from these networks can then be used to train machine learning models with a large number of aims.
These range from characterizing drug targets and identifying potential new uses for existing drugs, to predicting
the response of patient subpopulations to drug treatments [109-112]. Similarly, Napolitano et al. [113] used machine
learning to predict the therapeutic class of FDA-approved compounds with repositioning in mind.

Computational drug repositioning in this way is only possible because of the breadth of publicly available big
data sources that integrate pharmacological, genomic, phenotypic, chemical and clinical information (e.g. Drug Bank
[115], ClinicalTrials.gov [116], PharmGKB [117] or PubChem [118]) and contine advances in text mining. Many of
these tools and networks rely on the semiautomatic identification of links among genomic data, specific molecular
pathways and phenology. The development of gene ontological terms has been of particular importance [119] as have
advances in text mining approaches. These have recently been reviewed by Gonzalez et al. [120]. Useful resources for
protein–protein and genetic interactions are set out in Table 4.

Patient stratification and personalized medicine
Next generation sequencing and other ‘omic’ technologies are enabling better identification of a wide range of diseases,
which will eventually lead to targeted therapies and personalized medicines. Personalized medicine can be used not
only in cancer and long-term disorders, but also in infectious diseases.
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Figure 3. Druggable targets in the DNA damage response

This illustrates the protein–protein interaction network of proteins (derived from the STRING database [114]) involved in the DNA damage

response as described in [46]. Each protein is shown as a node/circle with the interaction described as a connecting line. The network is

labelled by some of the DDR processes: HR; UR, ubiquitin response; FA, Fanconi anaemia; NER, nucleotide excision repair, CS, chromosome

segregation; CR, chromatin remodelling. Nodes coloured dark green indicate a protein for which these is a licenced drug, light green nodes

indicate that the protein is a target of a drug in clinical trials. Pink nodes indicate that a protein is predicted to be druggable as it has the

features of a good drug target. Each of these proteins have been predicted to be druggable by the at least two of the druggability methods

(ligand, structure and network) provided by the canSAR database [84]. Adapted from Supplementary Information (figure) S15 [46]. .

Table 4 Web-based databases documenting protein and genetic interactions

Database References Description URL

BioGRID Chatr-Aryamontri et al. [121] Repository of curated genetic and
physical interaction data

https://thebiogrid.org

STRING Szklarczyk et al. [122] Protein–protein interaction data for a wide
range of organisms

https://string-db.org

IntAct Hermjakob et al. [123] Molecular interaction database derived
from literature curation or direct user
submissions

http://www.ebi.ac.uk/intact/

Syn-lethality database Li et al. [124] Cross referenced and annotated resource
for synthetic lethal related research

http://ntu.edu.sg/home/zhengjie/software/
Syn-Lethality

SynLethDB Guo, Liu and Zheng [125] Database of genetic interactions focused
on selective and sensitive anticancer drug
targets

http://histone.sce.ntu.edu.sg/SynLethDB/

Slorth! Benstead-Hume and Pearl [unpublished] Genetic interaction data with a focus on
orthologues and conserved interactions

http://rails.biochem.susx.ac.uk:4000

One of the best known examples of patient stratification currently used in the clinic is the analysis of biomarkers
for patients with breast cancer. There already exists tests and endocrine therapies for patients testing positive for ele-
vated levels of HER2, oestrogen or progesterone and these complement chemotherapy, radiation therapy and surgery,
the current standard-of-care in cancer treatment [126]. This type of characterzation is also being developed for other
cancers enabling the identification of patient cohorts with similar therapeutic needs and potential outcomes. This
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approach can also reduce the use of aggressive therapies where they are not warranted. Hoadley et al. [127] divided
the heterogeneous population of tumours into clinically and biologically meaningful subtypes using the similarity
of molecular profiles. Rubio-Perez et al. [128] developed a pan-cancer strategy for therapy based on identifying al-
terations in driver genes. While only 5.9% of the tumours were treatable using approved drugs following the clinical
guidelines, up to 40.2% could benefit from repurposing existing drugs [128]. A number of other teams have focused
on specific common cancers [129-131]

Patient stratification can also be applied to infectious diseases, where patient response to treatment can have a
strong genetic component. The 2009 GWAS of patient response to treatment for the hepatitis C virus (HCV) found
that a genetic polymorphism near the IL28B gene makes a significant difference to patients’ response to pegylated
interferonα plus ribavirin [132]. Genotyping people with HCV is now common when determining treatment options
[133].

Discussion
The large amount of data generated directly by the drug discovery process that have become publicly available (e.g.
ChEMBL), combined with the disease-based data provided by large consortia (e.g. GDC) mean that there has been
an explosion of computational approaches linking chemical and disease data. Innovative bioinformatics approaches
are already having an impact on the discovery, preclinical and clinical phases of the drug discovery process.

However, the challenges faced by the pharmaceutical industry means that it is becoming crucial to further invest
in the bioinformatics resources required to support and expedite translational drug discovery. Approaches include:
the development of databases and data warehouses that can archive, maintain and integrate large amounts of drug
discovery and biomedical data currently being generated; the development of robust algorithms to enable the analysis
of large and complex datasets; development of tools to enable experimental drug discovery for scientists to easily
access and interpret these data; formal and informal networking tools such as Biostars that enable bioinformaticians
to link up and learn from one another [134].

These type of endeavours will enable a better understanding of how we can use genomics and other ‘omic’ ap-
proaches to classify disease, improve diagnoses and inform new approaches to drug repositioning. They will allow
us to identify disease biomarkers and genetic variants which correlate well with patient outcomes, and use them to
improve therapeutic strategies.
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