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Infants and small children are more exposed to acrylamide 
toxicity. The toxicity is due to low body weight and high 
consumption of snacks (their acrylamide intake is estimated 
to be 2- to 3-fold higher than adults) [5]. Dietary acrylamide 
intake caused reproductive toxicity [6], genotoxicity, and 
neurotoxicity [7]. It may increase the risks of kidney and 
breast cancer [8]. Neurotoxic effects of acrylamide have been 
established in humans and animals [9]. Many researchers 
proved the effect of high-dose acrylamide exposure on the 
development of the nervous system; however, few study 
proved  the effect of it on the development of the spinal cord 
[10]. There are several reports that antioxidant agents could 
rescue neurotoxicity induced by acrylamide via increasing 
antioxidant activity [11]. Rosemary (Rosmarinus officinalis) 
is a herb, composed of dried leaves and flowers, commonly 
used as a spice and flavouring agents in food processing for 
its desirable flavor [12]. It has anti-inflammatory [13] and 
antispasmodic [14] effects. In addition, it has antimicrobial 
[12] and antitumor [15] activities. Carnosic acid, a rosemary 

Introduction

From 2002 onward, Food and Drug Administration 
(FDA) warned crunchy, fried strips of potato consumers from 
excess use as it contained carcinogen material [1]. Frying, 
roasting, or baking of foods at temperatures above 120oC 
resulted in a formation of a high amount of acrylamide’s 
toxic compound [2]. Acrylamide has multiple chemicals and 
industrial applications [3]. These included gel electrophoresis, 
papermaking, and the manufacture of permanent press 
fabrics, manufacture of dyes and other monomers [4]. 
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phenolic component has been protecting cortical neurons 
from glutamate and the brain from middle cerebral artery 
occlusion/reperfusion injury [16]. Rosemary extracts exhi
bited very high antioxidant activity, almost equal to that of 
synthetic antioxidants [17]. The main objective of this work 
was to address the oxidative stress of acrylamide on the 
development of the spinal cord motor neurons in new-born 
rats and protective role rosemary as antioxidant.

Materials and Methods

Chemicals
Acrylamide was obtained from a product of leucon Sto 

SPP (Sigma-Aldrich, St. Louis, MO, USA). It was available in 
the form of white powder (99% purity) and dissolved in 1 ml 
distilled water [18]. It was given to rat as 10 mg/kg/day (i.e., 2 
mg; 0.2 ml/rat) by oral gavage [19]. 

Rosemary was obtained from a local market as green 
leaves. The air dried leaves were powdered. Ten grams of 
dried plants was dissolved in 100 ml of distilled water after 
boiling for 5 minutes. After cooling and passing through filter 
paper, a clear solution was obtained [20]. During 24 hours of 
preparation, the extract was given to rats as (220 mg/kg, i.e., 
44 mg; 0.44 ml/rat) by oral gavage twice weekly [21].

Animals
Twenty-five sexually mature female albino rats and five 

male albino rats (for mating) of Sprague-Dawley strain, 
weighing between 200–250 g (8–9 months of age) were 
obtained from El Helw animal house, Tanta, Egypt. The 
rats will be kept in cages with particular care and hygiene, 
artificial light/dark cycle 12 hours, at room temperature 
(25±2oC) and standard laboratory chow and water ad labium. 
The procedure approved by the ethics committee on the 
animal experiment of the Faculty of Medicine, Menoufia 
University according to the international regulations on 
care and use of laboratory animals. Each five of them were 
housed overnight with a sexually mature male albino rat for 
mating, and every morning vaginal smears were taken and 
microscopically examined for the presence of sperms. The 
first day of gestation was corresponding to the detection of 
sperms in the smears.

144 new born babies were labelled into four groups as 
follows.

Group I (control group): pregnant rats were given saline 
(normal group). The new-born were sacrificed at the age of 

1-, 7-, 14-, 21-, and 42-day postnatal (6 rats each) and this 
corresponding to subgroups Ia, Ib, Ic, Id, and Ie, respectively.

Group II (rosemary group): pregnant rats were adminis
tered a rosemary from day 7 of gestation until day 28 after 
birth. The new-born were sacrificed at the age of 1-, 7-, 14-, 
21-day postnatal (6 rats each) and this corresponding to 
subgroups IIa, IIb, IIc, and IId, respectively.

Group III (acrylamide group): pregnant rats were adminis
tered acrylamide from day 7 of gestation until day 28 after 
birth. The new-born were sacrificed at the age of 1-, 7-, 14-, 
and 21-day postnatal (6 rats each) and this corresponding to 
subgroups IIIa, IIIb, IIIc, and IIId, respectively.

Group IV (protected group): pregnant rats were adminis
tered acrylamide and rosemary from day 7 of gestation 
until day 21 after birth. The newborn were sacrificed at the 
age of 1-, 7-, 14-, and 21-day postnatal (6 rats each) and 
this corresponding to subgroups IVa, IVb, IVc, and IVd, 
respectively.

Group V (recovery group): pregnant rats were adminis
tered acrylamide and rosemary from day 7 of gestation until 
day 21 after birth. After weaning 6 rats new-borns were 
separated from their mothers and allowed for free water untill 
the age of 42 days.

Postnatal investigations
The newborns were investigated by the experimenter, and 

the following notes were recorded in each group (6 new
borns).

Daily:
- The appearing time of fur.
- The opening time of ear.
- The opening time of eye.
Weekly:
- Weights in gram.
- Head length, head-rump length and tail length in centi

metre [22].
- Gait score examination: rats were placed in a clear glass 

box and observed for 3 minutes. Following observation, a 
gait score was assigned from 1 to 4 (Table 1) [23].

Light microscopic study
At the end of each detected period. The rats were anesthe

tized by diethyl ether inhalation. Lumbar segment of the spinal 
cord was fixed in 10% buffered formalin (pH 7.4) for 48 hours. 
The tissue was dehydrated in ascending ethyl alcohol followed 
by two changes of xylene. The tissue was impregnated in 
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paraffin wax and then embedded in paraffin wax. Sections (5 
µm) were cut, dewaxed, hydrated and stained with hematoxylin 
and eosin, silver and toluidine blue stain [24].

Immunohistochemical study
For the immunohistochemical study, the spinal cord 

paraffin sections were deparaffinized and rehydrated in 
descending grades of alcohol. Following blocking of endo
genous peroxidase activity with 3% H2O2 in methanol and 
nonspecific binding sites with a protein blocker, the primary 
antibody (1:500, neurofilament [NF]; 1:300, myelin basic 
protein; Abcam, Cambridge, MA, USA) added with overnight 
incubation in a cold room. On day 2, the biotinylated secon
dary antibody (Vector, Peterborough, UK) was added at 
a concentration of 2% for 30 minutes (37oC) followed by 
addition of the avidin-biotin-peroxidase complex (Vector). 
All steps were performed at room temperature in a humidity 
chamber [24]. 

Biochemical assay 
For determination of antioxidant enzymes, segments from 

lumbar part of the spinal cord were removed and homo
genized in potassium phosphate buffer solutions (50 mM, 
pH 7.5) using a Potter-Elvehiem homogenizer to give a 10% 
homogenate. Homogenates were centrifuged at 1,500 ×g for 
10 minutes at 4oC; the supernatant was recovered, placed on 
ice, and immediately used for the determination of peroxidase 
and superoxide dismutase (SOD). The activity of SOD was 
determined calorimetrically according to the method of 
Marklund and Marklund [25]. While peroxidase activity was 
determined according to the method of Kar and Mishra [26].

Molecular study: Comet assay for motor neuron cell [27]

Preparation of motor neuron cell suspensions:
Spinal cords were isolated from rats that were anesthetized 

deeply with a mixture of enflurane:oxygen:nitrous oxide (1:33: 

66) and then decapitated. After removal of the pia matter, 
lumbar/cervical enlargements were dissected segmentally 
under a surgical microscope and then the segments were 
microdissected into gray matter columns of the ventral 
horn without appreciable contamination of dorsal horn 
and surrounding white matter funiculi. Gray matter tissue 
columns from spinal cord were collected and rinsed in a cell 
culture dish on ice containing dissection medium (1Ca2+ and 
Mg2+-free Hanks balanced salt solution [Gibco BRL, Grand 
Island, NY, USA] supplemented with glucose and sucrose). 
These tissues were used to prepare motor neuron cell suspen
sions.

Encapsulation:
A volume of 50 μl cell suspension (containing ~4.4×104 

motor neurons) was added to 200 ml 0.7% low melting point 
agarose at 4oC, and then layered onto a pre-coated micro
scopic slide with 100 μl of low-melting-point agarose and 
covered with a coverslip. The agarose was gelled at 4oC, and 
then the coverslip was removed. The slides were immersed 
in lysing solution (2.5 M NaCl, 100 mM EDTA, 10 mM Tris-
HCl buffer, pH 10, 1% sodium sarcosinate with 1% Triton 
X-100 and 10% DMSO; Sigma-Aldrich) for ~1 hour.

Electrophoresis:
The slides were washed with distilled water to remove all 

salts and then placed in a horizontal gel electrophoresis unit 
(CBS Scientific, San Diego, CA, USA) filled with fresh electro
phoretic buffer (1 mM disodium EDTA and 200 mM NaOH, 
pH 13). 

Electrophoresis was conducted for 20 minutes at 25 V and 
300 mA. Slides were then stained with ethidium bromide 
(Sigma-Aldrich). Slides were examined with a Carl Zeiss 
fluorescent microscope (Jena, Germany) equipped with a 510 
nm excitation filter and a barrier filter of 590 nm. In damaged 
cells, breaks appear as fluorescent tails extending from the 
core towards the anode. The tail length reflects the amount of 
DNA breakage in the cell [28]. 

Quantitative study
By using Image analyzer software (Image J 1.47v, National 

Institute of Health, Bethesda, MD, USA) (Department of 
Anatomy and Embryology, Faculty of Medicine, Menoufia 
University) the following parameters were calculated.

(1) Number of motor neurons and the number of neuroglia 
cells (the neurons were differentiated from glial cells by glial 

Table 1. Criteria for gait scoring
Score Behavioral index

1 A normal, unaffected gait
2 A slightly affected gait (foot splay, slight hind limb weakness, and 

spread)
3 A moderately affected gait (foot splay, moderate hind limb weakness, 

and moderate limb spread during ambulation)
4 A severely affected gait (footsplay, severe hind limb weakness, dragging 

hind limbs, and inability to rear)
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nuclei diameter <5 µm).
(2) Color intensity of Nissl granules and the surface area 

of the brown color of NF and myelin basic protein (MBP) 
immunohistochemistry.

(3) The migrated nuclear DNA was considered as a dam
aged DNA spot. The migration was evaluated by measuring 
the basal nuclear DNA and migrating DNA. In 50 randomly 
selected cells per sample, the used comet parameters for 
the evaluation are tail length, tail DNA% and tail moment. 
The tail length was measured from the center of the nucleus 
towards the end of the tail, the percentage of DNA in the 
tail DNA% and tail moment (Tail moment=Tail length×Tail 
DNA%) [29].

Statistical analysis
SPSS version 20 (IBM Co., Armonk, NY, USA) was used 

for the statistical analyzes. The data were analyzed using 
Mann-Whitney test and Kruskal-Wallis test followed by Post 
hoc test to compare various groups with each other. Results 
were expressed as mean±SD. The level of significance was 
expressed as P>0.05 for insignificantly [30].

Results

General developmental observations
Signs of acrylamide toxicity were observed postnatally in 

the treated mothers. It represented by ataxia, splayed hind 
limbs, weakness of the hind limb muscles, and paralysis. The 
limb weakness decreased both food and water consumption. 
There were no significant changes in all tested parameters of 
the offspring of control/rosemary groups. Neither congenital 
anomalies nor deaths were reported in-between offspring. 

Body weight:
There was a significant increase in body weight with a 

progression of age (P<0.05). In an acrylamide-treated group, 
the increase in body weight was significantly lower than a 
control group (P<0.05). While supplementation of aqueous 
rosemary extract with acrylamide led to an extremely signifi
cant increase in body weight with age (P<0.001) when 
compared with acrylamide-treated rats. Also, acrylamide 
withdrawal resulted in significant increase in body weight 
(P<0.05). However, it was still significantly lower than the 
control group (Fig. 1).

Developmental landmarks: 
At birth, the newborns of all groups were hairless. The 

time of fur appearing and both ear and eye opening were 
significance retarded in the acrylamide-treated group (P<0.05) 
when compared with that of the control group. In the 
protected group, the developmental parameters showed signi
ficantly earlier development (P<0.05) when compared with an 
acrylamide-treated group (Fig. 2).

Gait scores: 
At birth, all rats were unable to walk except at the age of 

the 12–13 day postnatal. Rats of the acrylamide-treated group 
showed a significant increase in gait score from day 14 to day 
21 (P<0.05) when compared with control group. However, 
this change significantly decreased (P<0.05) when rats treated 
by rosemary with acrylamide, it was significantly low at day 
14. Also, withdrawal of acrylamide for three weeks led to a 
decline in gait score but still significantly higher when com
pared with control group (Fig. 3).
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Skeletal landmarks:
Both control and rosemary groups showed a steady increase 

in head length, cervical rump length and tail length with 
age. In acrylamide group, the head length of acrylamide rats 
significantly decrease (P<0.05) than the control group at the 
age of 14 days. The cervical rump was significantly decrease 
(P<0.05) from control group from day one to day 14. It became 
pronounced at day 21 (P<0.001) and tail length significantly 
decrease (P<0.05) at day 21. Rosemary supplementation was 
significantly increase (P<0.05) in the tail length cervical rump 
in acrylamide rats at day 1 and that increase (P<0.001) from 
day 7 inward. Also, withdrawal of acrylamide for three weeks 
led to increasing in three parameters but still significantly 
lower when compared with control group (Table 2).

Tissue biochemical results
Both control and rosemary treated animals showed no sig

nificant differences (P>0.05). With the advancement of age, 
both groups showed a significant decrease in the spinal levels 

of an antioxidant marker (SOD) and increased in the content 
of peroxidase as compared with controls (P<0.05).

With the advancement of age and compared with controls 
group, the acrylamide-treated rats showed a significant de
crease in the spinal levels of an antioxidant marker (SOD) 
and an important increase in the content of peroxidase (P< 
0.001). Rosemary administration to acrylamide-treated (pro
tected group) rats resulted in a significant rise in SOD and a 
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Table 2. Mean skeletal landmarks in newborn rats in the different studied groups

Group Subgroup
Head length

(cm) 
Cervical rump 

length (cm)
Tail length

(cm)
Control Ia 1.74±0.114 2.48±0.0837 1.56±0.0894

Ib 2.38±0.084 3.56±0.1817 3.14±0.3507a)

Ic 2.58±0.083 4.84±0.2408a) 5.24±0.4450a)

Id 2.74±0.055 5.56±0.1517a) 6.42±0.2588a)

Ie (day 28) 2.81±0.062 6.84±0.1346a) 9.14±0.3250a)

Ie (day 35) 2.85±0.131 7.83±0.2132a) 10.32±0.2360a)

Ie (day 42) 2.90±0.152 8.68±0.1517a) 12.42±0.2588a)

Rosemary IIa 1.68±0.109 2.42±0.0837 1.57±0.1517
IIb 2.42±0.130 3.52±0.2280 3.15±0.5119
IIc 2.60±0.071 4.90±0.2345 5.23±0.3937
IId 2.70±0.071 5.34±0.1817 6.40±0.3082

Acrylamide IIIa 1.54±0.114 2.28±0.0837b) 1.34±0.2302
IIIb 2.28±0.084 2.66±0.1673a),b) 2.90±0.3391a)

IIIc 2.46±0.055 3.20±0.1871a),b) 4.68±0.2775a)

IIId 2.50±0.071a),b) 4.10±0.1304a),d) 5.72±0.3493a),b)

Protected IVa 1.70±0.123 2.46±0.1517c) 1.46±0.0548
IVb 2.340±0.055 3.58±0.2280a),e) 2.99±0.3421a)

IVc 2.50±0.114 4.26±0.1517a),e) 5.08±0.3647a)

IVd 2.67±0.084c) 5.18±0.1643a),e) 6.01±0.2881a),c)

Recovery V (day 28) 2.59±0.058f) 5.10±0.1245f) 6.52±0.3410f)

V (day 35) 2.62±0.076b) 6.01±0.1421b) 7.910±0.4653a),b)

V (day 42) 2.67±0.084b) 6.80±0.3912b) 9.31±0.6419a),b)

Values are presented as mean±SD. a)A significant difference between successive 
days (P<0.05). b)A significant difference from control (P<0.05). c)A significant 
difference from acrylamide (P<0.05). d)A significant difference from control 
(P<0.001). e)A significant difference from acrylamide (P<0.001). f)A significant 
difference from control (P<0.001).

Table 3. Mean peroxidase, SOD in spinal cord tissue of rats’ newborn in the different studied groups
Parameter Group/Time D1 D7 D14 D21 D42

Peroxidase (U/g) Normal 71.9±1.5 74±0.30a) 74±0.40 76±1.80a) 76±1.1
Rosemary 71.00±2 74±0.56a) 74±0.66 76.1±1.55a) -
Acrylamide 50±0.8c) 53±0.21b),c) 55.2±0.73b),c) 56.8±00.47b),c) -
Protected 68±1.7d) 70±1.54a),d) 71.9±1.01a),d) 72.09±0.88a),d) -
Recovery - - - - 71.4±0.1c)

SOD (U/g) Normal 33.01±0.60 31±1.00a) 31±1.84 28±1.46a) 26±18.6a)

Rosemary 33.96±1.20 31.8±0.40a) 31.8±0.48 27.8±1.69a) -
Acrylamide 16.1±0.40c) 13.5±1.60c) 12±0.50a),c) 10.5±1.65a),c) -
Protected 31.01±2.9a),d) 29±0.95a),d) 27±2.39a),d) 26.2±0.77a),d) -
Recovery - - - - 16±20.5c)

Values are presented as mean±SD. SOD, superoxide dismutase. a)A significant difference between successive days. b)A significant difference between successive days 
(P<0.001). c)Significant difference from control. d)Significant difference from acrylamide (P<0.001). 
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significant decrease in the peroxidase level when compared 
with acrylamide-treated rats (P<0.001). Withdrawal of acry
lamide (recovery group) ameliorated both parameters but still 
a significant difference from control (P<0.001) (Table 3).

Histopathological results

Control and rosemary treated groups:
At birth, histological sections of the control, as well as 

the rosemary groups, revealed that anterior horn cell of the 
spinal cord showed numerous well-differentiated motor 
neurons in-between scattered small capillaries and different 
forms of neuroglia. With age advanced, the neurons became 
more basophilic. It showed a significantly increase in number 
and size (P<0.05) while neuroglia cells showed significantly 
decrease in number (P<0.05) (Table 4, Fig. 4A–E).

The motor neurons of anterior horn cells had a central 
vesicular nucleus with an eccentric nucleolus, partially myeli
nated axons with no-dendrites. The oligodendroglia, astro
cyte, and microglia represented the presented neuroglia. 
With advanced age, the neurons acquired small dense gra
nules, long branched dendrites, and long myelinated and 
nodded axons. Many microglia were reported in early age 

while oligodendroglia became more numerous with the 
advancement of age (Fig. 5A–E). With advanced age, the 
neurons acquired small dense granules, long branched 
dendrites and long myelinated and nodded axons. Many 
microglia were reported in early age while oligodendroglia 
became more numerous with the advancement of age (Fig. 
5A–E).

Acrylamide group:
In comparing with control, the anterior horn cell sections 

at day 1 revealed non-significant decrease (P>0.05) in 
differentiated motor neurons number and size and significant 
increase (P<0.05) in neuroglia cells. The neuropil showed 
small vacuolation, hemorrhage, dilated congested capillaries. 
With the increase in age, the neurons showed a steady 
decrease in number and size marked at day 21 (P<0.001 and 
P<0.05, respectively). The neuropil showed a significant 
increase in neuroglia that became marked (neurogliosis) at 
day 21 (P<0.001). A concomitant increase in vacuolation, 
congestion and neuronophagia were noticed (Table 4, Fig. 
4F–I).

Acrylamide rats motor neurons at day 1 showed either 
neurofibrillary tangle or early central chromatolysis (eccentric 
nucleus and homogenous cytoplasm) and segmental demyeli
nated, slight swollen axons. With an increase in age, the motor 
neuron showed extensive pathological future as: end stage 
chromatolysis, degenerated pyknotic neurons, attenuated 
dendrites, and giant swollen destructed axons with an irre
gular myelin pattern. A remarkable number of astrocytes, 
many microglia cells also noticed (Fig. 5F–I).

Protected group:
In compare with acrylamide group, rats of protected group 

showed, with age increase, significant increase and a decrease 
(P<0.05) in the number of motor neurons and neuroglia 
respectively starting from day 1. From day 14, the neurons 
size began to show significant increase (P>0.05). The archi
tecture of ventral horn showed noticed improvement with 
few areas of vacuolation, vascular congestion, and few dege
nerated cells (Table 4, Fig. 4J–M). Some neurons showed with 
short dendrites, and slight swollen destructed and demyeli
nated axons (Fig. 5J–M).

Recovery group:
In compare with acrylamide group, the recovery rats 

showed significantly increased number and size of motor 

Table 4. Mean neuron and neuroglia parameters in the different studied groups
Group Subgroup No. of neurons Neuron size No. of neuroglia

Control Ia 59.400±9.290 7.400±1.1401 372.4±4.224
Ib 48.400±2.704a) 16.400±1.140a) 358.8±8.928a)

Ic 36.400±3.435a) 31.440±1.304a) 333.6±13.885a)

Id 26.200±3.272a) 44.600±1.817a) 293.3±3.162a)

Ie 9.600±1.489a) 49.800±1.483a) 259.2±6.140a)

Rosemary IIa 59.60±3.432 7.600±1.345 371.5±2.315
IIb 48.80±2.321b) 16.60±1.804b) 354.2±6.954b)

IIc 36.80±2.345b) 31.84±1.568b) 330.4±11.11b)

IId 26.40±1.431b) 45.2±1.805 290.6±12.390b)

Acrylamide IIIa 55.400±5.320 7.0±1.225 470.4±3.435c)

IIIb 43.800±0.84c),f) 15.6±0.894f) 433.2±9.094c),f)

IIIc 30.400±1.95c),f) 28.2±1.924c),h) 383.5±12.69c),h)

IIId 18.80±3.3g),h) 39.0±0.707c),f) 369.4±14.2c),f)

Protected IVa 59.000±5.240d) 7.2±1.304 410.2±4.796d)

IVb 47.400±1.743d),f) 16.200±1.862f) 371.8±16.30d),f)

IVc 33.600±2.881d),f) 30.400±1.140d),f) 351.6±17.994d),f)

IVd 21.000±1.58d),h) 41.200±1.643f) 304.56±10.32d),f)

Recovery V 6.400±1.343e) 43.800±1.483e) 302.4±17.155e)

a)A significant difference between control groups. b)A significant difference 
between different ages rosemary group. c)A significant difference of acrylamide 
from control group (P<0.05). d)A significant difference of protected from 
acrylamide group (P<0.05). e)A significant difference of recovery from control 
group (P<0.05). f)A significant difference between two successive ages. g)A 
significant difference of acrylamide from control group (P<0.001). h)A significant 
difference between two successive ages (P<0.001). 
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neurons (P<0.05) and significant decrease in neuroglia 
number (P<0.05). Although the general architecture showed 
improvement great areas of vacuolation, vascular congestion, 
and few degenerated cells were still observed (Table 4, Fig. 
4N) and neurons with short dendrites and visible swollen 
destructed and demyelinated axons (Fig. 5N).

Histochemical and immunohistochemical results

Toluidine blue staining:
At birth, anterior horn control section stained with tolui

dine blue showed motor neurons with round body, defined 

nucleus and clear cytoplasm containing Nissl granule. The 
latter appears as fine scanty faint basophilic granules inside 
the cytoplasm and proximal part of dendrites. Both control 
and rosemary rats showed no significant difference (P>0.05) 
in Nissl granules content and intensity which increased sig
nificantly (P<0.05) with age advancement. Compared with 
the control group at the same age, chronic acrylamide admin
istration showed significantly reduction of Nissl granules 
content and intensity at the age of 21 days (P<0.001). On day 
7 and age forward, protected group showed steady significant 
increase in the Nissl granule content and intensity (P<0.05). 
Withdrawal of acrylamide for 21 days after acrylamide stop
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Fig. 4. Hematoxylin and eosin-stained 
(×400) lumbar anterior horn transverse 
sections in rats with advancement 
of  ag e.  (A–E) Control  rat  shows 
apparent increase in number and size of 
basophilic differentiated motor neurons 
(N) and decrease in undifferentiated 
one. In addition to, decrease in different 
form of neuroglia (G) and scattered 
small capillaries (C). (F–I) Acrylamide 
rat shows decrease in differentiated and 
increase in degenerated neurons (esi
nophilic [e], pyknotic [p]). In addition 
to, neuropil hemorrhage (asterisk) 
vacuolation neuropil (v), dilated con
gested capillaries, and neurogliosis (G) 
and neuronophagia (dashed circle). 
Protected ( J–M) and recovery (N) rats, 
with age advancement, shows show 
similar picture to that of the control 
with few vacuolation, degenerated neu
rons and dilated congested capillaries.
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page showed an increase in Nissl granules content and inten
sity but still significantly lower than the control group (P<0.05)  
(Figs. 6, 7).

NF immunostaining: 
At birth, the pattern of NF expression immunohistochemi

stry stain expression (specific for axonal neurofilament), in 
the anterior horn control sections, appeared as fine scanty 
parallel lines. Both control and rosemary rats showed no 
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F i g .  5 .  S l i v e r  s t a i n e d  ( × 1 , 0 0 0 ) 
lumb ar  anterior  horn trans verse 
sections in in rats with advancement 
of age. (A–E) Control rat shows the 
motor neurons with central vesicular 
nucleus, small eccentric nucleoli ac
quires small dense granules (N), long 
branched dendrites (arrowheads) and 
the myelinated nodded axons (cur
ved arrow). Oligodendroglia (O), 
astrocyte (A), and microglia (m) are 
a lso increased.  Immature neuron 
with indistinct nucleus (U ).  (F–
I) Acrylamide rat shows increase in 
neuron central chromatolysis (ch), 
swollen demyelination axons axon, 
and short dendrites. The degenerated 
oligodendroglia (o), astrocytes (A), 
and microglia (m) are also increased. 
Protected (I–M) and recovery (N) 
rats shows similar picture to that of 
the control group with few reported 
central chromatolysis (ch) especially in 
recovery rat.
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significant difference (P>0.05) in NF protein expression (area 
%) which increased significantly (P<0.05) age advancement. 
Compared with control group, chronic acrylamide adminis
tration showed steady significant decreased in NF expression 
with age and became marked (P<0.001) at the age of 21 days. 
Compared with acrylamide group, at the same age, concomi
tant administration of rosemary with acrylamide significantly 
increase (P<0.001) in NF protein at the age of 7 days. While 
the withdrawal of acrylamide increased NF protein but still 
significantly lower (P<0.05) than a control group (Figs. 8, 9).

MBP immunostaining:
At birth, the pattern of MBP immunohistochemistry stain 

expression (specific for myelin sheath warping axon and 
oligodendroglia) in anterior horn control section appeared 
scanty small fine parallel brown lines or rings. Both control 
and rosemary rats showed no significant difference (P>0.05) 
in MBP content (area %) which increased significantly 
(P<0.05) with age advancement. Compared with the control 
group at the same age, chronic acrylamide administration 
showed significant reduction (P<0.001) of MBP content (area 
%) at the age of 14 days.

Compared with acrylamide group, at the same age, conco
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Fig. 6. Toluidine blue (×1,000) stained 
lumbar anterior horn transverse sec
tions in in rats with advancement of 
age. (A–E) Control rat shows dra
matically increase in Nissl granules. (F–
I) Acrylamide rat shows reduction in 
Nissl granules. Protected ( J–M) and 
recovery (N) rats show upregulation in 
Nissl granules.
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mitant administration of rosemary with acrylamide signifi
cantly increase MBP content in the ventral horn (P<0.05). 
While acrylamide withdrawal showed an increase in MBP 
content but still significantly lower than the control group 
(P<0.05) (Figs. 10, 11).

Single comet assays result
At birth, the pattern single motor neuron comet assay 

was detected morphologically by a faint small tail, morpho
metrically by few % DNA in the tail and mathematically by 
small tail moment value. Both control and rosemary rats 
showed no significant difference (P>0.05) in previous men
tioned three parameters which increased significantly (P< 
0.05) with age advancement. Compared with control groups, 
acrylamide administration showed a steady, significant 
increase in DNA damage (P<0.001) with age. The significant 
increase in tail length, % DNA in tail and tail moment re
presented DNA damage. Compared with acrylamide group 
cumulative concomitant administration of rosemary signi
ficantly improved in DNA by decreasing in tail length, % 
DNA in tail and tail moment. This improvement was more 
pronounced in younger ages (P<0.001) than in older ages 
(P<0.05). Acrylamide withdrawal led to a reduction of DNA 
damage but the tail moment still significantly lower than 
control of the same age (P<0.05) (Table 5, Fig. 12).

Discussion

Great numbers of the population are exposed to acryla
mide toxicity as it formed during baking, grilling, or frying of 

starchy foods [8]. Although the oxidative stress of acrylamide 
in the central nervous systems has been reported [31], its 
effect on the neurons developments takes little attention in 
spite of its crossing the placental barrier [32, 33] and ex
pressed in milk during lactation [34]. As a powerful phenolic 
natural agent, rosemary possessing a protective activity on 
nervous system [16]. In this study, we investigated the effect 
of acrylamide on postnatal development of spinal cord motor 
neurons in new born rats and the possible protective effect of 
rosemary. 

In this study, the maternal acrylamide exposure during the 
gestation and lactation periods proved its toxic developmental 
effects, as it delayed fur appearing and ear and eye opening 
[35]. In addition to its potential teratogenic effects, as it and 
decreased head, crown-rump, and tail lengths [36]. 

As reported in previous studies [37, 38], our study re
ported important clinical signs in acrylamide intoxicated rat. 
This was represented by a decrease in body weight and gait 
disorder. The decrease in the body weight might be due to 
losing of appetite resulted from leptin transport disorders, 
accompanied acrylamide toxicity [39] as well as reduction of 
prolactin of affected mother [40]. While gait disorder might 
be due to the development of neuropathic syndrome (ataxia 
and dragging of hind limb) that recorded to acrylamide 
poison. In our work, this could be supported through (1) 
histopathological changes, neural axon and myelin sheath 
degenerations and accumulation of the neurofilament, (2) 
biochemical increase in oxidation enzyme [41].

The obvious toxic effect of acrylamide on motor neuron 
proved in our study (undifferentiation, degeneration, and 
chromatolysis) might also explain the increased gait score 
and the retardation of sensorimotor reflexes as observed by 
others [42, 43]. As motor activity regulated by the functional 
integration of neuronal activity in various regions of the brain 
and the spinal cord [44]. 

In acrylamide group, the chronic destructive effect on 
new born neuronal axons that accompanied with decreased 
myelin and NF protein were in agreeing with Fleck [45]. Also, 
it disagrees with Takahashi et al. [46] who didn’t observe 
acrylamide developmental neural toxicity in sciatic nerve of a 
new born of a perinatal exposed mother. They assumed this 
to the high plasticity of the nervous tissue and decrease toxic 
through decrease milk of the mother. This discrepancy might 
be due to the different animal species and different plasticity 
of central from the peripheral nervous system. 

In this study, we also approved the apoptotic effect of 
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acrylamide on developing motor neurons in the form of cen
tral chromatolysis and significant DNA destruction by comet 
assay. This might be due to the high-affinity acrylamide 
metabolic glycinamide derivative to form DNA adducts [47]. 

The destructive effect acrylamide on RNA and DNA added 
a more explanation to increased score gait by a decrease in 
new-born's activity through impairing neural protein pro
duction as mentioned by others [40, 48]. This manifested in 
our work through a significant decrease in intracellular Nissl 
granules. 

In acrylamide group, a concomitant significant decline of 

antioxidant enzymes with the developing spinal cord tissue 
damage proved oxidative stress of acrylamide substance. This 
recorded by others [43] who attributed its oxidation effect to 
change in the neuron cytoskeleton or its necrotic membrane 
effect and mitochondrial dysfunction. This developmental 
acrylamide motor neuron toxicity could be cleared by known 
its mode of action as previously mentioned [49]. They said: 
as a soft electrophile acrylamide acts by forming Michael 
adducts with soft nucleophilic sulfhydryl thiolate sites on 
proteins. In our work, this could be obvious in nerve terminal 
protein targets in this work: NF and myelin protein. The 
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Fig. 8. Neurofilament (NF) neuro
filament (×1,000) immune-stained 
lumbar anterior horn transverse sections 
in rats with advancement of age. (A–
E) Control rat shows dramatically 
increase in NF neurofilament. (F–I) 
Acrylamide rat shows reduction in NF 
neurofilament. Protected ( J–M) and 
recovery (N) rats show upregulation in 
NF neurofilament.
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change in the latter might be relevant to the mechanisms of 
the neuro-filamentous axonopathies induced by acrylamide 
as proved by others [50]. Wei et al. [51] added the changes of 
calpain activity as a cause of axonopathy produced by acry
lamide. Collectively, rapidly absorption and distribution of 
acrylamide through the tissue [52] might explain its multi- 
toxicity observed in this study. 

Our result revealed that rosemary extract was able to 
act as a neuroprotective agent against acrylamide-induced 
motor neuron toxicity not only on the through biochemical 
antioxidant effect as well as histomorphological protection 

effect and anti-apoptotic effect. A significant enhancement of 
performance rosemary on central nervous system has been 
proved by others [53]. Rosemary exerted protective effects 
against acrylamide-induced oxidative damage via its detected 
antioxidant properties and decreased lipid peroxidation and 
hence tissue damage. Rosemary might exert its antioxidant 
through the ability to protect cell membranes against attack 
by reactive species through its high concentration of carnosic 
and rosmarinic acid recognized as natural antioxidants. 
Carnosic acid as phytopolyphenol can trap oxygen/nitrogen-
based free radicals. However, as a polyphenol, carnosic acid 
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Fig. 12. Ethidium bromide stained 
comet assay (×40) in motor neuron 
in lumbar anterior horn in rats with 
advancement of age. (A–E) Control rat 
with normal neurons. (F–I) Acrylamide 
rat in increase of damaged neurons. 
Protected ( J–M) and recovery (N) 
rats with downregulation of damaged 
neurons.
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has several enol sites which can ionize to a nucleophilic 
enolate that can scavenge electrophiles such as acrylamide 
and the unsaturated aldehydes (e.g., acrolein, 4-hydroxy-2-
nonenal) that mediate oxidative stress [54]. 

A significant proliferation of neurons detected in the 
protected group might occur due to rosemary neural prolife
rative effect [55]. The regeneration of axon accompanied 
with an increase in NF and myelin protein might be due to 
the enhancement effect of the rosemary extract constitution, 
carnosic acid and carnosol, on nerve growth [15]. As rose
mary, phenolic diterpene produces enhancement of reper
fusion circulation injury [16] and prevents acetylcholine 
breakdown that enhances transmission [56]. The recorded 
improvement in the recovery group comes in line with others 
[57] who observed human neural recovery from acrylamide 
after several months to a year of cessation of exposure. The 
absence of postnatal maternal acrylamide exposure might 
play a role. As well as, the catalyzed of its glutathione conju
gation (N-acetyl-S-cysteine) in the liver, brain, and skin both 
enzymatically and non-enzymatically and its short half-life 
span, as it eliminated in rats urine after about two hours in 
rats [58]. Smaller amounts eliminated via faeces and exhaled 
CO2 [59].

From the results of the present work, we can infer that 
acrylamide has deleterious effects on the postnatal develop

ment of spinal cord motor neurons as clarified by biochemical, 
histopathological, immunohistochemical, and molecular 
changes. Also, rosemary was found to have a protective effect 
against acrylamide toxicity. Therefore, we highly recom
mended rosemary as a promising neuroprotective natural 
agent especially when added to starch frying food.
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