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Abstract: A sulfonated polyimide (SPI)/Nafion blend membrane composed of a designed and
synthesized SPI polymer and the commercial Nafion polymer is prepared by a facile solution casting
method for vanadium redox flow battery (VRFB). Similar molecular structures of both SPI and Nafion
provide good compatibility and complementarity of the blend membrane. ATR-FTIR, 1H-NMR,
AFM, and SEM are used to gain insights on the chemical structure and morphology of the blend
membrane. Fortunately, the chemical stability of the SPI/Nafion blend membrane is effectively
improved compared with reported SPI-based membranes for VRFB applications. In cycling charge-
discharge tests, the VRFB with the as-prepared SPI/Nafion blend membrane shows excellent battery
efficiencies and operational stability. Above results indicate that the SPI/Nafion blend membrane is
a promising candidate for VRFB application. This work opens up a new possibility for fabricating
high-performance SPI-based blend membrane by introduction of a polymer with a similar molecular
structure and special functional groups into the SPI polymer.

Keywords: sulfonated polyimide; blend membrane; vanadium redox flow battery; chemical stability

1. Introduction

Clean and renewable energy sources such as wind and sunlight have gained much
attention due to their low environmental impact, abundant reserve, and extensive distribu-
tion [1]. However, these renewable energy sources are unpredictable and fluctuant with
time and season. Therefore, durable and reliable large-scale energy storage technologies
are urgently needed to store the energy generated from these renewable resources and
smoothly output the stored energy (usually as electricity) on demand [2,3]. The vanadium
redox flow battery (VRFB) is considered as one of the most promising candidates for large-
scale energy storage due to its flexible design, large storage capacity, long cycle life, high
safety, fast response time, and environmental friendliness [4,5]. In the past few decades,
exciting progresses have been achieved in VRFB technologies [6–8].

As one of the key components of VRFB, the proton conductive membrane (PCM) is
used to separate the positive and negative electrolytes and allows the transport of protons
to complete the circuit. An ideal PCM should possess a low vanadium ion permeability,
high proton conductivity, excellent chemical stability, and low cost [9,10]. Currently, the
most widely used PCMs are perfluorosulfonic acid membranes, such as Nafion series mem-
branes from DuPont Co., USA, which possess excellent proton conductivities and chemical
stability [11–13]. However, Nafion membranes are limited in commercial application of
VRFBs due to the following issues. First, serious vanadium ion permeability results in
fast self-discharge of VRFB. Second, poor proton selectivity lowers the battery efficiencies.
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Third, the manufacturing cost (i.e., 500–700 dollar m−2) is high [14,15]. Thus, a series
of sulfonated aromatic polymer membranes, such as sulfonated poly(fluorenyl ether ke-
tone) (SPFEK), sulfonated poly(ether ether ketone) (SPEEK), sulfonated polyimide (SPI),
sulfonated poly(arylene ether ketone) (SPAEK), and sulfonated poly(phenylene sulfide
sulfone) (SPSS) membranes have been investigated intensively as alternatives to Nafion
membranes in VRFBs [16–20]. Among these sulfonated aromatic polymer membranes, the
SPI membranes have shown lower vanadium ion permeability, better proton selectivity
and thermal stability, excellent VRFB performance and lower cost compared to Nafion
membranes [18,21,22]. However, the poor chemical stability of these pure SPI membranes
hinders their further commercial application in VRFBs [23].

In our previous work, a side chain-type fluorinated SPI membrane with trifluo-
romethyl (-CF3) groups and flexible sulfoalkyl pendants showed excellent performance in
VRFB application [24]. However, the chemical stability of this side chain-type fluorinated
SPI membrane is lower than that of commercial Nafion 115 membrane. Fortunately, some
inorganic or organic materials could be introduced into sulfonated aromatic polymers by
blending to prepare blend membranes with high chemical stability and excellent VRFB
performance [25–29]. Therefore, a novel SPI/Nafion blend membrane is fabricated by
using Nafion polymer as a reinforcer to further optimize the physico-chemical properties
of the side chain-type fluorinated SPI membrane in this work due to the following rea-
sons [9,30]. First, the molecular structure of Nafion polymer (i.e., flexible perfluorinated
side chains terminated with sulfonate groups and tetrafluoroethylene backbones) is similar
to that of the side chain-type fluorinated SPI polymer (i.e., flexible sulfoalkyl pendants and
aromatic backbones) as shown in Figure S1, which can provide good compatibility and is
beneficial to the formation of SPI/Nafion blend membrane. In addition, Nafion polymer
possesses good chemical stability, which is beneficial to the stability of SPI/Nafion blend
membrane. Moreover, the abundant electron-withdrawing groups in Nafion polymer can
effectively decrease the overall electron density of SPI/Nafion blend membrane, which
could improve its resistance toward the oxidative species with positive charges in the
VRFB electrolytes [24]. To the best of our knowledge, the SPI/Nafion blend membrane
is prepared by using Nafion polymer as a filler and applied in VRFB for the first time.
In addition, the solubility behavior of SPI polymer and the membrane-forming property
of SPI/Nafion mixed solution are investigated. The chemical structure of SPI/Nafion
blend membrane is characterized and compared with SPI membrane. The comparison
of the physico-chemical properties of SPI/Nafion blend membrane and pure SPI mem-
brane is listed in Table S1. The morphologies and physico-chemical properties of both
SPI/Nafion and Nafion 115 membranes and their VRFB single cell performance are studied
and compared (Table S2). The SPI/Nafion blend membrane shows a significantly lower
vanadium ion permeability, higher proton selectivity, excellent thermal stability, and better
VRFB performance than Nafion 115 membrane. At the same time, the SPI/Nafion blend
membrane also reveals a superior ex situ chemical stability compared to the SPI-based
membranes reported for VRFBs.

2. Materials and Methods

The SPI polymer containing -CF3 groups and flexible sulfoalkyl pendants was synthe-
sized from 1,4,5,8-naphthalenetetra-carboxylic dianhydride (NTDA, Beijing Multi. Tech.,
Beijing, China), 4,4′-diamino-biphenyl 2,2′-disulphonic acid (BDSA, Energy Chemical.
Co., Shanghai, China), 2,2-Bis[4-(4-aminophenoxy) phenyl]hexafluoropropane (HFBAPP,
Changzhou Sunlight Pharmaceutical Co., Ltd., Changzhou, China), 2,2-Bis(3-amino-4-
hydroxyphenyl)hexafluoropropane (APAF, Changzhou Sunlight Pharmaceutical Co., Ltd.,
Changzhou, China), and 1,3-propane sultone (Shanghai Aladdin Industry Co., Shanghai,
China) by high-temperature polycondensation and grafting reactions according to our
previously reported method [24]. Nafion 115 membrane (DuPont Co., Wilmington, DE,
USA) with a thickness of 120 µm was chosen as a reference of Nafion series membranes
because of its proper thickness. A membrane thinner than 100 µm, such as Nafion 211
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(25 µm), Nafion 212 (50 µm), and Nafion 1135 (88 µm), would cause serious vanadium
ion permeability, whereas a too thick membrane such as Nafion 117 (175 µm) with a high
area resistance is not beneficial for the voltage efficiency of VRFBs [31]. Similarly, Nafion
115 membrane was also chosen as a reference by Teng, X.G. et al. [32], Ding, L.M. et al. [33],
and Chen, D.J. et al. [34]. The pretreatment process of Nafion 115 membrane is shown in
Section S1 in the SI.

The SPI/Nafion blend membrane was prepared using a facile solution casting method.
The SPI polymer (2.0 g) was dissolved in 50.0 mL of m-cresol to form a 4% w/v solution.
Subsequently, 4.0 g of Nafion polymer solution (5 wt.%) was slowly added, and then the
mixture was stirred for 24 h to obtain a homogeneous solution. Finally, this homogeneous
solution was cast onto a clean and dry glass plate and kept at 60 ◦C for 48 h to fully
evaporate the solvent and form the SPI/Nafion blend membrane. The SPI/Nafion blend
membrane was peeled off the glass plate and then immersed in 1.0 mol L−1 H2SO4 at room
temperature for 24 h to complete the proton exchange process. Then, the SPI/Nafion blend
membrane was put into deionized water (DI water) for 24 h to completely wash out the
residual H2SO4 and organic solvent and stored in DI water for further use.

It is worth mentioning that the pure SPI membrane was mainly prepared by using
m-cresol as the solvent in previous research [18,21–23,26,27]. Hereinto, we mainly investi-
gated the SPI/Nafion blend membrane by using m-cresol as the membrane-casting solvent
for better comparison in this work. However, additional solvents were also used to dis-
solve the SPI polymer and their effects on the membrane-forming property of SPI/Nafion
mixed solution were briefly studied. In addition, the characterizations of the membranes,
including ATR-FTIR, 1H-NMR, AFM, SEM-EDS, TGA, DMA, physico-chemical properties
and VRFB single cell tests, are described in Section S2 in the SI.

3. Results and Discussion
3.1. Solubility Behavior, Membrane-Forming Property, and Chemical Structure

The SPI polymer needs to be dissolved in an organic solvent before addition of Nafion
solution during preparation of SPI/Nafion blend membrane. Therefore, the solubility
behavior of SPI polymer was investigated by the following method, and the result is
presented in Table 1. About 2.0 g of the SPI polymer and 50.0 mL of a selected solvent were
added into a 100 mL beaker and heated at 40 ◦C for 48 h under mechanical stirring. It is
observed that the SPI polymer can be dissolved in various common organic solvents such
as m-cresol, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N-methyl-2-
pyrrolidone (NMP), and N,N-dimethylacetamide (DMAc) to form clear and homogeneous
solutions. This might be due to the combined effects of ether linkages (-O-) (forming
a different intrasegmental configuration) and -CF3 groups (disrupting the regularity of the
molecular chains) [35]. Besides, the optical photos of SPI/Nafion blend membranes are
shown in Figure 1. The light-brown SPI/Nafion blend membranes are homogeneous, dense
and smooth, suggesting that the corresponding SPI/Nafion mixed solution has excellent
compatibility and membrane-forming property.

Table 1. Solubility behavior of the SPI polymer in various solvents.

Solvent m-Cresol DMSO DMF NMP DMAc Anhydrous
Ethanol Methanol Acetone Deionized

Water

Dissolving
property 3 3 3 3 3 × × × ×

3: completely soluble; ×: completely insoluble.
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Figure 1. Optical photos of the SPI/Nafion blend membranes with a size of 5.0 cm× 5.0 cm fabricated
using (a) m-cresol, (b) DMSO, (c) DMF, (d) NMP, and (e) DMAc as the membrane-casting solvent.

The chemical structures of SPI/Nafion and SPI membranes were characterized by
ATR-FTIR and 1H-NMR, and the results are presented in Figure 2. The strong absorption
bands around 1716.36 and 1675.87 cm−1 are related to the symmetric and asymmetric
stretching vibrations of the carbonyl (C=O) groups in naphthalimide rings [21]. The C-N
asymmetric stretching vibration of imide rings and the vibration of methylene (-CH2)
groups appear at 1348.02 and 1469.52 cm−1, respectively. The absorption bands at 1101.17
and 985.87 cm−1 could be assigned to the stretching vibrations of sulfonic acid (-SO3H)
groups [18]. The absorption peak at 1120.46 cm−1 corresponds to the C-F stretching [24].
Herein, the reflectivity of the peak of the SPI/Nafion blend membrane (67.75%) is lower
than that of the SPI membrane (74.85%), suggesting that the number of C-F bonds in the
SPI/Nafion blend membrane is significantly increased by incorporating Nafion polymer
into the SPI membrane. Besides, the 1H-NMR spectrum of the SPI/Nafion blend membrane
is almost the same as that of the SPI membrane (Figure 2b), because the Nafion polymer
with a perfluorinated structure has no 1H-NMR detectable proton. The 1H-NMR spectral
signals can be reasonably assigned to different protons in the repeated units of the SPI
polymer. The characteristic peak at 8.72 ppm is attributed to the protons (Ha and Hb) in the
naphthalene rings of the SPI polymer. In addition, the signals between 2.0 and 2.8 ppm are
assigned to the alkyl hydrogens (Hk, Hm, and Hl) of the flexible sulfoalkyl pendants. The
appearance of peaks between 7.1 and 8.2 ppm could be assigned to the hydrogen atoms (Hc,
Hd, He, Hf, Hg, Hh, Hi, and Hj) on the benzene rings of BDSA, HFBAPP, and APAF. The
ATR-FTIR and 1H-NMR spectra results show that the chemical structure of the SPI/Nafion
blend membrane is similar to that of the SPI membrane although Nafion polymer has
been incorporated. In addition, the ATR-FTIR and 1H-NMR spectra of the SPI/Nafion
blend membranes prepared using DMSO, NMP, DMF, and DMAc as the membrane-casting
solvents were also investigated (Figures S2 and S3). All these SPI/Nafion blend membranes
have almost the same ATR-FTIR and 1H-NMR spectra, meaning that the membrane-casting
solvent has no obvious effect on the chemical structure of the SPI/Nafion blend membrane.

3.2. Membrane Morphology

The surface and cross-sectional morphologies of both SPI/Nafion and Nafion
115 membranes were investigated using AFM and SEM (as shown in Figure 3). The
peak-valley difference of SPI/Nafion blend membrane is significantly smaller than that of
the Nafion 115 membrane. The surface roughness parameter of the SPI/Nafion blend mem-
brane (Ra = 0.418 nm) is also much lower than that of Nafion 115 membrane (Ra = 1.83 nm).
The surface area differences of the SPI/Nafion and Nafion 115 membranes are 0.110%
and 0.965%, respectively. Besides, the SEM images with different magnifications show
that the surface of SPI/Nafion blend membrane is dense with no pinholes or cracks
(Figure 3b–d), whereas the surface of Nafion 115 membrane is covered with some dents
(Figure 3b′–d′). These results show that the surface of SPI/Nafion blend membrane is
more uniform and smoother than that of Nafion 115 membrane. The SPI polymer has
excellent solubility and membrane-forming property. Thus, the SPI membrane can ob-
tain smooth and uniform surface morphology. Similar results were also reported by
Long, J. et al. and Yang, P. et al. [36,37]. In this work, the blending ratio of Nafion polymer
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is very low (only 10 wt.%), so the surface morphology of SPI/Nafion blend membrane can
maintain smooth and uniform as pure SPI membrane. In comparison, Nafion membrane
exhibits a relatively rougher surface morphology as was observed in a previous report [38].
Moreover, the cross-sections of the SPI/Nafion (Figure 3e–g) and Nafion 115 membranes
(Figure 3e′–g′) are dense at different magnifications. The elements in the SPI/Nafion and
Nafion 115 membranes were also studied by EDS (Figure 3h,h′). The content of F in the
SPI/Nafion blend membrane is much lower than that in Nafion 115 membrane. This
is because only a small quantity of Nafion polymer is introduced into the SPI/Nafion
blend membrane.
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3.3. Rheological Property and Thermal Stability

High mechanical strength could provide long-term durability for the PCM during
the VRFB operation [39]. Therefore, the rheological properties of SPI/Nafion and Nafion
115 membranes were investigated by DMA, and the plots are shown in Figure 4. Storage
modulus is a measure of the stiffness of membrane at a given temperature [40]. The
SPI/Nafion blend membrane has a significantly higher storage modulus in the temperature
range of 25 to 400 ◦C compared to Nafion 115 membrane. The Nafion 115 membrane
becomes rubbery at 242 ◦C, whereas the SPI/Nafion blend membrane retains stiffness
even up to 400 ◦C (with a storage modulus of about 810.6 MPa). The maximum tan δ

value for membrane is taken to represent the glass transition temperature (Tg). The Tg
can be expressed as the temperature of the polymer starting the molecular Brownian
motion [41]. The SPI/Nafion blend membrane has a higher Tg (329 ◦C) compared to
the Nafion 115 membrane (121 ◦C), suggesting that the SPI/Nafion blend membrane
could retain dimensional stability up to 329 ◦C. The SPI/Nafion blend membrane has a
significantly higher storage modulus and Tg compared to Nafion 115 membrane. This is
possibly because that SPI polymer with solid aromatic backbone structure occupies the main
component of SPI/Nafion blend membrane. The introduction of 10 wt.% Nafion polymer
does not affect the rheological properties of SPI membrane. The result is also proved
through the comparison of mechanical properties (tensile strength, Young’s modulus and
elongation at break) between SPI and SPI/Nafion blend membranes.
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(e–g) SPI/Nafion and (e′–g′) Nafion 115 membranes. The EDS analysis of the cross-section of
(h) SPI/Nafion and (h′) Nafion 115 membranes.

In addition, the TGA curves of SPI/Nafion blend membranes fabricated using dif-
ferent membrane-casting solvents (i.e., m-cresol, DMSO, DMF, NMP or DMAc), Nafion
115 membrane, and pure SPI membrane are presented in Figure S4. The thermal stability
of SPI/Nafion blend membranes is slightly lower than pure SPI membrane, resulting from
the incorporation of Nafion polymer with poor thermal stability into SPI membrane. The
Nafion polymer with poor thermal stability could be attributed to its special perfluorosul-
fonic acid molecular structure. The first step for decomposition of Nafion polymer can be
attributed to the flexible perfluorinated side chains terminated with sulfonic acid groups
(-O-CF2-CF2-SO3H), while the second weight loss step can be attributed to the degradation
of main-chain (-CF2-CF2-) units. The O-CF2-CF2- unit has destabilizing effect on thermal
stability of the sulfonic acid group [42]. Besides, the Nafion polymer has low glass transi-
tion temperature, resulting in that its molecular chains are prone to Brownian motion [41].
However, the thermal stability of these SPI/Nafion blend membranes is superior to that of
Nafion 115 membrane. The SPI/Nafion blend membrane fabricated using m-cresol as the
solvent has the highest weight retention among all the tested blend membranes at 800 ◦C,
suggesting that it has the best thermal stability among these blend membranes. This is
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possibly because that m-cresol has the high boiling point, and the evaporation time (48 h)
of m-cresol solvent is longer than that of other solvents including DMSO, DMF, NMP, and
DMAc in the SPI/Nafion blend membrane-forming process. Long evaporation time of
m-cresol could be beneficial to the rearrangement and crystallization of macromolecules,
as a result, the SPI/Nafion blend membrane using m-cresol solvent can obtain a slightly
higher thermal stability [43]. These results suggest that the as-prepared SPI/Nafion blend
membrane is thermally stable enough for VRFB application [44].
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3.4. Water Uptake, Swelling Ratio, Contact Angle, and Mechanical Property

The water uptake (WU) and swelling ratio (SR) of SPI/Nafion and Nafion 115 mem-
branes are illustrated in Table 2. The WUs of SPI/Nafion blend membrane are 16.92% at
20 ◦C and 19.31% at 40 ◦C, which are lower compared with that of SPI membrane (17.78%
at 20 ◦C and 22.22% at 40 ◦C) [24]. This is due to the existence of the strongly hydrophobic
Nafion polymer with a poly(tetrafluoroethylene) main-chain structure in the blend mem-
brane, which is more effective in repelling water molecules [9]. A low SR is beneficial to the
dimensional stability of the membrane. Thus, the through-plane (based on the change of
thickness) and in-plane (based on the change of length) SRs were measured at 20 and 40 ◦C
separately. The through-plane SR (SR∆t) of SPI/Nafion blend membrane is higher than
the in-plane SR (SR∆l) at both 20 and 40 ◦C. The SPI/Nafion blend membrane has a lower
SR∆t (13.52% at 20 ◦C and 17.24% at 40 ◦C) than the SPI membrane (14.51% at 20 ◦C and
17.72% at 40 ◦C) [24]. This could be attributed to the restrained movement of the molecular
chains arising from the enhanced entanglement of the flexible side chains between the SPI
and Nafion polymers [45].

In addition, the contact angles of the SPI/Nafion and Nafion 115 membranes by
using DI water, 3.0 mol L−1 H2SO4 solution, and 1.5 mol L−1 VO2+ + 3.0 mol L−1 H2SO4
solution (i.e., a VRFB electrolyte) as probes are shown in Figure S5. The contact angles
of SPI/Nafion and Nafion 115 membranes have the same order, 3.0 mol L−1 H2SO4 >
1.5 mol L−1 VO2+ + 3.0 mol L−1 H2SO4 > DI water. The water contact angle of SPI/Nafion
blend membrane (87.8◦) is larger than that of SPI membrane (83.5◦), which agrees well
with their WU results [24]. As expected, since Nafion 115 membrane has the lowest WU
(15.28% at 20 ◦C and 17.68% at 40 ◦C), SR∆t (11.96% at 20 ◦C and 16.10% at 40 ◦C), and
SR∆l (2.35% at 20 ◦C and 3.49% at 40 ◦C), it has the largest water contact angle (101.5◦) on
account of its hydrophobic poly(tetrafluoroethylene) main-chain structure [21].
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Table 2. Physico-chemical properties of SPI/Nafion and Nafion 115 membranes: thickness, water uptake, through- and
in-plane swelling ratios, ion exchange capacity, vanadium ion permeability, area resistance, proton conductivity, and
proton selectivity.

Membrane Thickness
(µm) WU/SR∆t/SR∆l (%) IEC (meq g−1) P (×10−7 cm2

min−1) AR (Ω cm2) σ (×10−2 S
cm−1)

PS (×105 S min
cm−3)

SPI/Nafion 45 16.92/13.52/2.57 (20 ◦C)
19.31/17.24/3.87 (40 ◦C) 1.61 1.25 (20 ◦C)

2.23 (40 ◦C) 0.22 2.05 1.64

Nafion 115 120 15.28/11.96/2.35 (20 ◦C)
17.68/16.10/3.49 (40 ◦C) 0.74 13.59 (20 ◦C)

35.97 (40 ◦C) 0.20 6.00 0.44

3.5. Ion Exchange Capacity, Proton Conductivity, Vanadium Ion Permeability and
Proton Selectivity

The ion exchange capacities (IECs) of SPI/Nafion and Nafion 115 membranes are
shown in Table 2. The IEC is an important performance index of PCM [46]. The IEC of
SPI/Nafion blend membrane (1.61 meq g−1) is much larger than that of Nafion 115 membrane
(0.74 meq g−1), meaning that the SPI/Nafion blend membrane can obtain sufficient ionic
exchange groups [22]. The SPI/Nafion blend membrane with an excellent IEC can pro-
vide a satisfactory proton conductivity (σ). The σ values of SPI/Nafion and Nafion
115 membranes are listed in Table 2. The area resistance (AR) of SPI/Nafion blend mem-
brane (0.22 Ω cm2) is slightly higher than that of Nafion 115 membrane (0.20 Ω cm2). This
could be attributed to the structure difference between SPI (with a robust aromatic back-
bone) and Nafion (with a flexible aliphatic backbone). This result means that the VRFB
assembled with SPI/Nafion blend membrane will probably have a higher ohmic loss in the
charge-discharge process [47]. The σ of SPI/Nafion blend membrane (2.05 × 10−2 S cm−1)
is lower than that of Nafion 115 membrane (6.00 × 10−2 S cm−1) because the SPI/Nafion
blend membrane has a slightly higher AR and thinner thickness than Nafion 115 mem-
brane. Besides, the Nafion 115 membrane has a unique micro-phase separation that is
beneficial for the σ [21]. However, the σ of SPI/Nafion blend membrane is twice as large
as the commercially acceptable value of 0.01 S cm−1, meaning that the as-prepared blend
membrane is applicable for VRFB [27].

The vanadium ion permeability (P) is an important performance parameter to assess
the ability of membrane to prevent the crossover of vanadium ions for VRFB applica-
tion [48]. Low P of the membrane can effectively improve the coulombic efficiency of
VRFB. Thus, the rate of VO2+ permeation was measured in a diffusion cell (Scheme S1),
and a linear relationship between the permeated VO2+ ion concentration and time is shown
in Figure 5a. Meanwhile, the Ps of SPI/Nafion and Nafion 115 membranes are listed
in Table 2. The Ps of SPI/Nafion blend membrane are 1.25 × 10−7 cm2 min−1 at 20 ◦C
and 2.23 × 10−7 cm2 min−1 at 40 ◦C respectively, which are much lower compared to
those of Nafion 115 (i.e., 13.59 × 10−7 cm2 min−1 at 20 ◦C and 35.97 × 10−7 cm2 min−1 at
40 ◦C individually). These results can be attributed to two main factors. On one hand, the
VO2+ ion transport channels are narrowed and branched in the SPI polymer. On the other
hand, the chain packing density of SPI/Nafion blend membrane is increased due to the
entanglement between the flexible side chains of SPI and Nafion polymers [24]. Therefore,
the SPI/Nafion blend membrane has a strong ability to suppress the crossover of vanadium
ions between positive and negative electrolytes in the operational process of VRFB.

A PCM is required to possess both high σ and low P [48]. Generally, the proton
selectivity (PS) can evaluate the combined effect of σ and P for a PCM. The SPI/Nafion
blend membrane exhibits an excellent PS (1.64× 105 S min cm−3), which is around 3.3 times
higher than that of Nafion 115 membrane (0.44 × 105 S min cm−3). The SPI/Nafion blend
membrane with a high PS is expected to display outstanding performance in VRFB.

The SPI/Nafion blend membrane exhibits a higher tensile strength (68.62 MPa) and
Young’s modulus (1.09 GPa) compared to SPI membrane (50.97 MPa and 0.81 GPa) and
Nafion 115 membrane (12.79 MPa and 0.06 GPa) [24]. The elongation at break of SPI/Nafion
blend membrane (100.00%) and SPI membrane (58.01%) is lower compared with that of
Nafion 115 membrane (223.17%), because Nafion 115 membrane has flexible aliphatic
main chains [18,24]. However, the elongation at break of SPI/Nafion blend membrane is
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superior to that of SPI membrane, which is possibly due to the addition of Nafion polymer
with aliphatic main chains. Besides, the Nafion polymer with flexible side chains can
indeed improve the entanglement of all polymer chains [22]. This result shows that the
elongation at break of SPI/Nafion blend membrane could be effectively enhanced by the
incorporation of Nafion polymer, which provides an effective method for improving the
strain of sulfonated aromatic polymer membrane.
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3.6. Ex-Situ Chemical Stability

The chemical stability of PCMs directly affects the lifetime and performance of VRFBs.
The chemical stability of membrane was measured through two ex situ test methods
(Method 1: soaking the membrane in a 0.1 mol L−1 VO2

+ + 3.0 mol L−1 H2SO4 solution
at 40 ◦C; Method 2: soaking the membrane in a 1.5 mol L−1 VO2

+ + 3.0 mol L−1 H2SO4
solution at room temperature). The highly oxidizing VO2

+ ions in the solution could
oxidize the membrane and be reduced to VO2+ ions [23]. Therefore, the concentration of
VO2+ ions generated during the experiment is illustrated in Figure 5b. The concentrations
of VO2+ ions in the soaking solutions gradually increase as the immersing time increases in
both Method 1 and 2. The comparison of ex-situ chemical stability between SPI/Nafion
blend membrane and other SPI-based membranes are presented in Table S3. The chemical
stability of SPI/Nafion blend membrane is superior to reported SPI-based membranes
under similar ex−situ test conditions [18,21,22,24,25,49–54]. This is probably due to two
reasons. First, the water uptake of SPI/Nafion blend membrane is lower than that of pure
SPI membrane, which is beneficial for protecting the imide rings in SPI polymer from being
attacked by the hydrolytic species like H+ ions [23,55]. Moreover, the abundant electron-
withdrawing groups in Nafion polymer can effectively decrease the overall electron density
of SPI/Nafion blend membrane, which could improve its resistance toward the oxidative
species with positive charges like VO2

+ ions [9,56]. The optical photos of SPI/Nafion
blend membranes soaked in 0.1 mol L−1 VO2

+ + 3.0 mol L−1 H2SO4 solution at 40 ◦C and
1.5 mol L−1 VO2

+ + 3.0 mol L−1 H2SO4 solution at room temperature after 20 days are also
shown as the insets in Figure 5b. The SPI/Nafion blend membrane after the test is intact and
almost has no change compared to the fresh one, meaning that the as-prepared SPI/Nafion
blend membrane has excellent chemical stability. The main purpose of this work is to
improve the chemical stability of SPI membrane. The chemical stability of SPI/Nafion
blend membrane could be further increased if the blending ratio of Nafion polymer exceeds
10 wt.%. However, the cost of SPI/Nafion blend membrane is also increased with the
increase of the content of Nafion polymer. Therefore, taking cost performance into account,
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10 wt.% of Nafion polymer is determined to be an optimum ratio for preparation of
SPI/Nafion blend membrane in this work.

3.7. Battery Performance

A VRFB single cell is schematically shown in Scheme S2, in which the battery perfor-
mance of SPI/Nafion and Nafion 115 membranes is evaluated. The charge-discharge cycle
tests were first carried out for 300 cycles at different current densities (in the range of 200
to 20 mA cm−2). The coulombic efficiencies (CEs), voltage efficiencies (VEs), and energy
efficiencies (EEs) are also obtained by calculating the average values of the efficiencies of
30 cycles at each current density. All results are illustrated in Figures 6 and S6. The CEs of
SPI/Nafion blend membrane (97.77–93.88%) are higher than those of Nafion 115 membrane
(95.59–92.53%) at all tested current densities. The CE of the VRFB increases with the in-
crease of current density because the charge-discharge time is shortened at higher current
densities, resulting in less vanadium ion permeation [36]. The VE of VRFB increases as
the current density decreases from 200 to 20 mA cm−2, which is due to the lower ohmic
polarization at lower current densities [37]. The VEs of SPI/Nafion blend membrane is
higher than those of Nafion 115 membrane from 140 to 20 mA cm−2. This phenomenon
could be attributed to two factors as follows: (i) The SPI/Nafion blend membrane keeps a
better balance between vanadium ion permeability and proton conductivity. Accordingly,
its rising speed of VE is obviously faster compared with Nafion 115 membrane while the
current density decreases. (ii) The SPI/Nafion blend membrane shows no obvious ohmic
loss when the current density is below 140 mA cm−2. However, the VEs of SPI/Nafion
blend membrane is lower than that of Nafion 115 membrane at high current densities (e.g.,
200, 180, and 160 mA cm−2), which could be attributed to the higher ohmic loss arising
from the higher AR and lower σ of SPI/Nafion blend membrane [47]. As an electrical
energy storage system, the EE is an important indicator of energy loss during the charge-
discharge process [51]. At the current density of 200 mA cm−2, the EE of SPI/Nafion
blend membrane is slightly lower than that of Nafion 115 membrane. This is possibly
because the SPI/Nafion blend membrane has a higher AR and lower σ compared to Nafion
115 membrane [21]. However, the EEs of SPI/Nafion blend membrane are higher than
those of Nafion 115 membrane at current densities changed from 180 to 20 mA cm−2 due
to the excellent PS of SPI/Nafion blend membrane as discussed above (Table 2). In general,
the battery performance of as-prepared SPI/Nafion blend membrane is better than that of
Nafion 115 membrane. More 100-time cycling tests of VRFBs with these two membranes
were conducted continuously at 100 mA cm−2 after the first 300-time cycling test. The CE
and EE can almost attain the same values as those in the 151 to180 cycles (at 100 mA cm−2),
and the CE and EE do not significantly decline, suggesting that the prepared SPI/Nafion
blend membrane has excellent chemical/electrochemical stability to survive the VRFB
environment. The discharge capacity retention results of SPI/Nafion blend membrane
and Nafion 115 membrane at another 100-time cycling VRFB tests at 100 mA cm−2 after
the first 300-time cycling test are shown in Figure S7. The discharge capacity retentions of
SPI/Nafion blend membrane and Nafion 115 membrane are 77.74% and 64.01% at the 100th
cycle respectively. Besides, the discharge capacity retention of SPI/Nafion blend membrane
is obviously higher than Nafion 115 membrane for each cycle, further confirming that
the SPI/Nafion blend membrane has solid vanadium resistance. Besides, the 500-time
VRFB charge-discharge cycling test was also performed at 100 mA cm−2, and the result is
presented in Figure S8. The SPI/Nafion blend membrane shows excellent cycling charge-
discharge performance, verifying that it can endure the long-term application of VRFB.
These results mean that the blending strategy has a significant prospect for fabricating
high-performance SPI-based blend membrane.
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The surface and cross-sectional morphologies of SPI/Nafion blend membrane after a
400-time cycling charge-discharge test were studied by using AFM and SEM. As shown in
Figure 7a,b, the surface roughness parameters and surface area differences of SPI/Nafion
blend membrane facing the positive (1.60 nm and 0.807%) and negative (0.950 nm and
0.764%) electrodes are higher than those of fresh SPI/Nafion blend membrane (0.418 nm
and 0.110%). This is probably due to the squeeze of membrane by two pieces of graphite felt
electrodes during the long-term cycling test. However, the roughness of SPI/Nafion blend
membrane facing the positive electrode is slightly higher than that facing the negative
electrode, suggesting that the VO2+/VO2

+ positive electrolyte with stronger oxidizability
has more obvious negative impact on this blend membrane than the V3+/V2+ negative
electrolyte. The SEM images of the surface and cross-section of used SPI/Nafion blend
membrane are presented in Figure 7c–f. The surfaces facing the positive and negative
electrodes and the cross-section of used SPI/Nafion blend membrane are almost the same
as those of fresh blend membrane, indicating that the SPI/Nafion blend membrane has
excellent chemical stability by the introduction of Nafion polymer.

The ATR-FTIR and 1H-NMR spectra of SPI/Nafion blend membrane after the 400-time
cycling tests (Figure 8a,b) show neither new peak nor peak shifts, suggesting that the
chemical environments of all the functional groups in SPI/Nafion blend membrane have
not been changed. The optical photo of SPI/Nafion blend membrane after the cycling
test is shown in Figure 8c. The SPI/Nafion blend membrane is intact and its color is not
changed, implying that the as-prepared blend membrane is stable in the VRFB application.
However, the surface of SPI/Nafion blend membrane becomes slightly corrugated after
the cycling test, leading to the surface roughness increase. In addition, the DMA curves
of SPI/Nafion blend membrane after the 400-time VRFB cycling test are also presented
in Figure 8d. The storage modulus of SPI/Nafion blend membrane (914.5 MPa) after the
400-time VRFB cycling test is slightly higher than that of fresh SPI/Nafion blend membrane
(810.6 MPa) at 400 ◦C. This indicates that the stiffness of SPI/Nafion blend membrane is
enhanced after the cycling test, resulting from the increased cross-linking density of the
blend polymer chains [24]. The storage modulus of SPI/Nafion blend membrane after the
cycling test is still much higher compared to Nafion 115 membrane. More importantly,
the Tg of SPI/Nafion blend membrane can attain 320 ◦C after the cycling test and is
only slightly decreased by 9 ◦C compared to that of fresh one (Tg = 329 ◦C). The TGA
curves of SPI/Nafion blend membrane before and after the 400-time VRFB cycling test are
also shown in Figure S9. The weight retention of SPI/Nafion blend membrane (44.93%)
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after the 400-time cycling test is only slightly lower than fresh one (50.53%) and is much
higher than that of Nafion 115 at 800 ◦C. These results demonstrate that the SPI/Nafion
blend membrane has excellent rheological properties and thermal stability that is suitable
for VRFB application. The morphology parameters, thermal stability, and rheological
properties of SPI/Nafion after 400-time VRFB cycling test and fresh Nafion 115 membranes
are listed and compared in Table S4. Based on these comparisons and analyses, we believe
that the SPI/Nafion blend membrane is durable for the harsh strong acidic and oxidizing
environment of VRFB.
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trode, (d) surface facing negative electrode, and (e,f) cross-section.
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Figure 8. (a) ATR-FTIR and (b) 1H-NMR spectra of SPI/Nafion blend membrane before and after the
400-time VRFB cycling test. (c) The optical photo of SPI/Nafion blend membrane after the 400-time
VRFB cycling test. (d) DMA curves of SPI/Nafion blend membrane before and after the 400-time
VRFB cycling test.

4. Conclusions

In this work, a blend membrane sourced from SPI and Nafion polymers was suc-
cessfully prepared for VRFB application. The AFM and SEM results indicate that the
SPI/Nafion blend membrane has a dense and homogeneous morphology. The physico-
chemical properties of SPI/Nafion blend membrane have shown that the addition of
Nafion polymer indeed enhances the dimensional stability and mechanical properties
of blend membrane. In addition, introducing Nafion polymer into a SPI membrane has
been shown to be of great importance for enhancing the chemical stability of membrane.
The CEs of SPI/Nafion blend membrane are higher than that of Nafion 115 membrane
at all tested current densities due to the much lower vanadium ion permeation of blend
membrane. Furthermore, the VRFB with SPI/Nafion blend membrane exhibits higher
EEs than that with Nafion 115 membrane at current densities from 180 to 20 mA cm−2.
The high VRFB performance of SPI/Nafion blend membrane could be attributed to its
good proton selectivity and remarkable chemical and structural stability. Therefore, the
SPI/Nafion blend membrane is expected to be a promising candidate membrane for VRFB.
This work also provides a strategy to improve the stability of SPI-based PCMs for better
application in VRFBs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes11120946/s1. Scheme S1: The measurement device of vanadium ion per-
meability. (1) The left half-cell filled with 1.0 mol L−1 VOSO4 + 2.0 mol L−1 H2SO4; (2) the
sample membrane; (3) the right half-cell filled with 1.0 mol L−1 MgSO4 + 2.0 mol L−1 H2SO4.
Scheme S2: Schematic illustration of a VRFB single cell. (a) liquid inlet; (b) liquid outlet; (c) gasket;
(d) copper foil; (e) graphite bipolar plate; (f) plastic frame; (g) carbon felt; and (h) membrane. The
plastic frame is used to hold the carbon felt and is basically in the same plane as the carbon felt.
Figure S1: The molecular structures of SPI and Nafion polymers. Figure S2: The ATR-FTIR spectra
of SPI/Nafion blend membranes fabricated using m-cresol, DMSO, DMF, NMP, and DMAc as the

https://www.mdpi.com/article/10.3390/membranes11120946/s1
https://www.mdpi.com/article/10.3390/membranes11120946/s1
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membrane-casting solvents, respectively. Figure S3: The 1H-NMR spectra of SPI/Nafion blend
membranes fabricated using m-cresol, DMSO, DMF, NMP, and DMAc as the membrane-casting
solvents, respectively. Figure S4: TGA curves of the pure SPI membrane, the Nafion 115 mem-
brane, and the SPI/Nafion blend membranes fabricated using different solvents including m-cresol,
DMSO, DMF, NMP, and DMAc. Figure S5: The contact angles of (a–c) SPI/Nafion and (d–f) Nafion
115 membranes. The concentration of H2SO4 is 3.0 mol L−1. The electrolyte consists of 1.5 mol L−1

VO2+ and 3.0 mol L−1 H2SO4. Figure S6: The coulombic efficiencies (CEs), energy efficiencies (EEs),
and voltage efficiencies (VEs) of SPI/Nafion and Nafion 115 membranes under current densities
from 200 to 20 mA cm−2. Figure S7: The discharge capacity retentions of SPI/Nafion and Nafion
115 membranes at 100 mA cm−2. Figure S8: The 500-time cycling performance of SPI/Nafion blend
membrane at 100 mA cm−2. Figure S9: TGA curves of SPI/Nafion membrane before and after
400-time VRFB cycling test. Table S1: The physico-chemical properties and VRFB performance of
pure SPI and SPI/Nafion blend membranes. Table S2: Comparisons of the morphologies, physico-
chemical properties, and battery performance of VRFBs assembled with SPI/Nafion and Nafion
115 membranes. The properties of SPI/Nafion membrane superior to those of Nafion 115 membrane
are marked in red. Table S3: Comparison of the ex situ chemical stability of SPI/Nafion blend
membrane and other SPI-based membranes. Table S4: Comparisons of the morphology parameters,
thermal stability, and rheological properties between SPI/Nafion after 400-time VRFB cycling test
and fresh Nafion 115 membranes. The properties of SPI/Nafion blend membrane after 400−time
VRFB cycling test superior to those of Nafion 115 membrane are marked in red.
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