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Macrophages are known to have an impact in cytokine signaling in the myriad of
organs in which they reside and are classically known to be either pro-inflammatory
(M1), anti-inflammatory (M2). Different classes of signaling molecules influence these
states, of which, microRNAs represent key modulators. These are short RNA species
approximately 21 to 23 nucleotides long that generally act by binding to the 3′

untranslated region of mRNAs, regulating their translation, and, thus, the quantity of
protein they encode. From these species, microRNA-155 was observed to be of great
importance for M1 polarization. Because of it’s major implication in M1 polarization
microRNA-155 was shown to be implicated in different inflammatory diseases. To name
a few, microRNA-155 was shown to be modified in patients with asthma and to correlate
with asthma symptoms in mouse model; it has been shown to modulate the activity
of foam cells and influence the dimensions of the atherosclerotic plaque and it has
also been shown to be of crucial influence in transducing the signal of LPS in septic
shock. Because of this, the current review aims to offer an overview of the role of
microRNA-155 in M1 polarization, the implication that this poses for the pathophysiology
of inflammatory diseases and the potential therapeutic possibilities that this knowledge
might bring. Currently, microRNA-155 has been used in clinical trials as a marker of
inflammation, but the question remains if it’s inhibition will be useful in inflammatory
diseases, as other products might have a better cost/benefit ratio.
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INTRODUCTION

Macrophages have been known for their implication in the immune system, either through
their phagocytic and/or antigen presenting abilities. Nonetheless, another important property
of this type of cells is represented by their role in immune signaling. At the basis of
their inflammatory functions stays the concept of macrophage polarization, which, in a
simplified manner, is considered to be classic/proinflammatory (M1) or alternative/anti-
inflammatory (M2) (1). The transition between different states of polarization is regulated
by several classes of molecules, of which microRNAs present high importance. These are
short RNA species of approximately 21 to 23 nucleotides that bind to different RNA
species modifying their quantity or changing the rate at which they are translated. Other
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mechanisms through which microRNAs can act as regulatory
molecules are represented by DNA binding at the promoter
regions, influencing transcription or direct protein binding (2).

Because of the high number of microRNAs and targets that
these species have, we decided to further focus on the implication
of microRNA-155 in inflammatory diseases.

MACROPHAGE POLARIZATION

The continuum of macrophage polarization starts with the M0
polarized macrophage. One protein with key importance in
macrophage polarization is represented by PU.1, which opens
the chromatin conformation of macrophage-specific genes and
further allow transcription factors to act in a cell-specific
manner (3–6).

Conventionally, it was considered that macrophages can
polarize either to an M1 or an M2 phenotype (Figure 1).
Nowadays it is known that macrophages take a dynamic state
between these two phenotypes.

M1 polarization can be induced in vitro by stimulating M0
macrophages with IFNγ (interferon γ) or with lipopolysaccharide
(LPS), which mimics in vivo conditions of M0 to M1 transition.
IFNγ acts on the IFNγR, which further recruits JAK1/2 leading
to the formation STAT1/STAT2 heterodimers, which act as a
transcription factor for NOS2, MHC2 and IL12 (7, 8). LPS acts
through TLR4 (toll like receptor 4), stimulating IFNα/β autocrine
signaling and leading to the activation of STAT1 and STAT2,
with the formation of STAT1/STAT2 heterodimers, which act as
a transcription factor for NOS2, CIITA and IL12, leading to a
similar phenotype as generated through IFNγ direct stimulation.
Additionally, TLR4 can also lead to the activation of NFKB and
mitogen associated protein kinase (MAPK) pathways with similar

effects (9). These stimulatory factors lead to the deposition of
M1-specific transcription factors, followed by the upregulation of
IL12 and downregulation of IL10 (10, 11).

M2 polarization is induced by a combination of IL4 and
IL13 stimulation of M0 macrophages (12). This leads to STAT6
homodimer formation followed by the upregulation of MRC1,
CD206, FIZZ1 and YM1 (13, 14). Additionally, STAT6 represents
a cofactor for PPARγ leading to an inhibition of NFKB pathway
(15–18). C/EBP was shown to increase the transcription of ARG1,
IL10 and MRC1 (19–21). Moreover, mice lacking C/EBP, were
shown to have a reduced number of M2 macrophages, but with
no influence on M1 macrophages (22).

As M1 and M2 macrophages have opposite effects it has also
been shown that STAT1 has opposite effects compared to STAT6
regarding the transcription profile they induce (23). Interestingly,
JMJD3 was shown to play roles in both M1 and M2 polarization.
In the case of M1 polarization, JMJD3 was shown to respond
to LPS and induce IL12 and CCL5 (24). In the case of M2
polarization, it was shown that the macrophages of mice lacking
JMJD3 are unable to undergo M2 polarization (14).

Although the general classification tends to picture these two
macrophage polarization phenotypes as steady states, in vivo
these represent a continuum and can transit from one to another.
In this direction, one study has shown that after a period of
LPS stimulation, the M1 response genes require a more intense
stimulus for the same activation, while the response to IL10
stimulation is kept (25). Another mechanism through which the
proinflammatory processes are controlled is represented by a
multistep process activated by the NFKB pathway, which leads
to the upregulation of microRNA-155 and an initial upregulation
loop through microRNA-155 mediated inhibition of SHIP1, with
subsequent activation of the PI3K/AKT pathway. In parallel
the NFKB pathway upregulates microRNA-146a, which inhibits

FIGURE 1 | Signaling pathways implicated in M1 and M2 polarization.
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IRAK1 and TRAF6, leading to the resolution of the inflammatory
process (26).

MicroRNA-155 BIOGENESIS AND
MECHANISM OF ACTION

MicroRNA-155 is located on chromosome 21 and is encoded
by the gene MIRHA155. Its biogenesis is similar to the classical
microRNA maturation. Firstly, it is transcribed in the form
of pri-microRNA, which undergoes 3′ guanine capping and
poly adenylation, after which it is processed in pre-microRNA
by DROSHA. The pre-microRNA form is exported from the
nucleus through XPO5 using a GTP-dependent process. In the
cytoplasm, the pre-microRNA is processed by DICER, which
cleaves the hairpin, resulting in the formation of a double-
stranded RNA, which is loaded in AGO2. This, in turn, interacts
with other proteins forming the RISC complex. In this complex
the passenger strand is cleaved and only the guide strand remains
loaded (2, 27, 28). Regarding microRNA-155, it is generally
considered that the 5p form is the guide strand, thus being the
one kept in the RISC complex after processing. Nonetheless, there
have been studies showing that the 3p form can also act as a
guide (29).

THE REGULATION OF MicroRNA-155
EXPRESSION AND ITS EFFECT ON
TARGET GENES

MicroRNA-155 regulation is highly linked to its role as
an immune modulator. This is being shown by its rapid
increase in macrophages in infection or other inflammatory
processes. These processes are characterized by the stimulation
of DAMP, PAMP, IL1A, IL1B, TNFα, and IFNγ, while being
suppressed by antiinflammatory molecules, e.g., IL10, TGFβ,
and glucocorticoids (30–33). Therapeutically, it has been
shown that glucocorticoids can indirectly inhibit microRNA-155
expression by inhibiting NFKB pathway (34, 35). MicroRNA-155
implication in inflammatory processes can also be inferred from
the regulatory sites the MIRHA155 gene presents, these being
influenced by NFKB pathway, TGFβ pathway through SMAD4,
and through IL10 and IFNγ stimulation (33, 36).

It has been shown that microRNA-155 is upregulated by the
stimulation of TLR4 and action of IFNγ, known drivers of M1
polarization. MicroRNA-155 role in promoting inflammation
can also be observed as it inhibits INPP5D, an inhibitor of
PI3K/AKT pathway, which is needed to relay the signal from
the TLR4 signaling. Another important target of microRNA-
155 affects is represented by SOCS1, which inhibits type
1 cytokine receptor/STAT pathways. Moreover, it has been
shown that microRNA-155 inhibits BCL6, an inhibitor of
NFKB pathway, with important implications in the signaling of
foam cells (37–39).

Primary macrophages derived from mice lacking microRNA-
155 and the RAW264.7 cell line with an induced deficit in
microRNA-155 have been shown to present a resistance to LPS

stimulation, associated with an increase in INPP5D expression
(32, 37, 40). Not only does microRNA-155 stimulate M1
polarization, but it has also been shown to inhibit M2 polarization
through the inhibition of IL13 and IL4 pathway components, like
IL13RA and C/EBP (41–45).

MicroRNA-155-5P VS MicroRNA-155-3P,
IS THERE ONLY ONE GUIDE?

Generally, it is considered that microRNA-155-5p represents
the guide strand as it targets a larger array of transcripts and
it is considered to be the form with a higher thermodynamic
stability. Nonetheless, there have been studies showing that
microRNA-155-3p can also play biologically important roles
(46, 47). Although the evidence is not as vast as in the case
of microRNA-155-5p, there have been studies showing that
microRNA-155-3p also has a role in promoting inflammation.
For example, in the case of plasmacytoid dendritic cells, the initial
response to TLR7 stimulation has been shown to be represented
by microRNA-155-3p upregulation and subsequent upregulation
of IFNα/β autocrine signaling. These processes add a parallel to
LPS stimulation of macrophages with potential similar signaling
effects (48, 49).

MicroRNA-155 IN INFLAMMATORY
DISEASES

MicroRNA-155 is implicated in the M1 polarization in a variety
of inflammatory diseases with the following representing some
examples in this direction (Figure 2).

Asthma
Classically, asthma is characterized by a chronic imbalance
between type 2 and type 1 immune responses and chronic
hyper-reactivity of the airways. In this condition a myriad of
microRNAs have been identified with implication in either M1
or M2 polarization (50, 51). Human airway smooth muscle cells
from asthmatic patients were shown to present elevated levels
of microRNA-155 compared to controls (52). Conversely, some
studies have shown that microRNA-155 presents lower levels in
breath condensates, plasma, nasal mucosa, epithelial cells and
sputum of asthmatic patients (50, 52–55). Others have shown that
severe asthma patients present elevated plasma microRNA-155
when compared to mild-moderate asthma patients and to healthy
controls. Interestingly, in this study there was no difference
observed between the microRNA-155 plasma levels of mild-
moderate asthma patients compared to healthy controls (56).
Moreover, it has been shown that microRNA-155 silencing in
an ovalbumin asthma mouse model reduces asthma features,
this, in turn, showing a potential therapeutic path for the
future (57).

Atherosclerosis
Atherosclerosis is characterized by the formation of
atheromatous plaques on arterial walls with subsequent

Frontiers in Immunology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 625

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00625 April 10, 2020 Time: 18:35 # 4

Pasca et al. MicroRNA 155 in M1 Polarization

FIGURE 2 | Implication of microRNA-155 in inflammatory diseases. AS, atherosclerosis; RA, rheumatoid arthritis; MS, multiple sclerosis; IBD, inflammatory bowel
disease.

reduction in blood flow, hypertension and an increased risk
of embolus formation. One key cell with importance in the
pathophysiology of atherosclerotic plaques is represented by
the macrophage, which accumulate lipids and forms foam cells
with a proinflammatory influence and leading to the evolution
of the atherosclerotic plaque (58). Studies on APOE−/− mouse
models with partial carotid ligation showed a decreased plaque
formation and lower number of infiltrating macrophages when
the microRNA-155 levels were inhibited (37). These results were
reproduced by others showing that downregulating microRNA-
155 in APOE−/− mouse model lowers the dimensions of the
atherosclerotic plaque (59). The effect of microRNA-155 on
atherosclerotic plaque formation has been explained through
the modulation of the SOCS1-STAT3-PDCD4 pathway (60, 61).
Considering these results, it could be though that microRNA-155
silencing might have a role in the future as therapy for decreasing
the size of atherosclerotic plaques or to slow their evolution. In

contrast to the above mentioned results, LDLR−/− mice models
showed that transplantation with microRNA-155 deficient
macrophages leads to an increase in the size of atherosclerotic
plaque and leads to a decrease in IL10 levels secreted by
peritoneal macrophages (62).

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is characterized by progressive joint
inflammation leading to joint damage and subsequent disability.
One important hint that macrophage present an important
role in this condition is represented by an upregulation in
IL6 that these patients present, as this represents an important
cytokine secreted by M1 macrophages (63). In RA patients
it has been observed that microRNA-155 is upregulated in
synovial tissue and synovial fibroblasts (64). Murata et al.
did not observe any difference between the peripheral blood
concentration of microRNA-155 of rheumatoid arthritis patients
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and healthy controls (65). Nonetheless, others have shown that
microRNA-155 is upregulated in peripheral blood mononuclear
cells (PBMCs) from patients with RA (66, 67). These results show
that it is more likely that microRNA-155 concentration in the
synovial fluid or in the cells involved in the process of joint
inflammation is an indicator of disease, rather than the plasma
levels of microRNA-155.

Septic Shock
Septic shock represents the effect of LPS stimulation of the
TLR4 receptor on macrophages with a subsequent discharge of
proinflammatory molecules leading to severe hypotension and
organ dysfunction. Because it is known that LPS stimulation
of macrophages lead to M1 polarization, it is highly probable
that microRNA-155 also plays a role in this septic shock (68).
In vitro, microRNA-155 was observed to be upregulated in
THP1 cells when stimulated with LPS (69). In a BALB/c mouse
model it has been observed that LPS stimulation increases
microRNA-155 expression in the liver. Moreover, this increase
in microRNA-155 was observed to be inhibited by pretreatment
with dexamethasone, known as a therapeutic approach in septic
shock and an indirect inhibitor of microRNA-155 (70).

Multiple Sclerosis
Multiple sclerosis is characterized by the progressive
demyelination of axons with subsequent reduction in the
functions deserved by them. One important mechanism through
which demyelination occurs is through myelin phagocytosis by
the local microglia (71). In multiple sclerosis patients it has been
shown that microRNA-155 is upregulated in CD14+ monocytes
and in microglia of multiple sclerosis patients compared to
healthy controls (72). In a multiple sclerosis mouse model it
has been observed that the focal lesions contain microRNA-155
upregulation. This, in turn, has been shown to inhibit the
expression of CD47 in brain resident cells, leading to an increase
in myelin phagocytosis by macrophages (73).

Inflammatory Bowel Disease
Inflammatory bowel diseases are characterized by an
inflammatory state of the mucosa and submucosa in the
case of ulcerative colitis and of all the layers of the bowel in the
case of Crohn’s disease with subsequent functional impairment
of these organs. Currently, there is not a precisely known
pathogenesis, but inflammation was shown to play an important
role and immunosuppressive and antiinflammatory therapies
were shown to have an effect on these diseases (74). In a murine
model of induced colitis it was shown that microRNA-155 is
upregulated (75). Moreover, microRNA-155 was observed to be
upregulated in the colonic mucosa of patients with ulcerative
colitis (76).

Sarcoidosis
Sarcoidosis is a disease characterized by a systemic
granulomatous response of unknown origin. An important
microscopic clue to the pathophysiology of the disease is
represented by the presence of giant cells, formed by the fusion

of multiple macrophages, at the center of the granulomas. This,
in turn, shows the possible inflammatory state caused by these
cells (77). MicroRNA-155 was observed to be upregulated in
progressing sarcoidosis compared to regressing sarcoidosis, but
no difference was observed when comparing sarcoidosis patients
with healthy controls (78).

CLINICAL TRIALS

At the time of this review, 26 clinical trials were found
when searching on ClinicalTrials.gov for the term
miR155. The search term microRNA-155 yielded fewer
results, which were overlapping with the previous search
term. Of those, 20 clinical trials include patients with
inflammatory diseases and mention using microRNA-155
as a marker for assessing the activity in these diseases.
Of those, one trial assessed microRNA-155 in asthma
(NCT02719145); none assessed microRNA-155 in patients
with atherosclerosis, but there were three trials assessing it
for cardiovascular diseases (NCT02605512, NCT02997462,
and NCT04277390); two trials assessed microRNA-155 in
RA, one as a response to tocilizumab, an anti IL6 antibody
(NCT03149796) and one as a response to tofacitinib, a JAK
inhibitor (NCT03815578); one trial assessed microRNA-
155 dynamics in days 1, 2, 5 and 7 after septic shock
onset (NCT02464371); one trial plans to assess the levels
of microRNA-155 in the serum of patients with multiple
sclerosis (NCT04300543) and no trials plan to evaluate the
levels of microRNA-155 in patients with inflammatory bowel
disease or sarcoidosis.

CONCLUSION

MicroRNA-155 represents both a target of proinflammatory
signals and an initiator of inflammation with an important
impact in M1 polarization. Moreover, it has been repeatedly
shown that microRNA-155 upregulation represents an
important signal in various inflammatory diseases, with
some clinical trials harboring this association as a biomarker
for inflammation. As there are no clinical trials using
microRNA-155 inhibition as an intervention in inflammatory
diseases it can be asked if microRNA-155 will ever be
used as more than a biomarker. MicroRNA-155 might
have some interventional clinical trials in the future for
inflammatory disease, but with the reserve that it might
not have a suitable cost/benefit ratio or that other already
existing compounds might have a more important effect in
modulating inflammation.
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