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Abstract

Increasingly sophisticated experiments, coupled with large-scale computational models, have the potential to
systematically test biological hypotheses to drive our understanding of multicellular systems. In this short review, we
explore key challenges that must be overcome to achieve robust, repeatable data-driven multicellular systems biology. If
these challenges can be solved, we can grow beyond the current state of isolated tools and datasets to a community-driven
ecosystem of interoperable data, software utilities, and computational modeling platforms. Progress is within our grasp, but
it will take community (and financial) commitment.
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Background

In the past decade, we have seen tremendous advances in mea-
suring, annotating, analyzing, understanding, and even manip-
ulating the systems biology of single cells. Not only can we per-
form single-cell multi-omics measurements in high throughput
(e.g., [1–3]), but we can manipulate single cells (e.g., by CRISPR
systems [4]), and we can track single-cell histories through novel
techniques such as DNA barcoding [5].

As these techniques mature, new questions arise: How do
single-cell characteristics affect multicellular systems? How do
cells communicate and coordinate? How do systems of mixed
cell types create specific spatiotemporal and functional patterns
in tissues? How do multicellular organisms cope with single-
cell mutations and other errors? Conversely, given a set of func-
tional design goals, how do we manipulate single-cell behaviors
to achieve our design objectives? Questions like these are at the
heart of multicellular systems biology. As we move from under-
standing to designing multicellular behavior, we arrive at multi-
cellular systems engineering.

High-throughput multiplex experiments are poised to cre-
ate incredibly high-resolution datasets describing the molecular
and behavioral state of many cells in three-dimensional tissue
systems (e.g., [6]]). Computational modeling—including dynam-
ical simulation models and machine learning approaches—can
help make sense of these data.

Modelers “translate” a biologist’s current set of hypotheses
into simulation rules, then simulate the system forward in time.
They compare these results to experimental data to evaluate
the hypotheses, and refine them until simulations match ex-
periments [7, 8]. Computational models allow us to ask “what
if” questions [9]. What if we added a new cell type to the mix?
What if we spliced in a new signaling pathway? How would our
system change?

Machine learning and bioinformatics complement the dy-
namical modeling approach: analyses of large datasets—
especially when annotated with expert-selected biological and
clinical features—can be mined to discover new relationships
between single-cell states and behaviors, multicellular organi-
zation, and emergent function. This, in turn, can drive new hy-
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potheses in simulation models. Moreover, machine learning can
provide novel analyses of simulation data, increasing what we
learn from the efforts.

Examples of these approaches appear largely as isolated ef-
forts. Most groups seek out their own data sources (previously
published data and tailored experiments), build their own mod-
els, and perform their own analyses. Much of this work uses
in-house tools created to work on datasets with ad hoc, non-
interoperable data elements (see Fig. 1). Thus, any one group’s
work is by and large incompatible with any other group’s, hin-
dering or altogether preventing replication studies and modular
reuse of valuable data and software.

It does not have to be this way. If we could solve key chal-
lenges, we could move beyond single-laboratory efforts to a
community built around compatible data and software. Multiple
experimental laboratories could pool their efforts to character-
ize common experimental model systems and record their data
in centralized repositories. With a shared “data language,” labs
could cooperatively build better simulation, analysis, and visu-
alization tools. Multiple computational labs could build models
off of these shared data and tools, find new biological insights,
and feed them back into the community (see Fig. 2).

In this review, I explore some key challenges that we need to
overcome before we can reach the full potential of an ecosystem
of interoperable data and tools for multicellular systems biology.

While the challenges are not presented in any ranked order
of importance or priority, they progress from the concrete chal-
lenges of standardized data representation and knowledge cap-
ture to community resources we could build with standardized
data. We do not need to address these challenges sequentially.
One of the great strengths of open research communities is that
progress can occur by many groups in parallel, each contributing
according to their individual skills, resources, and interests.

Key Challenges
Shared multicellular data standards

Data arising from high-throughput experiments need to be ma-
chine readable and stored in interoperable formats with bio-
logically meaningful data elements. We need to move beyond
shared drives of raw images and spreadsheets to extracted bi-
ological data elements that are useful for building models and
machine learning. We need to store not only averaged cell data
but also single-cell states for many cells at multiple time points.
Measurements lose meaning without context: data must be
stored with metadata including detailed cell line and (molecular)
growth media details, biophysical culture conditions, who per-
formed the measurements, what instruments were used, and
what software tools were used for analysis.

Current progress
Great strides have been made towards this challenge. The Open
Microscopy Environment (OME) has emerged as a biological im-
age standard with extensive metadata [10], which has helped
to make scientific instruments more interoperable. The ISA-Tab
format [11] functions as a rich online file system: provenance
and other metadata are bundled with raw data of any file type,
allowing the contents to be indexed and searched without de-
tailed knowledge of the data formatting. This has facilitated the
creation of large databases of very heterogeneous data (such as
GigaDB [12]), and it enables simple data exchange owing to its
support for many data types.

While these formats facilitate file-level interoperability, they
do not encode extracted biological data elements. Protocols.io
was developed to share detailed experimental protocols [13],
which can be cited in journal publications to help improve
repeatability and reproducibility. However, the protocols are
human-readable checklists; they do not use a machine-readable
controlled vocabulary of growth factors and other culture con-
ditions.

Ontologies such as the Medical Subject Headings (MeSH) [14,
15] and the Cell Behavior Ontology (CBO) can annotate many bi-
ological concepts [16], but they serve as controlled vocabularies
rather than standardized data formats.

The Systems Biology Markup Language (SBML) is a well-
established standard for single-cell systems biology [17], and ef-
forts such as SBML-Dynamic are working to extend SBML to mul-
ticellular models. Domain experts in computational biology, ex-
perimental biology, and data science worked together to draft
MultiCellDS, a standard for multicellular data [18]. MultiCellDS
has a highly extensible representation of single-cell phenotype
built from a variety of ontologies such as MeSH and CBO, which
can be used to represent highly multiplex data (e.g., [1]) for many
cells, along with metadata and micro-environmental context.
The European Union–funded MULTIMOT project has been devel-
oping a community-driven standard for cell motility measure-
ments (MIACME: Minimum Information about Cell Migration Ex-
periments) [19], with a corresponding software ecosystem [20]
that can interface with data in ISA-Tab and OME formats.

Future
None of these efforts has completely addressed this challenge.
Ultimately, we should combine and extend them into a unified
data format. ISA-Tab could bundle image data (using OME) and
extracted biological features (e.g., with MultiCellDS and MULTI-
MOT), while storing experimental protocol details with a con-
trolled vocabulary growing out of Protocols.io [13].

We must ensure that metadata not only annotate experi-
mental protocols but also data extraction protocols: What algo-
rithms were used to extract the biological data elements, and
where is the source code permanently archived? Some popular
data science software (e.g., Docker and Jupyter notebooks) allow
users to export their computational pipelines to facilitate this re-
producibility. Last, note that extracted biological data elements
cannot replace raw data: end users must be free to reproduce (and
improve!) the extraction of data elements, which necessitates
access to the original data.

Shared multicellular observational representations

Beyond quantitative measurements like cell division rates, we
need a machine-readable encoding of qualitative observations
and insights derived from raw biological data: when cells are in
condition X, they do Y. When cells of type X and Y interact by
contact, they tend to do Z. When cell line X looks like Y in an
experiment, the cell culture medium lacked factor Z.

Laboratories and clinics are replete with such examples of
hard-won knowledge, but until we can systematically record
them, these insights will remain siloed, isolated, and destined
to be relearned, lab by lab. If we could consistently record quali-
tative observations, we could progress from single-cell measure-
ments to multicellular systems understanding, including anno-
tation of critical cell-cell interactions.

Until we can specify “correct” model behavior with machine-
readable annotations, our simulation studies will be rate-limited
to how quickly humans can view simulations and assess them
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Figure 1: Currently, data-driven workflows are largely parallel, with custom-made, incompatible data and tools.

Figure 2: If the community can overcome key challenges, an ecosystem of interoperable computational modeling, analysis, configuration, visualization, and other
tools could work on community-curated data and aggregate insights from many sources.

as more or less “realistic.” How do we say, in a generalized way,
that a simulated tumor stays compact or becomes invasive? How
do we know whether a simulated developmental process has the
“right” amount of branching? What does it mean for simulated
image X to “look like” experimental image Y, given that both the
simulation and the experiment are single instances of stochastic
processes? If we cannot record the qualitative behavior of simu-
lations and experiments, we cannot automate processes to com-
pare them.

Current progress
Progress on this challenge has been limited. The CBO [16] has de-
veloped a good starting vocabulary for observed cell behaviors.
Extensions of SBML [17] could also potentially represent some of
these multicellular and multiscale observations. Tailored image
processing has been applied to individual investigations to ex-
tract (generally quantitative) representations, although to date
we have seen few (if any) qualitative descriptors generated by
systematic image analysis.
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There has been greater progress in presenting phylogenetic
relationships in multicellular populations with automatically
extracted phylogenetic trees and other data visualizations, such
as Muller plots (e.g., [21–23]). These techniques examine large
multi-omics datasets (e.g., small conditional RNA-sequencing
data [24]) to fit and represent lineage relationships between cell
types (or classes) with directed graph data structures.

Future
This area is ripe for machine learning: given a set of qualitative
descriptors such as “compact” versus “invasive,” “mixed” versus
“separated,” “growing” versus “shrinking” or “steady,” a neural
network could be trained to human classifications of experimen-
tal and simulation data. High-throughput multicellular simula-
tors (e.g., [7]) could create large sets of training data in standard-
ized formats with clear ground truths. Machine vision could also
be used to analyze time series of multicellular data. These an-
notations could give rise to metrics that help us systematically
compare the behavior of one simulation with another, or deter-
mine which simulation (in a set of hundreds or thousands of
simulations) behaves most like an experiment.

Graph structures could also be applied to represent and vi-
sualize cell-cell interactions in multicellular populations [18],
similarly to phylogenetic trees (e.g., [22, 23]), chemical reaction
networks (e.g., [25, 26]), gene network diagrams (e.g., [27]), and
emerging data formats for agent-based model rules (e.g., as in
Morpheus [28]).

Standards support in computational tools

For data standards to be truly useful, they must be broadly sup-
ported by a variety of interoperable tools.

Current progress
Single-cell systems biology has already shown the enabling role
of stable data standards [29]: once SBML crystallized as a stable
data language, a rich and growing ecosystem of data-compatible
simulation and analysis software emerged. Multicellular sys-
tems biology has not yet reached this point: most computational
models have custom configuration and output formats, some-
times with customized extensions of SBML to represent single-
cell systems biology [18].

Future
If a multicellular data standard emerges, key open source
projects [29] can implement read-and-write support in their
software, either “natively” (i.e., at run-time) or as data convert-
ers. Hackathons or similar hosted workshops could facilitate
this work. Ontologists need to provide user-friendly data bind-
ings to simplify these development efforts. If standards are to
be supported more broadly than just major open source pack-
ages, we must remember that most scientific software is created
with little formal software engineering training; the data bind-
ings must be well-documented, have simple syntax, and require
minimal installation effort.

Shared tools to configure models and explore data

It is not enough to simply read and write data into individual
tools. We must reverse the current “lock-in” effect: because mul-
ticellular modeling software is difficult to learn, users (and often
entire laboratories) focus their training on a single modeling ap-
proach. Because of this, replication studies are rare, even when
a study’s source code and data are openly available.

To solve this, we need user-friendly tools to import and set
biological and biophysical parameters, design the virtual geom-
etry, and write standardized configuration files that initialize
many modeling frameworks. Users could run models in multi-
ple software packages, replicate the work of others, and avoid
software-specific artifacts that can bias their conclusions.

Shared software to read, analyze, compare, and visualize out-
puts from multiple modeling packages could reduce the learn-
ing curve for new software. If the shared data exploration and
analysis tools were written to work on a common format that
includes segmented experimental data, they could also be used
to explore experimental data, make and annotate new observa-
tions, and motivate new model hypotheses [30].

Current progress
Without a common format for multicellular simulation data,
there has been little opportunity to develop shared tools for
configuring, running, and visualizing multicellular simulations.
Some individual simulation packages such as Morpheus [28] and
CompuCell3D [31] have user-friendly graphical model editors,
but they are currently limited to their individual user commu-
nities and not compatible with other simulation packages [29].
Commercially backed open source software such as Kitware’s
ParaView [32] is commonly used to visualize multicellular simu-
lation data, but only by writing customized, simulation-tailored
data importers. ParaView is generally not used to visualize bio-
logical data.

Cloud-hosted tools have provided a means to share sophis-
ticated tools with broad, multidisciplinary audiences without
the need for downloading and compiling the tools. For exam-
ple, the National Cancer Institute (NCI) has introduced NCI cloud
resources as part of the NCI Cancer Research Data Commons
[33]. Sophisticated simulation models can also be shared as web
applications: the PhysiCell development team recently created
xml2jupyter [34] to automatically create Jupyter-based GUIs for
PhysiCell-based multicellular simulations, which can then be
cloud-hosted on platforms like nanoHUB [35].

Other model and data-sharing paradigms that emerged to
address related issues in reproducibility may also encourage
reuse, such as bundling data and software with Binder [36] or
GigaScience’s recent partnership with CodeOcean to pair papers
with cloud-hosted executable platforms [37]. However, these
typically are single-purpose workflows (specialized to a specific
data analysis for a single paper) that are not designed for modu-
lar reuse in new research workflows. They tend to lack standard-
ized data formats to facilitate connection with other tools, and
latency issues will challenge their use in high-throughput work-
flows. Moreover, note that while cloud-hosted executable codes
increase accessibility and availability, they must not substitute
for (or circumvent) sharing source code for full reproducibility.

Future
It will be difficult to make progress on this challenge without sta-
ble standards for multicellular input and output data. However,
progress could be made using current draft standards, such as
MultiCellDS [18]. ParaView could use customized plugins to sup-
port emerging standards for multicellular data. If projects like
Morpheus implemented standards, their graphical model edi-
tors could become valuable community resources.

Hackathons can help to rapidly prototype new tools (par-
ticularly if they are paired with benchmark datasets), but they
must aim to create well-documented, engineered software that
is maintained in the long term. We may need new funding
paradigms to support small open source teams. The form of
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these funding paradigms is not fully clear. Hackathons and sim-
ilar forms of focused, small-team collaboration could possibly
be sponsored through existing federal and philanthropic mech-
anisms for meetings and travel grants. Crowdsourcing could po-
tentially fund some focused community tool development and
maintenance. There is also room for creativity among funding
organizations for smaller grants with faster review cycles for
community tool-building efforts.

Last, shared code platforms such as the NCI Data Commons
could provide an environment to connect data and tools in on-
line, easy-to-use workflows that encourage scientists to “mix
and match” data software components into unique research.
However, it will be important to avoid “lock-in” effects that pre-
vent moving data and tools from one platform to another. More-
over, as workflows come to incorporate more web services (in
differing platforms), they could become vulnerable to techni-
cal failures, business failures, or malicious attacks. Open source
software has largely solved these issues by mirroring software
repositories. Web services may need similar mirroring, and open
science norms will need to encourage source code sharing and
data/tool portability for web platforms just as they have for of-
fline code.

High-quality, multiscale benchmarking datasets

Once we have standardized data formats and an ecosystem
of compatible software to support them, we need high-quality
datasets to drive the development of computational models. The
ideal datasets would sufficiently resolve single-cell morpholo-
gies and multi-omic states in 3D tissues, along with microenvi-
ronmental context (e.g., spatial distribution of oxygen).

To capture the behavioral states of cells, we need standard
immunohistochemical panels that capture multiple dimensions
of cell phenotype: cycle status, metabolism, death, motility (in-
cluding markers for the leading edge), adhesiveness, cell me-
chanics, polarization, and more. We will need to capture these
details simultaneously in many cells at multiple time points, us-
ing massively multiplexed technologies.

These datasets would be used to formulate model hypothe-
ses and assumptions (through data exploration using standard-
ized tools), to train models, and to evaluate them. Moreover, as
the community develops new computational models, they could
be evaluated against benchmark datasets. Benchmark datasets
are domain specific: separate datasets are needed for develop-
mental biology, avascular and vascular tumor growth, autoim-
mune diseases, and other problems. It is important that these
datasets be easily accessible with open data licenses to promote
the broadest use possible. Adhering to FAIR (Findability, Acces-
sibility, Interoperability, and Reusability) data principles would
be ideal [38].

Current progress
Cancer biology has made perhaps the greatest progress on this
challenge, where the NIH-funded Cancer Genome Atlas hosts
many genomic, microscopy, and other large datasets [39]. Typ-
ically, these consist of many samples at a single time, rather
than time course data. Highly multiplex multicellular data are
generally not available. DREAM challenges have assembled high-
quality datasets to drive model development (through com-
petitions) [40], but these have not typically satisfied the mul-
tiplex, time-series ideals outlined above. Private foundations
are using cutting-edge microscopy to create high-quality online
datasets (e.g., the Allen Cell Explorer Project [41] and the Human
BioMolecular Atlas Program [6]).

The technology for highly multiplexed measurements is
steadily improving: CyTOF-based immunohistochemistry (e.g.,
as in [1]) can stain for panels of 30–50 immunomarkers on sin-
gle slides at 1–2 μm resolution or better. There are no standard-
ized panels to capture the gamut of phenotypic behaviors out-
lined above. Social media discussions (e.g., [42]) have helped to
drive community dialog on difficult phenotypic parameters, but
no clear consensus has emerged for a “gold standard” panel of
immunostains.

Future
Workshops of leading biologists should assemble the “dream
panel” of molecular markers. Consortia of technologists will
need to reliably implement these multiparameter panels in ex-
perimental workflows [1]. Workshops of bioinformaticians, data
scientists, and modelers will be needed to “transform” these raw
data into standardized datasets for use in models. All this will
require federal or philanthropic funding, and contributions by
multiple laboratories. Social media has great potential for pub-
lic brainstorming, disseminating resources, and recruiting new
contributors. Hackathons could help drive the “translation” of
raw image data into standardized datasets, while developing
tools that automate the process.

Community-curated public data libraries

We need “public data libraries” to store and share high-quality,
standardized data [43, 30]. Data should not be static: the com-
munity should continually update data to reflect scientific ad-
vances, with community curation to ensure data quality. Pub-
lic libraries must store not only raw image data and extracted
biological parameters but also qualitative observations and hu-
man insights. The public libraries should host data at multiple
stages of publication: preliminary data (which may or may not
be permanently archived), datasets under construction (i.e., the
experiments are ongoing), data associated with a preprint or a
paper in review, and data associated with a published work. Pub-
lic data libraries should enable if not encourage versioned post-
publication refinement, particularly for datasets arising from
secondary analysis or curation of heterogeneously sourced pri-
mary raw data, such as digital cell lines [18]. Last, public data
libraries need to be truly public by using licenses (e.g., Creative
Commons CC0 or CC-BY) that encourage new derivative works,
as well as aggregation into larger datasets.

Current progress
Numerous data portals exist, and more are emerging. Many
are purpose-built for specific communities, such as The Cancer
Genome Atlas [39]. The Image Data Resource [44] was recently
launched to facilitate sharing bioimages using the OME data for-
mat [10], further demonstrating how standardized data can fa-
cilitate the creation of shared tools and resources. Others like
GigaDB [12] and DRYAD [45] allow users to post self-standing
datasets with unique DOIs to facilitate data reuse and attribu-
tion. These repositories are free for access, thus increasing the
reach and impact of hosted data, but the data contributors must
pay at the time of data publication. The fees often include ed-
itorial and technical assistance while ensuring long-term data
availability.

Even within single data hosting repositories, individ-
ual datasets are largely disconnected and mutually non-
interoperable beyond ISA-Tab compatibility. Thus, individual
hosted datasets and studies are generally not bridged and re-
combined. Moreover, the datasets are usually static after pub-
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lication, rather than actively curated and updated. BioNumbers
has long served as a searchable resource of user-contributed bi-
ological parameters [46], but it lacks a unified data model. The
MultiCellDS project proposed ”digital cell lines,” which aggre-
gate measurements from many sources for a single cell type [18].
Digital cell lines were intended to be continually updated and
curated by the community, so that low-quality measurements
could be replaced by better measurements as technology ad-
vances. However, this effort is currently manual, with no single,
easily searchable repository for its pilot data.

An unfortunate consequence of the current data-hosting
model is that all the burden rests on data donors: they gener-
ate the data, format it to standards, assemble it, document it,
upload it, and then pay the hosting and scientific publication
costs. This is a classic case of the “tragedy of the commons”: it
is easy to benefit from shared resources, but the cost of contri-
bution falls on contributors. Most repositories have fee waivers
for scientists in low-income nations, but small and underfunded
laboratories and citizen scientists are still at a disadvantage.

Nonprofit organizations like DRYAD have made great strides
in creating sustainable resources to host data; currently (as of
2019), a one-time charge of US $120 per dataset applies once the
data are accepted by curators and publicly available [45]. This
is a small fee compared to the data generation cost for experi-
mental labs and within the means of well-funded labs. In cases
where secondary analyses or simulations generate new datasets
independent of grant funding, there may be greater hardship in
these costs, particularly when coupled with open access publi-
cation fees.

Future
We need to develop more unified, scalable repositories that can
bridge fields and collect our knowledge. The repositories should
be indexed and community curated to encourage continuous re-
finement where possible. While there has been great progress
to create financially sustainable, permanent data hosting, there
is still room to explore alternative funding for data generated
independently of specific grant funds. Moreover, these archive-
oriented data stores still require curation and indexing if they
are to grow from data storage to libraries.

Solutions to this challenge may well originate outside the
bioinformatics community. Library scientists have longstanding
domain expertise in collecting and curating knowledge across
disciplines in unified physical libraries: this expertise would un-
doubtedly benefit any efforts to create public data libraries. The
tremendous success of Wikipedia [47] in hosting its own image
and video resources on Wikimedia Commons [48]—at no cost to
contributors—could be a very good model. bioRxiv [49] has been
similarly successful in hosting preprints at no cost to authors, al-
though experimental data hosting costs are far higher than the
cost of hosting manuscripts. Both of these have relied upon a
combination of public donations, federal support, and philan-
thropy, channeled through appropriate nonprofit structures.

We note that public data libraries could become victims of
their own success: as public repositories proliferate, finding in-
formation will become increasingly difficult, and the commu-
nity of contributors could become fragmented. This, in turn, will
make it difficult to recruit data curators to maintain the quality
of the resources. Thus, the community may need to reach con-
sensus on which libraries serve as the standard repositories for
which types of data. Moreover, unified search engines and in-
dexes may be needed to help unify knowledge in existing and
new data libraries.

Last, to ensure robustness and sustainability, we need to en-
courage data mirroring with global searchability, and promote a
culture that values and properly cites all contributions to shared
knowledge: data generation, data analysis, and data curation.
While badges can help [50, 51], we must ensure that data users
can easily cite all these contributions in papers, that impact met-
rics reflect the breadth of contributions, and that tenure and
other career processes truly value all contributions to commu-
nity knowledge resources.

Quality and curation standards

Community-curated public libraries face new questions: how
can we consistently decide which data are worth saving? How
do we determine whether a new measurement is better than an
old one? How do we monitor quality? Can we automatically trust
one laboratory’s data contributions on the basis of prior contri-
butions? And who gets to make these decisions?

Current progress
Little to none, aside from uncertainty quantification.

Future
This challenge is as much cultural as it is technical. We will
need to hold workshops of leading biologists to identify com-
munity values and standards for assessing different measure-
ment types. The community will need to determine whether
gold standards can be devised for comparing measurements.

Linking data to models

We need to connect data to computational models. Data mod-
elers should help design experiments, to determine what vari-
ables are needed to build useful models. We need to determine
how to “map” biological measurements to model parameters.

Current progress
This challenge is currently being addressed on a study-by-study
basis. Individual teams design experiments, devise their own
model calibration methods, formulate model evaluation met-
rics, and create their own tools to analyze and compare experi-
mental and simulation data.

Future
This challenge is both technical and cultural. Mathematicians,
biologists, data scientists, and others will need to work together
to determine what it means for an inherently stochastic simu-
lation model to match an experiment. Any progress in creating
standardized data elements and annotating multicellular sys-
tems behaviors will surely help in creating metrics to compare
experimental and computational models. Once standardized bi-
ological parameters are extracted to create benchmark datasets,
machine learning could help drive more systematic mappings
from extracted biological parameters to computational model
inputs.

Conclusions

The time is ripe for data-driven multicellular systems biology
and engineering. Technological advances are making it pos-
sible to create high-resolution, highly multiplex multicellular
datasets. Computational modeling platforms—including simu-
lation and machine learning approaches—have advanced con-
siderably, and they are increasingly available as open source
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[29, 52]. Supercomputing resources are amplifying the power of
these computational models [7, 8], while cloud resources are
making them accessible to all [34, 35].

If we can solve these key challenges, we will connect big mul-
ticellular datasets with computational technologies to acceler-
ate our understanding of biological systems. Steady, incremen-
tal progress towards any of the challenges benefits the commu-
nity as we move towards this broader vision.

Some of the challenges are largely technical, such as cre-
ating data standards. Others are more cultural, such as shap-
ing community values for data curation. All of the challenges
share a need for community investment: developing and shar-
ing compatible tools and data, hosting data, curating public
data libraries, and ultimately funding these worthwhile efforts.
Many groups are already contributing pieces of this puzzle, of-
ten with little financial support. In the future, we must reduce
the individual burden in creating community goods. We may
need newer, more rapid funding paradigms to help support and
harden new software tools, scaling from small but simple pro-
posals to the current large software grant mechanisms (which
tend to have low funding rates). We may need to fund software
labs rather than software projects, to encourage rapid response
to emerging community needs.

We are on the cusp of accelerated, data-driven biological dis-
covery of how cells work together, how they build things, and
how this breaks to cause disease. If you are working towards
solving any of these challenges (or if you have new ones to pose!),
please consider sharing your advances here.
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