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Abstract

Previous studies have shown that translation elongation is regulated by multiple factors, but

the observed heterogeneity remains only partially explained. To dissect quantitatively the

different determinants of elongation speed, we use probabilistic modeling to estimate initia-

tion and local elongation rates from ribosome profiling data. This model-based approach

allows us to quantify the extent of interference between ribosomes on the same transcript.

We show that neither interference nor the distribution of slow codons is sufficient to explain

the observed heterogeneity. Instead, we find that electrostatic interactions between the ribo-

somal exit tunnel and specific parts of the nascent polypeptide govern the elongation rate

variation as the polypeptide makes its initial pass through the tunnel. Once the N-terminus

has escaped the tunnel, the hydropathy of the nascent polypeptide within the ribosome

plays a major role in modulating the speed. We show that our results are consistent with the

biophysical properties of the tunnel.

Author summary

Proteins are synthesized by ribosomes that translate codons into amino acids while mov-

ing along mRNA transcripts. Various factors can influence the speed of this fundamental

process, but the observed heterogeneity of ribosome density along transcript sequences

remains only partially explained. Using a probabilistic model of the translation dynamics,

we introduce a method to infer the position-specific translation speed of each transcript

and the overall protein production rate, from ribosome footprint density information.

Applying our method to experimental data allow us to quantify the extent of closely-

stacked ribosomes hidden from the original data and more precisely the amount of inter-

ference between two abutting ribosomes. Also, we study the determinants of translation

speed and show that neither ribosomal interference nor the distribution of slowly decoded

codons is sufficient to explain the observed variation in the mean elongation rate across

the transcript sequence. By using a statistical model, we find that these variations are

largely explained by biophysical features, such as the amount of electric charges and the
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hydrophobic properties of the nascent polypeptide in specific windows, and this result

can be explained by the interactions between the ribosome exit tunnel and the nascent

polypeptide sequence located inside it.

Introduction

Ribosome profiling [1–3] is a powerful transcriptome-wide experimental protocol that utilizes

high-throughput sequencing technology to provide detailed positional information of ribo-

somes on translated mRNA transcripts. As a useful tool to probe post-transcriptional regula-

tions of gene expression, ribosome profiling has notably been used to identify translated

sequences within transcriptomes, to monitor the process of translation and the maturation

of nascent polypeptides in vivo, and to study limiting determinants of protein synthesis (see

recent reviews [4–6] for an overview of diverse applications of the technique). In addition,

since the ribosome occupancy at a given position reflects the relative duration of time spent at

that position, ribosome profiling provides an unprecedented opportunity to study the local

translational dynamics [7]. However, the precise relation between the observed footprint den-

sities and the corresponding translation elongation rates remains elusive [6], thus making it

difficult to interpret ribosome profiling data.

One factor that may affect the translation elongation speed is ribosomal interference, which

occurs when slow translocation of a ribosome at a certain site blocks another one preceding it

(an extreme case being ribosomal pausing, occurring both in eukaryotes and bacteria [8]).

Because the information provided by ribosome profiling is marginal probability density (in the

sense that it does not capture the joint occupancy probability of multiple ribosomes on the

same transcript), it is not possible to observe ribosomal interference directly from data and

therefore quantifying the role of interference in limiting the elongation speed has remained

challenging. Furthermore, a further challenge for inference arises from the potential omission

of stacked ribosomes (i.e., multiple ribosomes that are less than a few codons apart) in the cur-

rent ribosome profiling protocol [9–12]. In most studies, positional distributions of ribosomes

along the open reading frame (ORF) are inferred from protected mRNA fragments of lengths

27–31 nt that presumably reflect the size of the 60S ribosomal subunit (28–29 nt in S. cerevisiae
or 30–31 nt in mammalian cells). However, gradient footprint profile has detected longer pro-

tected fragments of 40–65 nt which can be attributed to two closely stacked ribosomes that

accumulate when the leading ribosome is stalled [11, 13]. Not taking these longer mRNA frag-

ments into account in the ribosome profile may thus produce biased estimates of ribosome

densities, and, as a consequence, of elongation rates.

Over the past few years, multiple studies have tried to utilize ribosome profiling data to

identify the key determinants of the protein production and translation rates, but have arrived

at contradictory results [14–22]. Due to the vast complexity of the different biophysical mecha-

nisms involved in the decoding and translocation of the ribosome along the mRNA, it is

indeed a challenging problem to disentangle the composite factors that can modulate the elon-

gation speed for a given transcript sequence. Several studies have shown that elongation speed

is locally regulated by multiple factors, including tRNA availability and decoding time [21, 23,

24], mRNA secondary structure [25], peptide bond formation at the P-site [26], and the pres-

ence of specific amino acid residues [17, 18, 27, 28] in the nascent polypeptide that interact

with the ribosomal exit tunnel [29]. However, the observed heterogeneity in elongation rates

along the transcript, notably the so-called 50 “translational ramp” [1], remains only partially

explained [16, 30].

The major determinants of translation elongation rate variation
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Here, we provide new insights into the major determinants of the translation dynamics, by

identifying features that can explain a large portion of the variation in the mean elongation

rate along the transcript, particularly the 50 translational ramp. We also present a new statisti-

cal method that can be used to obtain accurate estimates of initiation and local elongation

rates from ribosome profiling and RNA-seq data. Our approach is based on a probabilistic

model that takes into account the principal features of the translation dynamics, and it allows

us to quantify the extent of ribosomal interference (not directly observable from data) along

the transcript.

Results

Estimation of initiation rates and local elongation rates

We developed an inference procedure based on an extended version of the biophysical TASEP

model [31] (see Fig 1, Materials and Methods, and Sections 1–3 of S1 Text) to estimate tran-

script-specific initiation and local elongation rates from ribosome profiling and RNA-seq data.

In our model, the initiation rate is the exponential rate at which the P-site of a lower ribosomal

subunit arrives at the start codon and the upper ribosomal subunit gets assembled, while the

elongation rate at a given codon position is the rate at which the A-site of a ribosome occupy-

ing that position translocates to the next downstream codon. Here, both events are condi-

tioned on there being no other ribosomes in front obstructing the movement.

For the main part of our analysis, we used flash-freeze ribosome profiling and RNA-seq

data of S. cerevisiae generated by Weinberg et al. [16]. These data have been shown to have sub-

stantial improvements over previous datasets, alleviating protocol-specific biases [16] that can

influence interpretation of ribosome-profiling experiments [12]. We ran our inference method

on a subset of 850 genes selected based on length and footprint coverage (see Materials and

Methods), and tested its accuracy (detailed in S1 and S2 Figs). Of these, 383 genes (45%) did

not require any corrections after the first step of our inference procedure, which means that

only the initiation rate was fitted to match the data (the inverse of the observed density was

used to estimate the elongation rate, see Materials and Methods). For the remaining 467

genes, the number of sites that required a correction procedure was on average 1.57 per gene

(std = 0.925) (S2A Fig). A more detailed analysis and comparison of these two subsets of genes

are provided in Section 4 of S1 Text and S3, S4 and S5 Figs, which show that sites with larger

relative footprint densities and codons with slowest average elongation rates are more likely

to require corrections. Fig 1B is an example illustrating the excellent agreement between the

actual ribosome footprint distribution for a specific gene from experiment and the distribution

of detected ribosomes obtained from simulation under the extended TASEP model with our

inferred initiation and elongation rates. Other comparisons of experimental and simulated

profiles are provided in S6 Fig. As shown below, the results from running our method on

other ribosome profiling datasets [19, 32] (see Section 5 of S1 Text) are consistent with our

results on Weinberg et al.’s data.

Inference of possible omissions of stacked ribosomes from ribosome

profiles

The standard ribosome profiling protocol selects for isolated ribosomes occupying 27 and 31

nt, so longer mRNA fragments protected by closely-stacked ribosomes (separated by� 2

codons) are possibly not included in the experimental data, thus making the ribosome foot-

print distribution inaccurate in regions of high traffic [9–13]. To infer the extent of such omis-

sions in Weinberg et al.’s experimental ribosome profiling data, we compared the translation

The major determinants of translation elongation rate variation
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Fig 1. Illustration of translation dynamics and inference from experimental data. A. A representation of the mathematical model of translation.

Initiation corresponds to an event where the A-site of a ribosome enters the second codon position, while elongation corresponds to a movement of the

ribosome such that its A-site moves to the next downstream codon. Both events are conditioned on there being no other ribosomes in front obstructing

the movement. The ribosome eventually reaches a stop codon and subsequently unbinds from the transcript. In our main simulations, we say that a

ribosome is undetected when the distance between the A-sites of consecutive ribosomes is� 12 codons. B. A schematic description of our inference

procedure. Given a ribosome profile and a measure of average density (TE), we first approximate the position-specific elongation rates by taking the

inverse of the observed footprint number. Then, we use simulation to search over the initiation rate that minimizes the difference between the

experimental density and the one obtained from simulation. We then iteratively refine these estimates: We compare the simulation result with the

experimental ribosome profile and detect “error-sites” where the absolute density difference is larger than a chosen threshold. If error-sites are found,

we start with the one closest to the 50-end, and jointly optimize the initiation rate and the elongation rates in a neighborhood of this error-site to

minimize the error between the simulated and observed profiles. Using these new parameters, we then re-detect possible error-sites located

downstream and repeat the procedure (more details in Material and Methods).

https://doi.org/10.1371/journal.pgen.1007166.g001
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efficiency (TE) to the measurement of per-gene ribosome density from polysome profiling car-

ried out by Arava et al. [33] (for 588 genes common to both datasets). TE is the ratio of the

RPKM measurement for ribosomal footprint to the RPKM measurement for mRNA [1],

where RPKM corresponds to the number of mapped reads per length of transcript in kilo base

per million mapped reads. In other words, it quantifies for each gene the average number of

detected ribosomes per single transcript, up to a normalization constant. When the total ribo-

some density of a gene is low, it coincides with the TE. We therefore determined the normali-

zation constant (0.83) by linearly fitting the TE to the total ribosome densities measured by

Arava et al. for values less than 1 ribosome per 100 codons (see Fig 2A). Interestingly, when we

looked at a subset of higher-density transcripts (> 1 ribosome per 100 codons) contained in

Arava et al.’s dataset, we found that the normalization constant obtained by fitting these higher

densities was lower (0.61), as shown in Fig 2B. This suggested that for highly occupied tran-

scripts, the density of ribosome inferred from TE underestimates the actual total ribosomal

density. Using Pop et al.’s data [19] and performing the same comparisons led to similar

results (S7A and S7B Fig).

To see if our method could accurately capture this difference, we compared the experimen-

tally measured densities (in Arava et al.) with our simulated average densities. Specifically, we

simulated average densities using the rates inferred from experimental ribosome profiles and

Fig 2. Comparison between translation efficiency (TE) and total ribosome density. All linear fit results are shown in the inset. A. The gene-specific

TE for 588 genes from Weinberg et al.’s data [16] (see Materials and Methods) against the corresponding total ribosome density (average number of

ribosomes per 100 codons) from Arava et al. [33]. We performed a linear fit of the points for which the corresponding ribosome density was less than 1

ribosome per 100 codons. B. Similar fit as in A in the range of ribosome density larger than 1 ribosome per 100 codons. C. For the genes (195 in total)

that belong to both our main dataset and Arava et al.’s, we compared the simulated total densities obtained using our inferred rates, against the

ribosome density from Arava et al.D. Simulated detected-ribosome densities for the same 195 genes against the ribosome density from Arava et al.
These results suggest that closely-stacked ribosomes comprise a large fraction of undetected ribosomes, and that our method allows us to correct the TE

value to get close to the actual total ribosome density.

https://doi.org/10.1371/journal.pgen.1007166.g002
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TE measurements under three different scenarios of undetected ribosomes (S8 Fig): 1) when

all closely-stacked ribosomes are detected, 2) when each detection is only partially successful

with probability 0.5, and 3) with no detection of the closely-stacked ribosomes. For each sce-

nario, we produced a linear fit of the total ribosome density (obtained by combining detected

and undetected ribosomes) against Arava et al.’s data. Our goal here was to see which scenario

produces a linear-fit coefficient that is the closest to the aforementioned normalization con-

stant (0.83) for low-density transcripts (with< 1 ribosome per 100 codons). The linear-fit coef-

ficient was 0.63 for the first scenario (complete detection of closely-stacked ribosomes), 0.7 for

the second (partial detection), and 0.80 for the last (no detection). The last scenario agrees the

best with the normalization constant (0.83) for low-density transcripts (Fig 2C). Furthermore,

when we used this model to fit the density of only detected ribosomes against Arava et al.’s data

(Fig 2D), we found the normalization constant to be lower (0.67), consistent with the decrease

we observed in the fit of the raw TE values for high-density transcripts (Fig 2B). Applying our

inference procedure to Pop et al.’s data yielded similar results (see S7C and S7D Fig).

Inferred rates are consistent with existing results and across different

datasets

Upon selecting a model of ribosome profiling with no detection of closely-stacked ribosomes,

we used the corresponding estimates to see whether our method could recover what is known

in the literature. For the set of genes we considered, we found that the mean time between ini-

tiation events varied from 5.5 s (5th percentile) to 20 s (95th percentile), with median = 10 s.
These times are of similar order but shorter than the times found previously [15]. (4 s to 233 s
for the 5th to 95th interpercentile range, with median = 40 s), which can be partially explained

by the fact that the set of genes we considered does not include lowly expressed genes (i.e.,

with low ribosomal density). For the subset of 850 genes that we considered, the corresponding

median time between initiation events is indeed substantially lower (by 40%) than that for the

whole gene set. In agreement with previous findings [15, 16, 34], our inferred initiation rates

were also positively correlated (Pearson’s correlation coefficient r = 0.2646, p-value < 10−5)

with the 50-cap folding energy (see Materials and Methods) and negatively correlated (r = −0.4,

p-value < 10−5) with the ORF length (these results are detailed in Fig 3A). We also compared

our estimated initiation rates with the ones inferred by Ciandrini et al. [34], who develop a

simpler approach to infer initiation rates from polysome profile data [35]. The mean initiation

times from Ciandrini et al. were close to ours (4.6 s to 15 s for the 5th to 95th interpercentile

range, with median = 8 s, S9A Fig), and a direct comparison between the two sets of initiation

rates showed a positive correlation (R2 = 0.4, see S9B Fig). Applying our method to Pop et al.’s
dataset (see S10 Fig) also leads to a positive correlation (0.31, p< 10−4), with improved consis-

tency as the sequencing depth increases (see Section 6 of S1 Text).

To verify that our method effectively captured the dynamics associated with a specific

codon at the A-site, we separated the inferred elongation rates according to their correspond-

ing codon (the resulting distributions are shown in Fig 3B). We observed that codon-specific

mean elongation rate (MER) was positively correlated with the inverse of the codon-specific

A-site decoding time estimated from Gardin et al. [21] (r = 0.7, p-value < 10−5, see Fig 3C),

supporting that different codons are decoded at different rates at the A-site. We then com-

pared these MER with the ones estimated by applying our method to another flash-freeze

dataset, generated by Williams et al. [32] and Pop et al. [19]. Because of lower sequencing

depth compared to Weinberg et al.’s data, the number of genes passing our selection criteria

decreased to 625 genes for Williams and 212 for Pop (see Materials and Methods). We

obtained an excellent correlation between our MER estimates for the two datasets (r = 0.92,

The major determinants of translation elongation rate variation
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Fig 3. Analysis and comparison of the inferred rates. A. (Left) A histogram of inferred initiation rates. (Middle) Comparison between the inferred

initiation rates and the inverse of the ORF length of the gene, showing a positive correlation (r = 0.44, p-value< 10−5, computed for unbinned data).

(Right) Comparison between the inferred initiation rates and the 50-cap folding energy computed in Weinberg et al. [16], showing a positive correlation

(Pearson’s correlation coefficient r = 0.2646, p-value< 10−5, computed for unbinned data). The interquartile range is indicated by the box, the median

by a point inside the box, and upper and lower adjacent values by whiskers. B. Distribution of codon-specific elongation rates. Stop codons are boxed in

blue, while the eight low-usage codons reported by Zhang et al. [75] are boxed in red. C. Comparison between the codon-specific mean elongation rates

computed from B and (Left) the inverse of the codon mean “ribosome residence time” (RRT) estimated by Gardin et al. [21], and (Right) the tAI value,

computed by Tuller et al. [14].

https://doi.org/10.1371/journal.pgen.1007166.g003
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p-value < 10−5, see S11A Fig. We also obtained a positive but less good correlation with Pop

et al.’s dataset (r = 0.58, p-value < 10−5, see S11B Fig). As for the initiation rates, we also

explained this less good correlation by the decrease in sequencing depth (which creates more

sites with no footprints). By selecting the 30 codons with largest sample size used to compute

the associated averaged codon elongation rate, the r coefficient indeed increased to 0.68.

Finally, since the differences in MER at different sites could be associated with tRNA avail-

ability variations [24], we further compared the MER and the codon tAI value [14, 36], which

reflects the codon usage bias towards the more abundant tRNAs in the organism, and found a

positive correlation (r = 0.49, p-value < 10−4, see Fig 3C). Altogether, these results suggested

that our estimates of the local elongation rates reflect tRNA-dependent regulation of elonga-

tion speed and that our estimates are consistent across different ribosome profile datasets.

The impact of ribosomal interference on translation dynamics

The differences in the amount of ribosome interference between different genes could lead to

significant biases when using the TE as a proxy for protein production rate. Using our results,

we could quantify the production rate precisely, and thus relate it to the detected or total ribo-

some density. Simulating under our model and inferred parameters, we estimated the protein

production rate using the particle flux: for each gene, we defined it as the rate at which a single

ribosome reaches the end of the ORF and unbinds, leading to protein production. We exam-

ined the distribution of protein production rates (Fig 4A) and observed a range between 0.042

s−1 (5th percentile) and 0.12 s−1 (95th percentile), with median and standard deviation equal to

0.075 s−1 and 0.025 s−1, respectively. The protein production rate of a gene was generally lower

than the corresponding translation initiation rate, due to an additional waiting time (*3 s
on average) caused by ribosomal interference. Comparing the protein production rate with

the detected-ribosome density (Fig 4A) gave a high correlation (Pearson’s r = 0.91, p-value

< 10−5). However, we observed a super-linear increase of the production rate as the detected-

ribosome density increased. Since our simulated detected-densities match the experimental

TE measurements up to a normalization constant, this suggests that, because closely-stacked

ribosomes are not included, the standard TE measure tends to underestimate the true protein

production rate for large-TE genes. Using the total density of ribosomes (Fig 4A) instead of

the detected-ribosome density improved the correlation (r = 0.94, p-value< 10−5), but also led

to a slight sub-linear trend, due to some saturation appearing when the initiation rate gets so

high that elongation rates become limiting factors of translation.

To study how ribosomal interference affects the local ribosome dynamics, we examined the

difference between the inferred elongation rates of our mathematical model (we call them

unobstructed rates) and the effective rates given by the inverse of the average time spent at a

particular position (we call them observed rates). Upon aligning all transcripts with respect to

the start codon and averaging across the transcripts, we compared the average unobstructed

rate at each position with the corresponding average observed rate (Fig 4B). Both curves

showed an initial decrease to a trough located at codon position around 40, followed by a slow

increase to a plateau. These variations were vertical reflections of the 50 ramp obtained for

ribosomal normalized density (S12 Fig). Both unobstructed and observed rates initially

increased from a very low rate (*3 codons/s) to a peak of 11.5 and 10 codons/s, respectively,

located at position 10. They then decreased to a local minimum of 9 and 7.9 codons/s, respec-

tively, before increasing again to a plateau around 11.5 and 10.9 codons/s, respectively. Fur-

thermore, the gap between the unobstructed and observed rates generally decreased (Fig 4B,

bottom plot) from 1.6 to 0.4 codons/s along the transcript, suggesting a decreasing impact of

ribosomal interference on the translation dynamics. The reduction in the observed speed from

The major determinants of translation elongation rate variation
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the unobstructed elongation rate ranged from 5% (at the plateau) to 15% (between codon posi-

tions 10 and 20).

Aligning the transcript sequences with respect to the stop codon position and applying the

same procedure, we observed a significant difference between the unobstructed and observed

rates at codon position −10. The gap size is 3 codons/s, which amounts to 30% reduction from

the unobstructed speed, while nearby sites have a regular level of 0.4 codons/s. This enhanced

gap is likely induced by stalling at the stop codon. A smaller bump (1.3 codons/s) was also

observed at codon position −20, reflecting the formation of a queue of three ribosomes.

Variation of codon-specific mean elongation rates along the transcript

After studying the local dynamics of translation and quantifying the increase of elongation

rates corresponding to the 50 ramp of decreasing ribosome density, we investigated the possible

determinants of such variation. The 50 ramp of ribosome density has previously been attrib-

uted to slower elongation due to more frequent use of codons with low-abundance cognate

tRNAs near the 50-end [14]. However, this explanation has been argued to be insufficient [16,

30], suggesting other mechanisms to cause the ramp.

Fig 4. The impact of ribosomal interference on translation dynamics. A. Analysis of protein production. (Left) A histogram of protein production

rates. (Middle) Comparison between the protein production rate and the detected-ribosome density obtained from simulations. In red, we plotted the

simulated production rate as a function of ribosome density. The red line corresponds to the production rate when we assume no interference and a

constant elongation speed of 5.6 codons/s, which was measured experimentally [7]. (Right) Comparison between the production rate and the total

ribosome density density obtained from simulations. B. (Left) Position-specific elongation rates averaged over all transcript sequences, aligned with

respect to the start codon. Plotted are the inferred unobstructed rate (in red) and the observed rate (in blue). The bottom plot shows the difference

between the two curves. (Right) Similar plots as the ones on the left, when the transcript sequences are aligned with respect to the stop codon position.

https://doi.org/10.1371/journal.pgen.1007166.g004
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To study whether the preferential use of slow codons can explain the variation of elongation

rates along the transcript, we analyzed the positional distribution of different codons. To do

so, we first grouped the codons (except stop codons) into five groups according to their mean

elongation rates, and then plotted (Fig 5A) their frequency of appearance at each position in

the set of genes we considered. At almost all positions, we found that the higher the mean elon-

gation rate of a group, the higher the frequency of its appearance (the average frequency of

appearance per codon type was 0.25%, 0.9%, 1.6%, 1.9% and 2.25% for the five groups in

increasing order of the mean elongation rate).

Looking more closely at how these frequencies changed along the transcript between posi-

tions 50 and 200 (S13A Fig), we observed an increase in frequency for the fastest codons, while

the opposite was true for slow codons. However, when we examined the associated positional

variation in elongation speed by setting the elongation rate of each codon type at all positions

to its corresponding average speed, we obtained an increase of 0.3 codons/s (S14A Fig). This

increase was not large enough to explain the total variation observed at the 50-ramp (approxi-

mately 2 codons/s). This result thus suggested the existence of other major factors influencing

the elongation speed along the first 200 codons.

To confirm this hypothesis, we plotted the variation of average elongation speed for each

codon type along the transcript sequence (Fig 5B), which displayed a range between approxi-

mately 2 and 14 codons/s. Also, for each position, we computed the mean deviation of each

Fig 5. Heterogeneity of codon distributions and elongation speed along the transcript. A. Codon frequency metagene analysis. We grouped the

codons (except stop codons) into five groups according to their mean elongation rates (MER) and plotted their frequency of appearance at each

position in the set of genes we considered. The first group contained 4 codons with MER between 4 and 6 codons/s; the second group 13 codons with

MER between 6 and 8; the third group 13 codons with MER between 8 and 10; the fourth group 16 codons with MER between 10 and 12; and the fifth

group 15 codons with MER> 12. B. Smoothed mean elongation speed along the ORF for each codon type (stop codons are excluded). At each position

i, we computed an average of codon-specific MER between positions i − 20 and i + 20. In black, we plot an average of the 61 curves.

https://doi.org/10.1371/journal.pgen.1007166.g005
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codon’s elongation rate from the codon-specific mean elongation rate. S13B Fig shows the

results, which groups the codons according to their mean elongation rates, as done above.

Interestingly, we observed a general increase of the position-specific mean elongation rate

from position 40 to 200 (corresponding to the ramp region). Weighting these variations by

position-specific codon frequencies (S14B Fig), we found that the mean elongation rate from

position 40 to 200 increases from approximately 9.5 to 11.5 codons/s, which gives an increase

of 2 codons/s, comparable to what we previously observed in Fig 4B. We thus concluded that

the major determinant of the 50 translational ramp was not the codon distribution, but an

overall increase of translational speed along the ORF.

The major role of hydropathy and charge distributions of nascent

polypeptides in explaining the positional variation of mean elongation

rates

The above analyses suggested the existence of additional determinants that modulate local

elongation rates and may explain the observed pattern of elongation rates along the transcript.

We sought out to find these determinants using a statistical method.

Using molecular biology techniques, it has been demonstrated previously that electrostatic

interactions between nascent polypeptides and the ribosomal exit tunnel can modulate elonga-

tion rates [37]. Motivated by this observation, we employed statistical linear models to identify

specific features of the nascent polypeptide that affect elongation rates and to quantify the

extent of their influence (see Material and Methods). We first analyzed Weinberg et al.’s [16]

data discussed above (850 genes). The dependent variable in each linear model was the posi-

tion-specific mean deviation of elongation rates from codon-type-specific average elongation

rates (the latter was obtained by averaging over all transcripts and positions). We used various

features in our linear models, described in detail in Material and Methods and S15 Fig.

About 40 or so amino acid residues can be accommodated within the ribosome [29], so we

first considered codon positions 6 to 44 from the start codon in order to focus on the dynamics

as the N-terminus of the nascent polypeptide chain makes its pass through the peptidyl trans-

ferase center (PTC) and the ribosomal exit tunnel. By optimizing the fit of linear models, we

found that the PARS score in the window [9 : 19] downstream of the A-site is a statistically sig-

nificant explanatory feature that is negatively correlated with the position-specific mean elon-

gation rate in this region. This result is consistent with previous findings [30, 38] that mRNA

secondary structure inhibits elongation near the 50-end. This feature was generally more

important for longer transcripts. We also found important regulatory features of the nascent

polypeptide segment within the PTC and near the beginning of the exit tunnel. Specifically,

when we used as additional features the mean number of charged amino acid residues and

scanned linear models with different feature windows to obtain the best fit, we found that the

number of positively charged residues in the window [1 : 11] and the number of negatively

charged residues in the window [6 : 14] upstream of the A-site are important features with

opposite effects; the former facilitates elongation, while the latter slows down elongation.

These two charge features together with the PARS score explain 91% of the positional variation

(Fig 6A) in the mean deviation of elongation rates in this region.

We then tried to construct a linear model for codon positions 45 to 300. We could not

obtain a good fit only using explanatory features based on the PARS score and the number of

charged residues. Surprisingly, we found that the hydropathy of the nascent polypeptide chain

in the window [1 : 42] upstream of the A-site can alone explain 84% of the positional variation

in the mean deviation of elongation rates in this region. This window [1 : 42] was determined

by optimizing the fit of a linear model with hydropathy as the sole feature; the resulting fit is
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Fig 6. Linear model fits of the mean deviation of elongation rates for the data from Weinberg et al. [16]. The dependent variable is the mean

deviation of elongation rates from codon-type-specific average elongation rates. Green lines correspond to the estimates from ribosome profiling

data, while red dots correspond to our model fits based on a small (1 or 3) number of features. A. A fit for codon positions [6 : 44] obtained using

three features: the mean PARS score in the window [9 : 19] downstream of the A-site, the mean number of negatively charged nascent amino acid

residues in the window [6 : 14] upstream of the A-site, and the mean number of positively charged residues in the window [1 : 11] upstream of the
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shown Fig 6B. This result implies that the more hydrophobic the nascent polypeptide segment

is, the higher the mean elongation rate.

We then took the above-mentioned features that we learned from analyzing the data from

Weinberg et al. [16] and used them to fit the previously-mentioned ribosome profiling data

for 625 genes from Williams et al. [32]. This led to fits with goodness comparable to the ones

mentioned above: R2 = 0.86 for codon positions 6 to 44, R2 = 0.74 for positions 45 to 300, and

R2 = 0.74 for the entire region between positions 6 and 300. A few factors potentially contrib-

uted to slightly lower coefficients of determination for Williams et al.’s data. First, 167 out of

625 genes in the dataset were shorter than 300 codons, while we excluded such genes when we

analyzed Weinberg et al.’s data to eliminate the effects of ribosomal pausing near stop codons.

Second, there are no RNA-seq data associated with the ribosome profiling from Williams

et al., so we could not refine the “naive” estimates of elongation rates for this dataset (see

Materials and Methods).

The charge features that modulate elongation rates are consistent with the

electrostatic properties of the ribosome exit tunnel

To explain why the aforementioned windows of charge features got selected by our linear

model of elongation rate variation, we studied the properties of the ribosome exit tunnel. To

this end, we first extracted the ribosome tunnel coordinates and composition from cryo-EM

data [39] using a tunnel detection algorithm [40] (see Materials and Methods, Fig 7 and S16

Fig). The tunnel spans more than 80 Å and is composed of three regions: the upper region con-

nected to the PTC, the constriction region (where two ribosomal proteins L4 and L22 reduce

the width of the tunnel [29]), and the lower region connected to the exit (Fig 7A). Since our

statistical analysis suggested that the presence of positive and negative charges in the upper

region may respectively facilitate and inhibit elongation as the nascent polypeptide makes its

initial pass through the tunnel (i.e., when the ribosome is translating the first *40 codons), we

aimed to study the longitudinal direction of the force that a charged particle would experience

along the tunnel. Assuming the centerline of the tunnel to be approximately straight (fitting

the 3D coordinates of the tunnel with a straight line gives a R-squared value of 0.985, see S17

Fig), we can actually reduce the dynamics of a particle inside the tunnel into a one-dimen-

sional diffusion process, driven by two potentials (see Materials and Methods): one associated

with the entropy of the system related to the cross-sectional area, and the other with the elec-

trostatic potential along the tunnel, created by the charged constituent RNAs and proteins of

the ribosome. The local signs of the gradients of these potentials determine whether the move-

ment of a charged particle towards the exit of the tunnel is facilitated or inhibited.

By studying the entropic force (Fig 7B), we found that the gradient was small in the con-

striction and lower regions but positive and much larger in the first half of the upper region

(first * 20Å). Thus, a particle crossing this region will experience a strong entropy barrier due

to the increase of radius in the tunnel. For the electrostatic force, due to the heterogeneity of

the solvent inside the tunnel [41], it is difficult to accurately compute the electrostatic potential

inside the tunnel using classical numerical methods [42]. Therefore, we simply approximated

the electrostatic potential by the Coulomb potential generated by the ribosome, obtained at

any point of the centerline by summing the charges in the ribosomes (coming from negatively

charged phosphate groups and charged amino acids) weighted by the inverse of the distance to

A-site. The first two features had negative regression coefficients, while the last one had a positive regression coefficient. The coefficient of

determination R2 was 0.91 for this fit. B. A fit (R2 = 0.84) for the region [45 : 300] obtained using only a single feature: the mean hydropathy of the

nascent peptide segment in the window [1 : 42] upstream of the A-site.

https://doi.org/10.1371/journal.pgen.1007166.g006
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Fig 7. Biophysical properties of the ribosome exit tunnel. A. The figure on the left illustrates the exit tunnel (in black) and

ribosomal proteins L4 (in pink) and L22 (in green) surrounding the constriction region. We extracted the tunnel geometry

from the cryo-EM structure of the ribosome large subunit [39] illustrated on the right (side view, see also S16 Fig). B. (Left) The

variation of the tunnel radius r along the tunnel. (Right) The negative gradient of ln(r2) (smoothed over a 10 Å window). Note a

region of large negative “entropic” potential [73] in the upper region of the exit tunnel. C. (Left) The variation of the
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the point. Using this approximation, we found that the electric field is outward-pointing in the

first half of the upper region (0–20 Å) (Fig 7C). As the tunnel can accommodate approximately

40 amino acids [29], we concluded that this is consistent with our results that the presence of

positively charged residues in the first 11 amino acids of the nascent polypeptide tends to facil-

itate elongation, whereas negatively charged residues between positions 6 and 14 tend to slow

it down (see Discussion below). Moreover, these results suggest that the presence of positively

charged amino acids should help in the first steps of elongation to move the N-terminus of the

nascent polypeptide across the entropy barrier and towards the tunnel exit.

Finally, we studied whether there is an evolutionary signature that is consistent with our

finding regarding the specific role that electrostatic interaction plays in modulating elongation

speed as the N-terminus of the nascent polypeptide makes its way through the tunnel. To this

end, we looked at the position-specific frequency of positive and negative amino acid charges

over an extended set of genes (all 2862 genes of length� 200 codons) in the first 200 codons of

the ORF. As shown in Fig 7D, the frequency of positive charges was much larger in the first 40

codons, followed by a gradual decrease to a plateau (*12% at position 50 and *11% at 200).

In contrast, we observed a stark depletion in the frequency of negative charges in the beginning

of the ORF, followed by an increase to a plateau starting around position 40 (*12.5%); Tuller

et al. [30] also made a similar observation. Overall, these patterns are consistent with the results

of our statistical analysis and our hypothesis that evolution has tried to optimize charge distri-

butions in the beginning of the nascent polypeptide to facilitate elongation as the N-terminus

make its way through the exit tunnel.

Discussion

Difference of our method from previous methods

We used probabilistic modeling of the translation dynamics to dissect the different determi-

nants of elongation speed, and developed an efficient, simulation-based inference algorithm to

estimate transcript-specific initiation and local elongation rates from ribosome profiling data.

The first step of our inference procedure is similar to the method introduced by Ciandrini

et al. [34], which uses a TASEP-based model to infer gene-specific initiation rates; in our case

we use transcript- and position-specific elongation rates, by taking the inverse of the profile

density, whereas Ciandrini et al. use codon-specific elongation rates derived from tAI values,

common to all transcripts and positions. As Ciandrini et al.’s method uses only the ribosome

density from polysome profile, it assumes that the elongation rate depends only on the codon

identity at the A-site, neglecting other determinants that we notably found in our study to

explain the elongation rate variability. While our estimates of initiation rates were of similar

order and positively correlated, it is interesting to note that the correlation decreases for genes

with higher initiation rates. This could be due to the additional information (specifically, the

positions of ribosomes on mRNAs) provided by ribosome profiling that are missing in their

method. For example, Ciandrini et al. assumed that termination is a fast process, although

our results show the contrary. This suggests that they may underestimate the impact of inter-

ference, causing them to overestimate the initiation rate necessary to reach a given density.

electrostatic Coulomb potential induced by ribosomal RNA and proteins within a radius of 20 Å from the center of the tunnel.

(Right) The negative gradient of the potential (smoothed over a 10 Å window), notably showing a region of positive electric

field (pointing towards the exit) in the region 0 * 18 Å. D. (Left) Position-specific average frequencies of positively (red) and

negatively (blue) charged amino acids averaged over all genes of length� 200 codons. (Right) The frequency curves smoothed

by averaging over a 10-codon window. Compared to other parts of the transcript, the frequency of positive (negative) amino

acids is significantly higher (lower) in the first *25 codons.

https://doi.org/10.1371/journal.pgen.1007166.g007
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This is consistent with the fact that their estimated initiation rates are in general slightly larger

than our estimates.

Gritsenko et al. [20] proposed another TASEP-based approach to estimate initiation and

elongation rates from ribosome profiling data. However, in their approach only 61 parameters

of elongation are estimated by minimizing an objective function over all the profiles. The

observed difference between tAI-based and their fitted elongation rates led them to conclude

that additional unknown factors, possibly arising from larger sequence context, are shaping

elongation rates. Our results illustrate this point more precisely and show that some specific

properties of the nascent polypeptide can explain the variability of elongation rates that we

observed across different transcripts and codon positions.

As detailed in a recent review by Zur and Tuller [43], there has been many previous studies

using computational tools to infer and predict the dynamics of mRNA translation using bio-

physical modeling [10, 14, 15, 19, 20, 30, 43], but with contradictory results. To our knowledge,

the models proposed to date, except for the one considered by Tuller et al. [30], have been

developed under the assumption that elongation rates are not influenced by the sequence con-

text surrounding the A-site, while our results suggest that elongation rates are modulated by

the nascent polypeptide interaction with the exit tunnel that depend on the context of *40

codons preceding the A-site. Interestingly, the model proposed by Tuller et al. also takes into

account amino acid charges and mRNA folding energy, but their conclusion regarding the

impact of the charges on the elongation rate strongly differs from what our results suggest (see

below). Furthermore, their model does not include hydropathy, which we show plays a major

role in regulating elongation speed once the N-terminus has escaped the ribosome exit tunnel.

Potential technical artifacts

When combining a biophysical modeling approach with ribosome profiling data, another

source of complication comes from technical artifacts in the data. In particular, cycloheximide

pre-treatment, used to immobilize ribosomes, can lead to substantial codon-specific biases [16,

44, 45]. The use of flash-freeze technique alleviates some of these problems, and allows one to

obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect the

translation dynamics [16]. Andreev et al. [12] recently described several important artifacts

and biases associated with ribosome profiling data that affect the representation of translation

dynamics. The experimental protocol used for the main flash-freeze data [16] considered in

this paper minimizes some of the biases (such as sequence biases introduced during ribosome

footprint library preparation and conversion to cDNA for subsequent sequencing, and

mRNA-abundance measurement biases and other artifacts caused by poly(A) selection). In

addition, our method allowed us to correct other important biases related to TE measurements

and depletion of stacked ribosomes from selecting only *30 nt fragments.

Undetected ribosomes and the extent of interference

Our quantification of interference was made upon selecting a model of ribosome profiling

with no detection of closely-stacked ribosomes. This model was selected over other models

with partial or total detection of closely-stacked ribosomes, as the simulated total densities

under this model produced the best agreement with polysome profiling data from Arava et al.
[33]. We note that comparing TEs with another polysome profiling dataset [35] yields a

smaller scaling constant (0.7 instead of 0.82), which would lead to lower initiation rates and

less interference. However, for this dataset, we still observe a decrease of the fitting constant

for genes with higher density (0.58). In another study [46], we investigated different gap sizes

using a refined analysis of the TASEP to study the relation between the total density and the
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density of isolated ribosomes for a specific isolation distance. The best match was obtained for

a distance of 2 or 3 codons, in agreement with the model used here. Interestingly, applying our

inference procedure also shows that our estimated elongation rates are in vast majority the

same as the naive estimates obtained from inverting the profile density (see Materials and

Methods). Hence, using an alternate model accounting for possible detection of closely-

stacked ribosomes would not modify the main conclusions of our work, notably in regards to

the major determinants of the elongation rate. It is also possible that for other datasets and

other organisms, differences in experimental protocols and nuclease digestion conditions [47]

could affect the fraction of detected stacked-ribosomes. Although it has been shown that ribo-

some profiling in yeast yields reproducible datasets with minimal variations [48], analyzing

datasets from other organisms could possibly require using an alternate model.

The major determinants of the elongation rate

Our inferred rates from flash-freeze data showed that the elongation rate is indeed modulated

by the decoded codon located at the A-site of the ribosome and the corresponding tRNA avail-

ability. The positive correlation between the codon-specific mean elongation rate and the

translation adaptation index, which has been used as a proxy for codon-specific decoding rate

[10, 34, 36, 43], supports the hypothesis that tRNA abundance and codon usage co-evolved to

optimize translation rates [14, 49].

However, our refined analysis of the distribution of codon-specific elongation rates showed

that tRNA availability is not sufficient to fully explain the observed translational speed varia-

tion. In particular, the 50 translational ramp variation cannot be sufficiently explained by

the change of frequencies of slow and fast codons across the transcript sequence, contrary to

what was previously suggested [14, 30]. Indeed, subsequent studies showed that specific con-

figurations of amino acids along the nascent polypeptide segment within the exit tunnel can

contribute to a slowdown or arrest of translation [17, 18, 27, 29, 50, 51]. An earlier study [37]

proposed that electrostatic interactions of nascent polypeptides with the charged walls of the

ribosomal exit tunnel could be one of the possible mechanisms of modulation of elongation

speed, suggesting that positively charged amino acids slow down translation [17, 30, 37]. We

note, however, that these studies did not focus on the initial stage of elongation. In contrast,

our results suggest that while the N-terminus of the nascent polypeptide has not exited from

the tunnel, positively charged amino acids in specific parts of the polypeptide actually facilitate

the elongation speed, while the opposite is true for negatively charged amino acids. Once the

N-terminus has exited the tunnel, the hydropathy of the part of the nascent polypeptide within

the ribosome plays a major role in governing the elongation rate variation. These features were

selected by statistically optimizing the fit of the linear model to position-specific mean elonga-

tion rates in a large region, which included the 50 ramp.

We note that Tuller et al. [30] also employed linear regression to fit the 50 ramp and devel-

oped a model that includes various features such as the tAI value, the total charge of the amino

acid residues coded by the 13 codons upstream of the A-site, and the 50 mRNA folding energy

downstream of the A-site. Although these features seem similar to ours, the results are quite

different. Indeed, while Tuller et al. suggested that the ribosome density along the first 300

codons can be explained by these features, our statistical analysis showed that the codon distri-

bution (associated with tAI variations) does not significantly contribute to the ramp variation

(S14A Fig). Further, we obtained that the amino acid charges and mRNA secondary structure

only explain the elongation rate variation during the first stage of elongation (* first 45

codons, Fig 6A), while the remaining part of the ramp is mainly explained by the hydropathy

score of the nascent polypeptide located within the exit tunnel (Fig 6B). These results are
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actually consistent with Tuller et al.’s finding, as they showed a poor correlation between their

model and the ribosome density after the first 50 codons [30]. Moreover, as previously said,

the detailed impact of the charges on the elongation dynamics is the opposite of what we

found, as they suggested that the ribosome density is positively correlated with the charges (in

other words, positive charges are negatively correlated with the elongation rate, and thus slow

down elongation).

There are several possible explanations for the differences between Tuller et al.’s results and

ours. First, since their analyzed footprints came from an experiment that used cycloheximide

pre-treatment, their fit for the first 50 codons could be affected by data artifacts associated with

the chemical treatment. In addition, the features used in their model were hand picked, while

ours were obtained through an optimization procedure. Finally, they fitted a smoothed version

of the normalized average ribosome footprint density along the transcript (see S12A Fig),

whereas we fitted the position-specific deviation from the mean elongation rate. Smoothing

could be undesirable, as we showed that some part of the density variation in this region is due

to interference (Fig 4).

Possible biophysical explanations

There are reasonable biophysical explanations for the particular set of features selected by

our statistical analyses. In order for the ribosome to translocate from one site to the next, the

nascent polypeptide has to be displaced to liberate enough space for the chain to incorporate

the next amino acid. The associated force needed to achieve this process is constrained by

the biophysics of the tunnel, which is known to be charged, aqueous, and narrow [29, 37,

52]. When the nascent polypeptide has not yet exited the tunnel (i.e., the first 40 residues),

our statistical analysis found that charged amino acid residues near the A-site play an impor-

tant role in governing the elongation dynamics. Furthermore, we found that positive charges

and negative charges have opposite effects: the former facilitates the elongation speed, while

the latter inhibit it. This finding is consistent with the electrostatic properties of the tunnel.

Specifically, our estimations of the net local charge across the tunnel suggests that the electric

field induced by the potential points outward (i.e., away from the PTC) near the beginning of

the tunnel (Fig 7C), in agreement with what our linear model predicts. Previous measure-

ments of the electrostatic potential inside the tunnel [53] were also consistent with our find-

ings, suggesting a decrease of the potential from the PTC along the upper region. Hence,

positively charged residues near the beginning of the tunnel will experience an electrostatic

force pointing outward, thereby facilitating the movement of the polypeptide chain through

the tunnel. Moreover, we showed that in the context of studying particle diffusion inside the

tunnel, the increase of radius across the tunnel in the upper region (Fig 7B) creates a strong

entropic barrier. This barrier can be compensated by the electrostatic potential if the particle

is positively charged, explaining the specific selection of positively charged amino acids in

the upper region when the nascent polypeptide makes its initial pass through the tunnel. The

opposite applies to negatively charged residues, with an effect of inhibiting the movement of

the chain.

Averaging the charged amino acid frequency over all transcripts of length� 200 codons,

we found that there is a starkly elevated amount of positively charged amino acids in the first

25 codons, while the opposite is true for negatively charged amino acids (see Fig 7D). These

patterns are consistent with our proposed role of positive and negative charges, and suggest

that evolution has tried to optimize charge distributions to facilitate the translation dynamics

as the nascent polypeptide makes its initial pass through the exit tunnel.
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Another important feature, which to our knowledge has not been previously noted as a

major determinant of elongation speed, is the hydropathy of the polypeptide segment within

the PTC and the exit tunnel. A possible explanation for the impact of hydropathy on the elon-

gation rate is that since the tunnel is aqueous [29] and wide enough to allow the formation of

α-helical structure [52], the hydrophobicity (which is an important factor driving compactness

and rigidity [54]) of the polypeptide segment inside the ribosome consequently drives the

amount of force needed to push the chain up the tunnel. This result may seemingly be in

contradiction with the fact that membrane proteins, known to be more hydrophobic, are gen-

erally more difficult to express. Analyzing a subset of 89 membrane protein genes [55] in our

main dataset (see S18 Fig), we indeed found a significant decrease in TE, but this decrease is

actually explained in our model by lower initiation rates. Interestingly, while we observed a

larger average hydropathy score for membrane proteins, we also found significant variation in

hydropathy along the sequence, with a larger increase from position 40 to 200 compared to the

increase observed in other proteins (S19 Fig). Interestingly, the 50 ramp pattern is also present

in the 89 membrane protein-coding genes (S18 Fig). The larger amplitude of the ramp also

suggests a larger increase in the elongation rate, in agreement with our original finding regard-

ing the impact of hydropathy on the elongation rate.

Shalgi et al. [56] recently showed that translation elongation pausing around position 65 is

associated with hydrophobic N-termini, under stress conditions reducing interactions between

the ribosome and the Hsp70 family of chaperones. Our analysis suggests that, more generally,

the variation of the hydrophobicity of the nascent polypeptide inside the exit tunnel (S19 Fig)

could explain the variation of the elongation rate over a large region following codon position

*50, and notably the trough observed around the same position as in Shalgi et al. While varia-

tion in translation rates could play a functional role in regulating co-translational folding of

the nascent polypeptide chain [57], our results on the impact of hydropathy suggest that this

link is more complex in that the folding (or pre-folding) in turn can actually alter the rate of

translation. Interestingly, the observed variation in the mean hydropathy score along the tran-

script (S19 Fig) suggests that the elongation speed is regulated at different stages of the poly-

peptide assembly and folding. The selection of different determinant features for different

stages of translation also suggests that the movement of the polypeptide inside the tunnel is

driven by two distinct biophysical mechanisms: First, when the polypeptide chain has not

yet exited the tunnel, electrostatic interactions in the upper part of the tunnel play a major

role in regulating the movement of the chain down the exit tunnel. Second, when the polypep-

tide has reached a certain length and its N-terminus has exited the tunnel, it is the structure of

the chain itself (which we captured through the hydropathy) that determines its movement

through the tunnel.

Possible limitations

One of the possible limitations of our present approach is that it does not take into account

possible translational regulatory events which could be specific to some genes (such as co-

translational translocation of membrane proteins, which may slow down the translation rate

[58]) or sequence motifs (such as arrest sequences inducing mRNA cleavage [59]). Another

regulatory mechanism is ribosomal drop-off, which has been shown to occur for some

sequences that lead to pausing or under specific stress conditions [22]. Under a non-stress

environment, it has been hypothesized that there exists a “basal” drop-off rate (defined as the

probability per site for a ribosome to drop-off from the transcript it is translating) and it has

been estimated to be on the order of 10−4 per codon in E. coli, assuming sequence-specific fea-

tures to be well averaged out. This has led to the hypothesis that ribosomal drop-off could
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explain the ramp variations [22]. Interestingly, using the same method as in Sin et al. [22] (see

Section 7 of S1 Text), we came to different estimates of the drop-off rate for the ramp region

and the rest of the transcript (S20A and S20B Fig). More precisely, while the drop-off rate

we estimated for the region outside the ramp was consistent with the drop-off rate estimate

(3.7 × 10−4) from Sin et al., the estimation procedure led to an unrealistically large drop-off

rate in the ramp region (0.002, which leads to a survival probability of only 0.67 after 200 trans-

lated codons). Incorporating the basal drop-off rate of 3.7 × 10−4 per codon into our inference

procedure did not significantly change our rate estimates (see S20C Fig). Another possible

drawback of our work is that our main analysis was carried out on a subset of only 850 genes,

which were selected to assure sufficiently high local coverage-depth of footprints. To confirm

that our results and conclusions did not suffer from any potential biases due to such filtering,

we analyzed the ramp pattern and the codon-specific elongation rates obtained from a larger

dataset (2862 genes) consisting of all genes of length� 200 codons. Comparison with our orig-

inal results (see S21 Fig) did not show any significant difference, suggesting that our overall

conclusions are robust and applicable to a broader level.

Finally, we have tried to apply our method to individual mRNA sequences, but could not

obtain significant results. We believe that aside from some logical issues related to noise at the

single transcript level, the very simple features that we used are reflecting some modulation at

a higher level, once all the interactions that affect the elongation rates are averaged over all the

transcripts. For example, the simple hydropathy score we considered may be able to capture

that the structure is important, but it cannot reflect the folding of the individual polypeptide at

a specific location. Similarly, our approximation of the electrostatic potential is insufficient to

quantify the amount of electrostatic force applied to the polypeptide, which should be a much

more complex function of the spatial distribution of charges and amino acids [28]. It is also

possible that some features (for example the presence of poly proline) [18] can specifically

affect the elongation rate, but cannot be detected as a global feature obtained after averaging.

Finally, using a linear model to combine these features may be too simplistic and insufficient

to capture how a specific sequence context can locally affect the elongation rate. Overall, our

results suggest that a better understanding of the biophysical interactions between the tunnel

and the nascent chain is needed to study the translation dynamics at early stage.

Conclusion

In summary, our results show how the time spent by the ribosome decoding and translocating

at a particular codon site is governed by three major determinants: ribosome interference,

tRNA abundance, and biophysical properties of the nascent polypeptide within the PTC and

the ribosome exit tunnel. It is quite remarkable that using a linear model with only few features

allowed us to fully and robustly capture the variations of the average elongation rate along the

transcript sequence. The results from our statistical analysis suggest that the translation elon-

gation dynamics while the nascent polypeptide is initially passing through the ribosome exit

tunnel is rather different from the elongation dynamics after the N-terminus has escaped the

tunnel, and that different biophysical mechanisms modulate the elongation speed in the two

stages. In addition to these overall determinants, our study also demonstrated the importance

of mRNA secondary structure in the first 40 codons and a pausing of the ribosome at or near

the stop codon, suggesting that additional local mechanisms may play a role in modulating

translation in specific parts of a transcript sequence.

Since the ribosome structure is highly conserved [60, 61], we believe that our results can be

generalized to other organisms. However, applying the present method to other datasets to

estimate translation rates may not be straightforward. Differences in experimental protocols
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and nuclease digestion conditions could affect the data substantially [47], and in particular

make the fraction of detected stacked-ribosomes to vary across different datasets and organ-

isms. However, combining polysome profiling, TE measurements, and different profile simu-

lation models (with different probabilities of detecting stacked-ribosomes) can allow one to

estimate the proportion of undetected stacked-ribosomes (as done in Fig 2 and S8 Fig), and

also enable the estimation of translation rates upon selecting the best model. Finally, a natural

extension of our work is to investigate in more detail, based on the above findings, the deter-

minants of translation at the individual transcript level. To do so, a more detailed analysis and

modeling of the nascent polypeptide within and immediately outside the exit tunnel is needed,

to reveal how a specific amino acid sequence can affect the translation rate through possible

interactions or co-translational folding [57, 62, 63].

Materials and methods

Experimental dataset

We used publicly available data in our analysis. The flash-freeze ribosome profiling data from

Weinberg et al. [16] can be accessed from the Gene Expression Omnibus (GEO) database with

the accession number GSE75897. The accession number for the flash-freeze data from Wil-

liams et al. [32] is GSM1495503 and the one from Pop et al. [19] are GSM1557442 (RNA-seq)

and GSM1557447 (ribo-seq). The method used to map ribosome footprint reads is described

in Weinberg et al. [16] (or further details on the choice of these datasets, see Section 5 of S1

Text). To be able to determine normalization constants (detailed below) without being biased

by the heterogeneity of translational speed along the 50 ramp and to obtain robust estimates of

the steady-state distribution, we selected among the pool of 5887 genes the ones longer than

200 codons and for which the average ribosome density was greater than 10 per site. For the

Weinberg et al. dataset this led to a set of 894 genes, to which we applied the first step of our

inference procedure (described below) to produce an estimate of the initiation rate. The algo-

rithm converged for 850 genes, and the main results presented in this paper are based on those

genes. For the Williams et al. dataset, the same procedure gave 625 genes. For Pop et al. it gave

212 genes.

Mapping of the A-site from raw ribosome profile data

To map the A-sites from the raw short-read data, we used the following procedure: We

selected the reads of lengths 28, 29 and 30 nt, and, for each read, we looked at its first nucleo-

tide and determined how shifted (0, +1, or −1) it was from the closest codon’s first nucleotide.

For the reads of length 28, we assigned the A-site to the codon located at position 15 for shift

equal to +1, at position 16 for shift equal to 0, and removed the ones with shift −1 from our

dataset, since there is ambiguity as to which codon to select. For the reads of length 29, we

assigned the A-site to the codon located at position 16 for shift equal to +0, and removed the

rest. For the reads of length 30, we assigned the A-site to the codon located at position 16 for

shift equal to 0, at position 17 for shift equal to −1, and removed the reads with shift +1. Such

assignments of the A-site leaves about 80% of the total data.

Estimation of detected-ribosome densities from translation efficiency

measurements

Translation efficiency measurements were used to compute the average density of detected

ribosomes. Since translation efficiency is given by the ratio of the RPKM measurement for

ribosomal footprint to the RPKM measurement for mRNA, it is proportional to the average
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density of detected ribosomes. To estimate the associated constant for each gene of our dataset,

we used the measurements of ribosome density from Arava et al. [33] (the dataset contains 739

genes, with 588 common with Weinberg et al. [16]). For genes with a ribosome density of less

than 1 ribosome per 100 codons (110 genes in total), we fitted the translation efficiency as a

function of the density to a linear function and divided all the TEs by the coefficient of this fit

to obtain estimates of the detected-ribosome density.

Estimation of 50-cap folding energy

The 50-cap folding energy associated with each gene of our dataset was taken from Weinberg

et al. [16], who used sequences of length 70 nt from the 50 end of the mRNA transcript and cal-

culated the folding energies at 37˚C using RNAfold algorithm from Vienna RNA package [64].

Estimation of RNA secondary structure (PARS score)

To quantify RNA secondary structure at specific sites, we used the parallel analysis of RNA

structure (PARS) scores from Kertesz et al. [65]. It is based on deep sequencing of RNA frag-

ments, providing simultaneous in vitro profiling of the secondary structure of RNA species at

single nucleotide resolution in S. cerevisiae (GEO accession number: GSE22393). We defined

the PARS score of a codon by averaging the PARS scores of the nucleotides in that codon.

Mathematical modeling of translation

To simulate ribosome profiles, we used a mathematical model based on the totally asymmetric

simple exclusion process (TASEP) [31, 66]. Compared with the original TASEP, our model

included additional features accounting for the heterogeneity of elongation rates and physical

size of the ribosome. We assumed that each ribosome has a footprint size of 30 nucleotides

(i.e., 10 codons) and that the A-site is located at nucleotide positions 16–18 (from the 50 end)

[67]. Protein production consists of three phases: First, a ribosome enters the ORF with its

empty A-site at the second codon position; the waiting time follows an exponential distribu-

tion and we define its rate as the initiation rate. Subsequently, a ribosome is allowed to move

forward one codon position if this movement is not obstructed by the presence of another

ribosome located downstream. As the dynamics of a ribosome along an mRNA transcript can

be seen as a Markov jump process, the associated conditional hopping time at each site is expo-

nentially distributed, with its rate defined as the elongation rate at the site. When a ribosome

eventually reaches a stop codon, it unbinds at an exponential rate (for simplicity, we also refer

to this as an elongation rate), which eventually leads to protein production. By simulating

under this model with given initiation and position-specific elongation rates, we can sample

ribosome positions at different times and thereby approximate the marginal steady state distri-

bution of ribosome positions (for further details, see Section 1 of S1 Text). In practice, we sam-

pled *3 × 104 ribosome positions for each gene studied.

Definition of closely stacked ribosomes

During simulation we monitor the distance between consecutive ribosomes along the tran-

script. Since experimental “disome” fragments (i.e., footprints covering two stacked ribo-

somes) were shown [11] to protect a broad range of sizes below *65 nt, in our simulations we

defined closely stacked ribosomes to occur when the distance between the A-sites of consecu-

tive ribosomes is� 12 codons (i.e., free space between the ribosomes is� 2 codons).
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Inference procedure

A detailed description of our inference procedure with examples is provided in Section 3 of S1

Text. Briefly, for given experimental ribosome profile and detected density (average number of

detected ribosomes occupying a single mRNA copy), our inference procedure for estimating

transcript-specific initiation and local elongation rates of the assumed TASEP model consists

of two steps (Fig 1B). 1) First, we approximate the position-specific elongation rate by taking

the inverse of the observed footprint number (such approximation is valid when there is no

ribosomal interference, see Section 3 of S1 Text), and then use simulation to search over the

initiation rate that minimizes the difference between the experimental detected-ribosome den-

sity and the one obtained from simulation. 2) Then, simulating under these naive estimates,

we compare the simulated ribosome profile with the experimental one and detect positions,

called “error-sites”, where the absolute density difference is larger than a fixed threshold. If

error-sites are detected, we first consider the one closest to the 50-end. We jointly optimize the

elongation rates in a neighborhood of this error-site and the initiation rate to minimize the

error between the simulated and the observed profile. With these new parameters, we then re-

detect possible error-sites located downstream and repeat the procedure until there are no

more error-sites located downstream to correct.

Because the profile and average density are invariant to a global scaling of the initiation and

elongation rates, the parameters obtained needed to be normalized to get the rates in appropri-

ate units. We normalized the rates such that the global average speed measured by simulations

between position 150 and the stop codon is 5.6 codons/s, as measured experimentally [7]. We

restricted our analysis to genes longer than 200 codons so that this normalization procedure is

not biased by the heterogeneity of translational speed along the 50 ramp.

For given initiation and position-specific elongation rates along the transcript, obtaining an

analytic formula for the protein synthesis flux is often difficult, if not impossible, due to poten-

tial interference between ribosomes occupying the same transcript [68–70]. However, since

translation is generally limited by initiation, not by elongation, under realistic physiological

conditions [15, 71], typically only a few sites were affected by interference (S2A Fig). This

allowed us to cope with the high dimensionality of the model space and obtain estimates of

rate parameters that produced excellent fit to the experimental data (S1 Fig).

Linear model of elongation rate variation

After inferring the elongation rates, we employed statistical linear models to fit the positional

variation of the mean elongation rate. For a given position i, our dependent variable yi was

given by

yi ¼ hl
g
i �

�lcðg;iÞig ð1Þ

where l
g
i denotes the inferred rate for position i of gene g, c(g, i) the codon at position i of gene

g, and �lcðg;iÞ the codon-type-specific average elongation rate obtained by averaging over all

transcripts and positions. The notation h�ig denotes taking an average over the gene set. We

considered linear models of the form

yi ¼
X

k

bk xi;k þ �;

where xi, k are explanatory variables for position i obtained by averaging over all genes in our

dataset, βk are regression coefficients, and � is a noise term. The explanatory variables xi,k were

obtained from considering some biophysical properties of the nascent polypeptide and the
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sequence context (see below). We tested various models with different choices of explanatory

variables and tried to find the best fitting model.

One kind of explanatory variable we considered is the average PARS score [65], which

reflects the existence of mRNA secondary structure, over a window [a: b] located downstream

of the A-site: for a given A-site i, the PARS score window [a: b] refers to positions from i + a to

i + b. The other features were related to the nascent polypeptide properties, namely total posi-

tive charges, negative charges, and hydropathy scores [72]. For these features, we used different

windows located upstream of the A-site; in this case, a window [a: b] for a given A-site i refers

to positions from i − b to i − a. The negative (positive) charge feature was obtained by comput-

ing the number of glutamic and aspartic acids (arginines and lysines) located upstream of the

A-site in the specified window. An illustration of how the variables are computed is provided

in S15 Fig.

Ribosome cryo-EM data and exit tunnel extraction

The ribosome crystallographic structure from Schmidt et al. [39] (Protein Data Bank ID

5GAK, resolution * 3.88 Å) was used to study the ribosomal exit tunnel, and the structure

was visualized using Pymol. We extracted the tunnel coordinates using MOLE 2.0 software

[40], and used custom python and Matlab scripts to compute the radius and charge properties.

Diffusion of a particle in a three-dimensional structure with a varying

cross-section size

The diffusion of a particle in a three-dimensional structure with a varying cross-section size

can be treated as a one-dimensional process with an entropy barrier, described by the so-called

Fick-Jacobs diffusion equation [73]. The Fick-Jacobs equation has the same structure as the

Smoluchowski equation for diffusion in a one-dimensional potential [73], where the potential

S(x) arises from the entropy along the tunnel, determined by the cross-sectional area as

SðxÞ ¼ lnðprðxÞ2Þ; ð2Þ

where r(x) is the radius of the cross-section at position x along the tunnel.

Software implementation

Simulation of translation and our inference algorithm were implemented in Matlab. We simu-

lated the model using the next reaction method [74] derived from the Gillespie algorithm,

which at each step samples the next event (initiation, elongation, or termination) and the asso-

ciated time based on the current ribosome occupancy (see Section 2 of S1 Text). To simulate a

ribosome profile of size N, we first simulated *104 steps for burn-in. Then, after a fixed inter-

val of subsequent time steps, we randomly picked one occupied A-site (if there is one) and

recorded it as a footprint location; this sampling scheme was iterated until we obtained N foot-

prints. Protein production flux was obtained by computing the ratio between the number of

ribosomes going through termination and the total time.

Supporting information

S1 Text. Description of the probabilistic model, simulation algorithm, inference proce-

dure, and estimation of drop-off rates.

(PDF)

S1 Fig. Comparison between experimental data and numerical results from inference

procedure. We applied the inference method to a set of 850 genes in S. Cerevisiae (see
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Materials and Methods) and compared the total (left) and local (right) densities of the original

dataset with the ones obtained by simulations of the model with the inferred parameters. The

parameters used were pth ¼
1

0:7lmax
¼ 35 and λmax = 50. The simulated and experimental densi-

ties were in good agreement, showing a Pearson’s correlation coefficient of 0.986 (p-value

< 10−5). The individual profiles obtained by simulations also showed good agreement with the

experiments, with Pearson’s correlation coefficient of 0.975 (p-value < 10−5).

(TIF)

S2 Fig. Detailed results of the inference procedure. A. Histogram of the number of signifi-

cant errors detected for each gene. During the inference procedure, 383 genes over the 850

in the dataset (45%) did not require corrections, which means that the difference of profile

observed between the simulation and the experiment was for these genes globally under the

threshold error fixed by our procedure. For the remaining 467 genes, the number of error sites

per gene above the threshold error was on average 1.57 (std = 0.925) B. Histogram of interfer-

ence probability for significant error sites (left) and for all sites (right). We numerically esti-

mated the probability of a ribosome occupying a certain site to block a ribosome located 10

codons before. We call this empirical probability the interference probability. We found that

the interference probability of error sites was on average equal to 0.245 compared with an aver-

age rate of 0.011 over all the sites of our dataset. This large difference showed, as we expected,

that local profile errors between experimental and simulations after the first round of estima-

tion are primarily due to ribosomal interference. C. Histogram of error improvement after the

refinement step, given by the ratio of error after correction over error before. The decrease in

error was on average of 57%. For 65% of the sites the error after correction went under the ini-

tial threshold of error site detection. The reasons for correction failure can vary from too large

initial error, configurations of error sites too close to allow separate correction and more gen-

erally possible missing reads or errors in the original data.

(TIF)

S3 Fig. Positions and metagene profiles associated with correction. A. Histograms of incon-

sistent sites obtained from running our procedure on our main dataset, after alignment from

start (left) and end (right) position. B. Comparison of metagene profiles (as in Ingolia et al
[1]), after alignment from start (left) and end (right) position, between subset of genes that

required correction procedure and genes that did not.

(TIF)

S4 Fig. Analysis of codon context surrounding the inconsistent sites. The heatmaps show

the relative abundance of each codon (ratio of the local frequency of the codon and its fre-

quency over all the sites) at the A-site, P-site, and other windows ([-20:-11], [-10:-6], [-5:-2],

[1:5], [6:10], [11:20]) at inconsistent sites. Blue arrows indicate stop codons. Red arrows indi-

cate non stop codons with slowest mean elongation rate (see Fig 3).

(TIF)

S5 Fig. Comparison of codon MER for genes that required correction procedure and those

that did not.

(TIF)

S6 Fig. Examples of comparisons between experimental profiles (in black) and simulated

ones (in red). The profiles are obtained by normalizing the ribosome density by the total num-

ber of reads. The inset panels (for genes YGR103W, YCL057W and YGL001C) show where

the simulated model cannot reproduce the experimental profile. This notably happens when

the average observed density is large enough so it gets incompatible with the presence of large
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peaks. In this case, the model cannot simulate a large peak density without having a queue

which leads to stalled ribosomes, and the simulated density is lower than the observed one.

(TIF)

S7 Fig. Comparison between translation efficiency (TE) from Pop et al. [19] and total ribo-

some density. Results from the linear fits are shown in inset. A. The gene-specific TE for 423

genes from Pop et al. [19] (see Materials and Methods) is plotted against the corresponding

total ribosome density (average number of ribosomes per 100 codons) from Arava et al. [33].

We performed a linear fit of the points for which the corresponding ribosome density was less

than 1 ribosome per 100 codons. B. Similar fit as in A in the range of ribosome density larger

than 1 ribosome per 100 codons. C. The simulated total densities for a subset of 58 genes is

plotted against the ribosome density from Arava et al.D. The simulated detected-ribosome

densities for the same 58 genes is plotted against the ribosome density from Arava et al.
(TIF)

S8 Fig. Comparison between ribosome average density measured in Arava et al. and trans-

lation efficiencies simulated under different profile models. A. We plot the experimental

measurement of translation efficiency (ratio of ribosome RPKM and mRNA RPKM) and fit

the TE to the density in the region where the density is less than 1 ribosome per 100 codons

(linear coefficient 0.83). B. We compare the experimental density to the simulated TE under a

model where all ribosomes get detected. The linear fit (plotted in red) between the simulated

TE and the density gives a coefficient of 0.63. C. The same as in B, with a model where stacked

ribosomes are partially detected with probability 0.5. Linear fit coefficient is 0.70. D. The same

as in B, with no detection of stacked ribosomes. Linear fit coefficient is 0.80, that is the best

matching with experimental data.

(TIF)

S9 Fig. Comparison between the initiation rates inferred by applying our method to Wein-

berg et al. dataset and the ones inferred by Ciandrini et al. [34] from MacKay et al. [35]. A.

Histogram of the two sets of inferred initiation rates. B. Comparison between initiation rates

inferred by the two methods. Pearson R = 0.4, p-value< 10−5.

(TIF)

S10 Fig. Comparison between the initiation rates inferred by applying our method to

Weinberg et al. dataset [16] and to Pop et al. [19] (212 genes in common). Pearson R = 0.31,

p-value< 10−5.

(TIF)

S11 Fig. Comparison between codon-specific mean elongation rates. A. We compare the

codon-specific mean elongation rates inferred from the Weinberg et al. dataset [16] to the

ones inferred from Williams et al. dataset [32]. B Comparison between the codon-specific

mean elongation rates inferred from the Weinberg et al. dataset [16] and the ones inferred

from Pop et al. dataset [19].

(TIF)

S12 Fig. Metagene relative normalized ribosome-footprint density as a function of codon

position. Ribosome profile footprint (RPF) reads in open reading frames (ORFs) from Wein-

berg et al. [16] were individually normalized by the mean RPF reads within the ORF, aligned

from start codon and then averaged with equal weight for each codon position across all

ORFs, as in Ingolia et al. [1].

(TIF)
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S13 Fig. Detailed codon frequency of appearance and elongation speed along the tran-

script. A. Different panels show the frequency of appearance for each group of codons from

Fig 5A. The black curve in each panel corresponds to a smoothed version, for which the value

at position i is obtained by averaging the values between positions i − 20 and i + 20. B. The dif-

ference between codon-specific local speed shown in Fig 5B and the average of codon-specific

speeds between position 20 and 180. Different codons are grouped as in A. For each panel, the

black curve corresponds to an average of the curves in that panel.

(TIF)

S14 Fig. A. Average elongation speed along the transcript obtained by setting the elongation

speed for each codon type at all positions to the corresponding mean elongation speed com-

puted from Fig 3B. This plot shows that the variation of codon frequency along the transcript

is not sufficient to explain the 50 translational ramp. B. Average elongation speed along the

transcript obtained by setting the elongation speed for each codon to the position-specific

mean elongation rate in Fig 5B.

(TIF)

S15 Fig. An example of variables used to fit the deviation to codon mean elongation rate

(Eq (1)). At position i, we consider 4 types of variables in our fitting models: xi,1 is associated

with the negative charges, xi,2 with the positive ones, xi,3 with the hydropathy score and xi,4

with the PARS score. For each variable xi,1, a window Wk is defined, such that xi;k ¼ hx
g
i;kig2G,

where G is the gene set, and for a gene g, xg
i;k is computed by averaging (for hydropathy and

PARS score) or counting (for the number of charges) the associated feature over positions

i − Wk for the charges and hydropathy scores, and positions i + Wk for the PARS score. In this

example, W1 = [1 : 4], W2 = [4 : 8], W3 = [1 : 8] and W4 = [1 : 3].

(TIF)

S16 Fig. The atomic structure of the large ribosomal subunit in yeast (under three different

viewing angles), with the ribosome exit tunnel (in black) and proteins L4 and L22 (in pink

and green, respectively).

(TIF)

S17 Fig. A detailed view of the ribosome exit tunnel extracted from cryo-EM data. We plot

(in black) the centerline of the tunnel (see Material and Methods) from the PTC (bottom

right) to the exit (top left)). A linear fit of the centerline (coefficient of determination R2 =

0.985) is shown in red.

(TIF)

S18 Fig. Analysis of membrane protein genes. A. We compare the translation efficiency,

average hydropathy and the inferred initiation rates of a subset of 89 membrane protein genes

to the other genes of our main dataset. These 89 genes were obtained by cross-referencing our

main list of genes (850 genes) to a list of 666 genes associated with membrane proteins (from

Miller et. al. [55], table 2). We found that the membrane protein genes have in average lower

TE (0.88 ± 0.20 compared to 1.10 ± 0.26), larger hydropathy score (0.14 ± 0.28 compared to

−0.42 ± 0.3) and lower initiation rates (0.07 ± 0.02 s−1 compared to 0.11 ± 0.05 s−1). Boxplots

give the lower and upper adjacent values, first and third quartile and median values. B. The

average hydropathy score across codon positions for membrane protein genes. We plot (in

black) along the codon position the hydropathy scores averaged over all 89 genes. In red, we

plot this average score smoothed by averaging over a 10 codons window (see also S19 Fig). C.

Metagene relative normalized ribosome-footprint density as a function of codon position for
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the 89 membrane protein genes (see also S12 Fig).

(TIF)

S19 Fig. The average hydropathy score across codon positions. We plot (in black) along the

codon position the hydropathy scores averaged over all genes of the non-filtered dataset (2862

genes). In red, we plot this average score smoothed by averaging over a 10 codons window.

(TIF)

S20 Fig. Estimation of drop off rate using Sin et al.’s methods [22]. A. We divide the ORF in

bins of 25 codons and plot for each bin the logarithm of the average normalized number of

reads counted from Weinberg et al. dataset [16]. The associated drop off rate is estimated by

linearly fitting the average value of each column with Ae−QX, where X is the bin index and A, Q
are fitting parameters. We distinguish two regions of constant drop off rates in windows [25,

225] (in blue) and [200, 400] (in red). Linear fitting (dotted lines) gave Q = 0.048, with result-

ing drop-off probability per codon and per elongation event r = 0.002) for region [25, 225] and

Q = 0.0093 (r = 3.7.10−4) for region [200, 400]. Genes were chosen to be of length> 400

codons and such that the number of reads per codon is on average larger than 10 (458 genes).

B. Histogram of Q following the bootstrap method from Sin et al. [22] (number of samples

103). C. We compare the original estimates of initiation rates with the ones obtained with a

modified model of translation including drop-off with probability 3.7 × 104 (Pearson R = 0.94,

p-value < 10−5).

(TIF)

S21 Fig. Comparison between results on the dataset mainly used in our analysis (850

genes, see Methods section) and the extended one (2862 genes) shows no bias due to filter-

ing. A. We plot (in black) the normalized average profile density across the first 200 codons

(as done in S12 Fig) from the extended dataset of 2862 genes (selected to be of length > 200

codons). We compare these variations to the ones obtained (in red) from the filtered dataset

used in our main analysis (length > 200 codons and average number of footprints > 10 per

codon). Both show the same 50 “translational ramp” pattern. To obtain the variations for the

extended dataset at each position i, the genes whose profile at i contained at least one footprint

were considered (for any gene g, pg(i)> 0). These profile values were averaged across the

genes, after normalizing each of them by ∑k2Ig
pg(k), where Ig is the set of all positions k where

pg(k)> 0 (such processing was done to discard the gene-specific positions that contains no

information on the elongation rate variations). B. Comparison between the mean codon elon-

gation rate from the filtered and non-filtered dataset. The elongation rates were obtained using

the naive estimates of our inference procedure (see Supplementary section) and filtered by

selecting rates < 20 codon/s. This filtering was done to discard the estimates from positions

with no or a few footprints, as these estimates are not informative of the dynamics (the thresh-

old of 20 codon/s still allows to keep more than 85% of the inferred rates, for the codon with

largest mean elongation rate). C. We plot for each codon and each dataset the sample size of

the associated elongation rates used to get the mean codon elongation rate in B. This compari-

son shows that after filtering for rates < 20 codon/s, the extended dataset of 2862 genes still

contains for each codon on average *5.3 more rates than the original dataset of 850 genes.

(TIF)

S1 Data. Data and results for the 850 genes discussed in this paper.

(XLSX)

S1 Code. Matlab code for simulating ribosome footprint profiles and inferring rates.

(TGZ)
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