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Abstract: L-glutamaic acid is the principal excitatory neurotransmitter in the brain and an 

important intermediate in metabolism. In the present study, lactic acid bacteria (218) were 

isolated from six different fermented foods as potent sources of glutamic acid producers. 

The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 

35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid 

producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation 

ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of  

this microorganism related to its glutamic acid-producing ability, growth rate, glucose 

consumption and pH profile were studied. Results revealed that glutamic acid was formed 

inside the cell and excreted into the extracellular medium. Glutamic acid production was 

found to be growth-associated and glucose significantly enhanced glutamic acid production 

(1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium 

nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of 

our knowledge this is the first report of glutamic acid production by lactic acid bacteria. 

The results of this study can be further applied for developing functional foods enriched in 

glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.  

OPEN ACCESS



Int. J. Mol. Sci. 2012, 13 5483 

 

Keywords: γ-amino butyric acid; Lactobacillus plantarum; 16S rRNA gene sequencing; 

polymerase chain reaction; phenotypic identification; sugar assimilation profile 
 

1. Introduction 

Glutamic acid is a multifunctional amino acid involved in taste perception, excitatory 

neurotransmission and intermediary metabolism [1]. It plays an important role in gastric phase 

digestion with multiplicity effects in the gastrointestinal tract when consumed with nutrients by 

enhancing gastric exocrine secretion [2]. Glutamic acid is a specific precursor for other amino acids 

i.e., arginine and proline as well as for bioactive molecules such as γ-amino butyric acid (GABA) and 

glutathione. GABA possesses several well-known physiological functions (i.e., anti-hypertension [3] 

and anti-diabetic [4]) and glutathione plays a key role in the protection of the mucosa from peroxide 

damage and from dietary toxins [5]. Furthermore, a number of studies have shown the possible 

usefulness of glutamic acid in enhancing nourishment in the elderly and in patients with poor  

nutrition [6,7]. At the present time, glutamic acid is largely produced through microbial fermentation 

because the chemical method produces a racemic mixture of glutamic acid (D- and L-glutamic acid) [8]. 

Numerous studies have reported glutamic acid excretion by various micro-organisms; however, most 

of them were not food-grade micro-organisms. Lactic acid bacteria (LAB) are well known to produce a 

variety of primary metabolites. The existence of the gdh gene in LAB which is responsible for the 

production of glutamic acid has been proven [9]. In addition, LAB are essential in the processing of 

food materials and they have been applied extensively in the food industry [10]. LAB can enhance the 

shelf-life and safety of foods, improve food texture, and contribute to the nutritional value of food 

products and pleasant sensory profile of the end-use products [11]. Employing LAB, on the other hand, 

with the potential to produce glutamic acid can facilitate production of functional foods rich in 

bioactive molecules such as GABA. The key advantage of the glutamic acid production by LAB is that 

the amino acid produced in this way is biologically active (L-glutamic acid) and the production process 

is considered to be safe and eco-friendly. This can be achieved through selection of appropriate LAB 

strains from indigenous micro-organisms which are well-adapted to a particular product, more 

competitive and with elevated metabolic capacities. Thus, research of this technological potential is of 

highest interest to the industry.  

As a result, selection of the most efficient glutamic acid-producing LAB strains may contribute to 

new fermented products with improved general standards with respect to the naturally-biosynthesized 

glutamic acid. This could lead to the development of fermented foods rich in glutamic acid and 

consequently GABA. Therefore, it is hypothesized that screening various LAB capable of producing 

glutamic acid may explore new avenues for mass production of functional foods rich in GABA. 

2. Results and Discussion 

In this study, a number of indigenous fermented foods available in Malaysia were used for the 

isolation of lactic acid bacteria. These isolated LAB strains were individually examined based on their 

potential to produce glutamic acid. Table 1 summarizes the characteristics of such LAB exhibiting the 
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capacity to produce glutamic acid. It shows that 14 strains of 35 that produced glutamic acid were 

isolated from fermented soybean. Higher concentrations of glutamic acid produced by LAB strains 

isolated from fermented soybean showed that these strains were more efficient in biosynthesizing 

glutamic acid as compared to LAB strains isolated from other food samples. Among fermented  

food-derived LAB strains, only one strain showed a superior glutamic acid-producing potential with a 

contribution of 489.46 µmol/L glutamic acid. This strain assigned as MNZ, was subjected to further 

phenotypic and genotypic identification tests. 

Table 1. Characteristics of the LAB isolates which biosynthesized glutamic acid in MRS broth. 

Type of Sample  Total LAB 
isolates 

Total LAB with glutamic 
acid production 

Glutamic acid production 
range (μmol/L) 

Fermented soybean 53 14 20–489 
Fermented durian flesh 42 5 3.2–20 
Fermented tapioca 21 3 34–59 
Fermented glutinous rice 26 3 18–65 
Fermented shrimp sauce 27 4 2–11 
Fermented fish sauce 49 6 22–106 

Glutamic acid production was previously reported by Zalán et al. (2010) [12] and Tarek and 

Mostafa (2009) [13] for some of the LAB species such as Lactobacillus paracasei and Lactobacillus spp.; 

however, in this study, Lactobacillus plantarum was reported as a glutamic acid producer. The level of 

glutamic acid produced by LAB in other studies was reported to be 68.7 mg/L [13] and  

<25 mmol/L [12]. Gram-positive micro-organisms other than LAB were also shown to produce 

glutamic acid. For example, Brevibacterium spp. were found to produce this amino acid between 10 to 

46 mmol/L [14]. 

2.1. Phenotypic and Genotypic Identification 

In order to identify the LAB strain MNZ, the API carbohydrate fermentation kit was utilized. The 

results showed that this strain was able to assimilate the following carbon sources: Ribose, galactose, 

D-glucose, fructose, mannose, manitol, sorbitol, α-methyl-D-mannoside, N-acetyl glucosamine, arbutin, 

cellobiose, maltose, lactose, melibiose, sucrose, gentiobiose, turanose, salicin and aesculin; while this 

ability was negative for the rest of carbon sources. The pattern of assimilation ability of this isolate  

for carbohydrates was in agreement with the metabolic characteristics of Lactobacillus plantarum 

described by Bergey’s Manual of Systemic Bacteriology [15]. Taxonomic identification of the strain 

MNZ at species level was performed by 16S rRNA gene sequencing. The sequence was deposited on 

NCBI under accession number HM175883 (Lactobacillus plantarum MZ-02). 

2.2. Effect of Various Carbon Sources on Glutamic Acid Production  

The effect of different carbon sources on the production of glutamic acid by the LAB strain MNZ 

was investigated in this study. It was found that the following carbohydrates were fermented by 

Lactobacillus plantarum MNZ: Ribose, sorbitol, manitol, fructose, glucose, sucrose and lactose. Three 

concentrations (6, 12 and 24% w/v) were tested for each carbon source and the production of glutamic 
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acid was determined in MRS medium supplemented with each carbon source individually at 30 °C for 

120 h. Based on a preliminary test (data not shown), the range of 6–24% (w/v) was found to be the 

most suitable for assessment of various carbon sources. The results presented in Figure 1 indicate that 

glucose was the best source of carbohydrate for the production of glutamic acid among the tested 

sources where 12% was found to be the optimum point for glutamic acid production. Since 12% and 

24% glucose concentrations did not show any significant differences (p < 0.05) regarding the 

production of glutamic acid by the LAB strain MNZ, the lowest amount was chosen for further studies 

Figure 1. Effect of different carbon sources with different concentrations on the production 

of glutamic acid by the LAB strain MNZ cultured in MRS medium at 30 °C for 120 h. 

Values are mean ± standard deviation of two independent experiments. 

 

In the present study, a number of various carbon sources was tested to select the most suitable one 

for the purpose of glutamic acid production by the LAB strain MNZ. Media containing various carbon 

sources have already been used for the production of amino acids by the bacteria [16]. In case of the 

microbial glutamic acid production, a number of different carbon sources such as glucose, sucrose, 

fructose, ribose, etc. have been tested and similar results were reported compared to the results 

obtained in this study. For example, Roy and Chatterjee [17] reported that fructose and glucose in 

order of effectiveness were the best carbon sources for the glutamic acid production in a synthetic 

media. Other carbon sources including sucrose and manitol showed far less effect on glutamic acid 

production. The best glucose concentration (8%) reported by Roy and Chatterjee [17] was lower than 

the one found in this study (12%). 

This study demonstrates the effectiveness of glucose as an appropriate carbon source in glutamic 

acid production compared to other sugars, especially those that are not hexoses, such as ribose, lactose 

and sucrose. The higher growth rate of lactic acid bacteria on glucose as a hexose sugar compared to  

non-hexoses [18] could be the reason for such an elevated glutamic acid production from glucose.  

On the other hand, glutamic acid was found to be produced in bacteria from glucose via Krebs cycle 

intermediates [19]. The carbon-energy source of glucose can be converted into pyruvic acid by  

the glycolysis pathway, a preface to the TCA cycle and the electron-transport chain [20]. Therefore, 



Int. J. Mol. Sci. 2012, 13 5486 

 

glucose was found to be the most appropriate sugar for glutamic acid production by the LAB strain 

MNZ in this study. 

The result of the present study concerning the effects of different carbon sources on glutamic acid 

biosynthesis revealed that optimum levels of glucose can effectively promote glutamic acid production 

possibly through the Krebs cycle. Such findings can be further used for appropriate selection of other 

substrates containing glucose at higher levels for enhanced production of glutamic acid.  

2.3. Study of Glucose Consumption  

In order to investigate the glucose consumption pattern of the LAB strain, the strain MNZ was 

cultivated in MRS broth at 30 °C for 144 h. The broth was supplemented with 12% glucose in order to 

examine the effects of glucose concentration on the production of glutamic acid. As shown in  

Figure 2, there was a sharp decrease in glucose content between 12 and 72 h of fermentation. This 

might be due to the microbial growth with the highest log10 CFU/mL of 8.3 after 72 h of fermentation. 

In other investigations using other species of glutamic acid-producing bacteria, the glucose 

consumption pattern during glutamic acid production was found to be similar to the present study [21]. 

A continuing decrease in the sugar concentration which is consumed by the bacterium corresponds 

with the growth of the culture [22].  

Figure 2. Consumption of glucose (g/dL) by the LAB strain MNZ cultured in MRS 

medium supplemented with 12% glucose at 30 °C. Symbols used were: (▲), Glucose 

consumption profile of the bacterium; (●), glutamic acid production.  

 

2.4. Effect of Different Concentrations of Ammonium Nitrate on Glutamic Acid Production 

Ammonium nitrate as a nitrogen source was chosen in this study and the effect of its different 

concentrations on the glutamic acid production was tested. The results presented in Figure 3 show that 

0.7% (w/v) was the best concentration of ammonium nitrate for Lactobacillus plantarum to produce 

glutamic acid. The mechanism by which ammonia enhances glutamic acid production is associated 



Int. J. Mol. Sci. 2012, 13 5487 

 

with nitrogen as an essential component for amino acid production. Nitrogen plays an important role in 

fermentative cultivation of glutamic acid-producing bacteria. Therefore, nitrogen is taken up by cells, 

and thereafter assimilated to accomplish their metabolism [23]. 

Figure 3. Effect of different concentrations of ammonium nitrate on glutamic acid 

production by the LAB strain MNZ cultured at 30 °C in MRS. 

 

It is well-known that the uptake of nitrogen sources into the cells is mediated either by passive 

diffusion (ammonium) or active transport [24]. Generally the bacteria follow two different pathways 

for ammonium assimilation to form glutamic acid. When the ammonia concentration is low and the 

diffusion into cells becomes restricted, a unique ammonium transporter (AmtB) encoded by the amt 

gene is activated to cope with the nitrogen starvation, and ammonium is assimilated to glutamine by 

glutamine synthetase [25]. In contrast, in the presence of high concentrations of ammonium, the 

diffusion of uncharged ammonia (NH3) occurs through the cytoplasmic membrane. This would promote 

the growth of the bacterial cells, and thereby ammonium is assimilated by glutamate dehydrogenase  

to form glutamic acid. Similarly, Tesch et al. [26] showed that most of the ammonium (72%) is 

assimilated by the glutamate dehydrogenase to form glutamic acid which has been proven to 

demonstrate high activity in Lactobacillus plantarum [27].  

2.5. pH Association with Glutamic Acid Production  

Effect of various initial pH on glutamic acid production by the LAB strain MNZ was investigated in 

this study. Results show that an initial pH value of 4.5 was the best compared to other pH values 

(Figure 4). pH plays an important role in biological processes and the pH of the medium is important 

for the glutamic acid production [28]. Lactobacillus plantarum prefers a moderately acidic pH 6.5 for 

optimal growth [29]. However, it was noted that the maximum glutamic acid production in this study 

occurred at a lower pH (4.5). The pH of the culture medium can influence the growth rate of 

Lactobacilli [29]. An initial pH value of lower than 6.5 decreases the growth rate of 

Lactobacillus plantarum in the medium [29]. According to Krämer [30], glutamic acid secretion 

occurs by an overflow metabolism whenever growth is limited. This could cause a redirection of  



Int. J. Mol. Sci. 2012, 13 5488 

 

2-oxoglutarate efflux towards glutamic acid production which leads to an increase of the glutamic acid 

excretion rate [31]. 

Figure 4. Effect of initial pH on glutamic acid production by the LAB strain MNZ cultured 

at 30 °C in MRS medium. 

 

It was also proved that Lactobacillus plantarum produces ammonia in an acidic environment, which 

contributes to pH homeostasis and thereby survival of the micro-organism through neutralizing the  

pH [32]. As a result, the ammonia produced this way can be utilized in glutamic acid production. Thus, 

the ability of Lactobacillus plantarum to decrease the pH not only is considered as a food safety factor, 

but also improves glutamic acid production in this bacterium through redirecting metabolic afflux of  

2-oxoglutarate towards glutamic acid production and producing ammonia which results in an enhanced 

glutamic acid production.  

In order to understand the pH association with glutamic acid production, the pH profile of the 

fermentation medium was examined and the results presented in Figure 5. It was revealed that between 

6 to 72 h of fermentation, the pH immediately decreased from 6.2 to 4.2 followed by a slow increase 

throughout the remaining fermentation period (Figure 5). Such a reduction in pH value during 

fermentation might reflect an acid-producing ability of the bacterium, an important feature for the 

production of quality-fermented foods. The production of organic acids such as lactic and acetic acids 

is the result of bacterial metabolic activities. The decline in pH is an important characteristic required 

by the starter strains for acidifying their environment rapidly. The acid production and the 

accompanying pH decrease are well-known to extend the lag phase of sensitive organisms including 

food-borne pathogens [33]. Acid production during fermentation, resulting in acidification to pH levels 

lower than 4.2, constitutes a major food safety factor [34].  

Lactobacillus plantarum as a facultative hetero-fermentative lactic acid bacterium ferments 

pentoses through the phosphoketolase pathway and hexoses via glycolysis[18]. In addition, this lactic 

acid bacterium is capable of mixed acid fermentation which ferments hexoses under specific 

conditions to various inorganic acids such as acetatic, lactatic and formic acids [35]. The glucose 

content of the MRS medium can go through the above-mentioned pathways resulting in the production 

of inorganic acids by the LAB strain MNZ which results in a decrease in pH.  
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Figure 5. pH, growth rate, glutamic acid production/cell and glutamic acid production 

profile of Lactobacillus plantarum MNZ. Symbols used were: (×), pH profile; (●), growth 

rate (log CFU/mL); (■), glutamic acid production (μmol/L/cell); (▲), glutamic acid 

produced (μmol/L). 

 

2.6. Study of Growth Profile and Association with Glutamic Acid Production 

Growth characteristics for LAB strain MNZ were monitored and are presented in Figure 5. The 

purpose of such a growth characteristic test was to obtain a better understanding about the mechanism 

of the glutamic acid production in LAB strain MNZ and to find out at which phase of the microbial 

growth glutamic acid can be produced. Figure 5 shows that Lactobacillus cell growth increased 

exponentially between 18 and 72 h of fermentation in the MRS broth. This stage is recognized as the 

log phase or exponential phase. It is obvious that the exponential growth phase cannot go on 

indefinitely. This is due to the fact that the medium is soon depleted of nutrients and enriched with 

other metabolites. After 72 h of fermentation, a decline in bacterium cell growth was noted and a 

stationary phase reached. During the stationary phase, the microbial growth rate decreased as a result 

of nutrient depletion and accumulation of products that may suppress glutamic acid production. This 

phase is reached as the bacteria begin to exhaust the resources that are available to them.  

On the other hand, it was noted that the ratio of glutamic acid production/cell during the first 12 h 

of fermentation increased to 8.4 µmol/L/cell (Figure 5). Such an elevation of the ratio of glutamic acid 

production/cell may be associated with the induction of the gdh gene. After 12 h of fermentation, the 

ratio of glutamic acid production/cell drastically decreased to 0.38, 1.9 × 10−4, 3.8 × 10−5, 1.7 × 10−5, 

4.1 × 10−4 and 8.9 × 10−4 µmol/L/cell for 24, 48, 72, 96, 120 and 144 h of fermentation time, 

respectively. Total glutamic acid production increased between 24 and 96 h although the ratio of 

glutamic acid production/cell decreased. The increase in glutamic acid production especially after 48 h 

was due to increasing numbers of bacterial cells in the log phase, which caused an elevation in the 

glutamic acid yield. The metabolic activity of the bacteria that produced acids resulted in a fall of pH 

especially for the first 24 h of fermentation. An acidic condition, therefore, could be responsible for 
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triggering the gdh gene resulting in elevated glutamic acid production/cell ratio. In this study, a 

decrease in pH of the fermentation medium was found to be associated with cell growth owing to the 

glutamic acid production, which was elevated during the log phase of the bacterial growth profile.  

A similar result was also found in a study by Nakamura et al. [21] using Corynebacterium glutamicum 

for glutamic acid production. However, other studies showed that despite the fact that bacterial cells 

grew well in the synthetic medium, glutamic acid production was depressed during the log phase and 

only started to increase during the stationary phase [36]. In contrast to our results, it was suggested that 

glutamic acid production was not associated with growth. Bacterial strain differences and various 

media containing other factors might be responsible for the differences in the obtained results. 

2.7. Study of Glutamic Acid-Production Profile  

The glutamic acid-producing ability of the isolate MNZ was assessed by conducting a time course 

analysis of intra-cellular and extra-cellular glutamic acid contents in this strain in a culture medium 

(MRS broth supplemented with 12% glucose). The results are shown in Figure 6. The highest  

intra-cellular glutamic acid content (502 μmol/L) was achieved after 48 h of cultivation. While the 

highest extra-cellular glutamic acid biosynthesis, reaching 933 μmol/L, was attained after 96 h of 

cultivation. Total glutamic acid production (intra- and extra-cellular glutamic acid) was found to be at 

a maximum (1082 μmol/L) at 96 h of cultivation. 

Figure 6. Changes in extra-cellular and intra-cellular glutamic acid content produced by 

Lactobacillus plantarum MNZ cultured in MRS medium supplemented with 12% glucose 

at 30 °C. Symbols used were: (▲) Intra-cellular glutamic acid; (●) extra-cellular glutamic 

acid; (■) total glutamic acid; (×) growth profile. Values are mean ± standard deviation of 

three independent experiments. 

 

Production of glutamic acid in bacteria is mostly dependent on the cytoplasmic glutamate 

dehydrogenase (GDH) which catalyzes this amino acid formation from α-ketoglutarate [37]. This 

enzyme has been demonstrated to occur in high frequency and activity in Lactobacillus plantarum 
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with the GDH-encoding gene (gdh) implying such an elevated activity [27]. On the other hand, the 

intra-cellular concentration of glutamic acid in this study regularly decreased after 48 h to such an 

extent—owing to its secretion into the extra-cellular medium—that the feedback inhibition which 

regulates the internal glutamic acid pool is abolished [38]. Recently, a glutamic acid exporter in a 

bacterium was found responsible for excreting glutamic acid to the extra-cellular medium [21].  

The mutual effect of a feedback inhibition system in the bacterium along with the glutamic acid 

permease caused the decline of the intra-cellular glutamic acid in Lactobacillus plantarum after 48 h of 

fermentation process. This research finding along with the reported localization of glutamic acid 

dehydrogenase in cytoplasm suggests that glutamic acid was synthesized in the cytoplasm of 

Lactobacillus plantarum and then secreted into the culture medium. 

To gain a better insight of the mechanism by which glutamic acid is secreted into the extra-cellular 

medium, three models have been described over the past several years as the crucial steps for glutamic 

acid efflux. These included functional inversion of uptake systems, diffusion and the existence of 

particular excretion systems [30]. Recently it was suggested that the mechanism of glutamic acid 

production in bacteria is not mostly related to the cell membrane structure, but that the production of 

this amino acid is caused by an alteration in metabolic efflux which leads to glutamic acid  

biosynthesis [31]. Furthermore, two genes in bacteria were shown to be involved in the glutamic acid 

efflux properties [39] although the functions of these genes still remain unclear [40]. Consequently, 

appropriate investigations are required to discover the mechanisms involved in glutamic acid 

production in Lacobacilli. 

3. Experimental Section 

3.1. Samples 

Six locally available fermented foods including tempoyak (fermented durian flesh), tempeh 

(fermented soybean), tapai ubi (fermented tapioca), tapai pulut (fermented glutinous rice), budu (fish 

sauce) and cincalok (fermented shrimp sauce) were purchased from wet markets in Perlis, Kelantan 

and Selangor states, peninsular Malaysia as LAB-strain local sources.  

3.2. Chemicals and Media 

HPLC-grade solvents were purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA). HPLC-grade 

water was prepared using a Sartorius apparatus (Arium 611 UV, Sartorius Stedim Biotech, Göttingen, 

Germany). MRS medium was purchased from Difco (Detroit, MI, USA). 

3.3. Isolation of Lactic Acid Bacteria 

Isolation of lactic acid bacteria (LAB) from fermented food products was performed according to 

the method described by Adnan and Tan [41] with minor modifications. Each sample (10 g) was 

separately blended with 90 mL of 0.85% NaCl solution for 2 min (Lab Blender Seward, Stomacher 

400). This blended food (10 mL) was mixed with MRS broth (90 mL) in a 250 mL Erlenmeyer flask. 

The broths containing the food samples were enriched with glucose (2% w/v). The flasks were 

incubated at 30 °C, 100 rpm, for 7 days. Aliquots of the culture from each of the flasks were serially 
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diluted from 101 to 1012 times and 0.1 mL of each dilution was spread evenly on MRS agar plates. 

Colonies of LAB were counted on MRS agar plates after anaerobic incubation for 72 h at 30 °C in 

GasPaks jars (GasPaks System, BBL) and colonies were reported as log10 CFU/mL. Colonies with 

distinct morphological differences such as color, size and shape were randomly picked from countable 

MRS agar plates and subcultured on fresh MRS agar plates. Pure colonies were maintained in 20% v/v 

glycerol in MRS broth for storage at −80 °C. Each of the isolates was first tested for catalase reaction 

based on bubble formation after applying 3% hydrogen peroxide solution on the cells. The isolates 

with catalase-negative results were Gram-stained, and those with Gram-positive activity were 

considered as lactic acid bacteria for further experiments and analyses.  

3.4. Quantification of Glutamic Acid-Producing LAB  

LAB isolates obtained from various fermented foods were assessed for their potential to produce 

glutamic acid in a basal medium. The LAB isolates were grown in MRS broth in 15 mL test tubes with 

yellow caps at 30 °C for 7 days under anaerobic condition (GasPaks System, BBL). After anaerobic 

incubation, each test tube was quantified for extra-cellular glutamic acid and intra-cellular glutamic 

acid (inside the bacterial cells). 

3.5. Extraction of Glutamic Acid in MRS Broth 

The contents of extra-cellular glutamic acid accumulated in the culture medium were extracted 

according to the method of Yang [42] with minor modifications. First, the culture broth was separated 

from cells by centrifugation (8000× g for 15 min at 4 °C) and the supernatant was diluted 50-fold with 

7% (v/v) of glacial acetic acid. The diluted sample was centrifuged at 8000× g for 15 min at 4 °C, and 

the supernatant was filtered using Nylon 0.22-µm-pore-size membrane and then collected for  

further analysis.  

Intra-cellular glutamic acid was determined following the method described by Komatsuzaki [43] 

with minor modifications. First, the cells cultured in MRS broth at 30 °C for 7 days, were separated 

from the culture broth by centrifugation (8000× g for 15 min at 4 °C); the cells were washed with 0.9% 

NaCl three times, and re-suspended in 20 mL of phosphate buffer saline (PBS, pH 7.0) which 

consisted of 8.0 g NaCl, 0.2 g KCl, 0.91 g Na2HPO4, 0.12 g KH2PO4. The cells were suspended in  

1.0 mL of 75% (v/v) ethanol, the homogenate was centrifuged at 8000× g for 15 min at 4 °C, and the 

supernatant was filtered using a Nylon 0.22 µm/L pore-size filter. A 100 mL proportion of the filtered 

supernatant was collected for quantitative analysis of glutamic acid concentration. 

3.6. Quantitative Analysis of Glutamic Acid  

Glutamic acid extracted from MRS broth was subjected to derivatization according to the method 

described by Rossetti and Lombard [44]. Quantitative measurement of the glutamic acid was 

performed by running an HPLC analysis of the glutamic acid according to the method described by 

Yang [42]. The derivatized samples were dissolved in 200 mL of initial mobile phase, consisting of a 

mixture of 60% solution A (aqueous solution of 10.254 g sodium acetate, 0.5 mL tri ethylamine and  

0.7 mL acetic acid in 1000 mL, final pH 5.8), 12% solution B (acetonitrile) and 28% solution C 
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(deionized water). Gradient HPLC separation was performed on a Shimadzu (Kyoto, Japan) LC 20AT 

apparatus, consisting of a pump system, a CTO-10ASVP model oven with a 20 µL injection loop 

injector, and a model SPD-M20A PDA (Photo Diode Array) Detector, in conjunction with a DELL 

Optiplex integrator. A Prevail C18 column (250 mm × 4.6 mm I.D., particle size 5 µm/L, Alltech, IL, 

USA) was used during the analysis. The mobile phase for the gradient elution was pumped at 

0.6 mL/min flow rate and 27 °C temperature, and glutamic acid detection was performed at 254 nm. 

3.7. Identification of LAB Isolates 

3.7.1. Phenotypic Identification  

Microscopic and conventional biochemical and physiological techniques were used to initially 

characterize all the LAB isolates. The isolates were individually propagated in MRS broth. Each strain 

was primarily subjected to catalase and Gram-reaction tests. Based upon the phenotypic characteristics, 

only the catalase-negative and Gram-positive isolates were selected. The selected LAB isolates were 

also tested for colony formation, cell morphologies, and cell grouping using a light microscope 

(NIKON YS 100). Further identification of the superior glutamic-acid-producing isolate was carried 

out by employing API 50 CHL fermentation strips (BioMérieux, Marcy l’Etoile, France) at 30 °C 

according to the manufacturer’s instructions. 

3.7.2. Genotypic Identification  

The LAB strain with superior glutamic acid production was identified by 16S rRNA gene 

sequencing analysis. Genomic DNA from the LAB selected was extracted according to the method 

described by Sambrook [45]. The 16S rRNA gene amplification was performed using a genomic DNA 

sample as template and following universal primer pairs; 27F (5' AGAGTTTGATCCTGGCTCAG 3') 

and 1492R (5' GTTTACCTTGTTACGACTT 3'). The following thermal cycle was used: 95 °C for  

3 min; 40 cycles of: 95 °C for 30 s (denaturation), 55 °C for 55 s (annealing), and 72 °C for 60 s 

(extension); and one cycle final primer extension 72 °C for 10 min. The purified PCR products using 

QIAquick Gel Extraction Kit (QIAGEN, Germany) were sequenced by First BASE Laboratories Sdn. 

Bhd. (Shah Alam, Selangor, Malaysia). The 16S rRNA sequences were aligned and compared with 

other 16S rRNA genes in the GenBank by using the NCBI Basic Local Alignment Search Tools, 

nucleotide (BLASTn) program [46]. The 16S rRNA gene sequence described in this study was 

deposited into the Genbank Data Library and assigned the accession number HM175883. 

4. Conclusion 

A new glutamic acid-producing strain of Lactobacilli isolated from a traditional fermented food 

locally available in Malaysia was identified as Lactobacillus plantarum MNZ according to the 

phenotypic and genotypic tests. Evaluation of the intra- and extra-cellular glutamic acid content 

confirmed that this amino acid was produced inside the cell and excreted into the extra-cellular 

medium. Among various carbon sources tested, the finding showed that glucose not only supported 

Lactobacillus plantarum growth, but also significantly enhanced glutamic acid production by this LAB 

strain. Studying the influence of other factors showed that a 7% (w/v) concentration of ammonium 
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nitrate and a pH 4.5 improved glutamic acid production. The physiological characteristics of 

Lactobacillus plantarum including pH profile as investigated in this study support its potential use as 

starter culture in fermented foods while improving glutamic acid production as well. It is essential to 

select LAB strains with a suitable acid production profile to develop fermented foods with optimum 

levels of glutamic acid as a precursor of GABA. This new glutamic acid-producing LAB strain could 

be utilized for mass production of GABA-rich products, thus accelerating the development of 

functional fermented foods to benefit the consumers. 
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