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Abstract
Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier func-

tion is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have

characterized a novel gastric protein, AntrumMucosal Protein (AMP)-18, that has pleiotropic

properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-

mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the

full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study

we set out to characterize therapeutic mechanisms and identify molecular targets by which

AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epi-

thelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory

cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce in-

testinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle.

An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified

the cyclin-dependent kinase inhibitor p21WAF1/CIP1. Treatment with AMP-18 blunted in-

creases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics in-

duced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21

phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative

effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed

increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP

peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic bal-

ance between proliferation and apoptosis in intestinal epithelial cells to protect and repair

mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

Introduction
An agent that maintains and/or restores the homeostatic balance between proliferation and ap-
optosis in epithelial cells is essential to regulate gastrointestinal (GI) epithelial morphology and
function to protect the mucosal barrier, and speed its recovery after injury. We have character-
ized a novel 18 kD protein isolated from the stomach, AntrumMucosal Protein (AMP)-18,
also known as gastrokine-1, whose pleiotropic properties suggest it could be developed into a
new therapeutic agent to protect and heal the injured GI mucosa in patients with inflammatory
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bowel diseases (IBD) [1–4]. AMP-18 is synthesized in gastric antrum mucosal epithelial cells,
stored in cytoplasmic granules, and secreted with mucus onto the apical cell surface. It appears
to mediate its effects on intestinal and colonic epithelial cells by binding to the cholecystoki-
nin-B/gastrin receptor (CCKBR) and activating its downstream pathways including Rho, ERK
and p38 mitogen-activated protein kinases (MAPKs) [1,4,5]. Recombinant human (rh) AMP-
18, and a synthetic AMP peptide comprised of amino acids 77–97 of the mature protein, each
stimulate growth of epithelial cells, but not fibroblasts, and increase restitution of scrape-
wounded gastric epithelial monolayers, suggesting important roles for AMP-18 in maintaining
integrity of the mucosal barrier through restitution and cell growth following injury [3,5].
AMP-18 also facilitates translocation and assembly of multiple proteins into tight junctions
(TJs) and their association with and subsequent stabilization of the actin filament network [1].
The TJ consists of multiple proteins that bind epithelial cells together at their apical surface,
and is essential to create and maintain mucosal barrier function. In addition, an anti-apoptotic
effect of AMP-18 has been observed in epithelial cells exposed to tumor necrosis factor (TNF)-
α, which could be another protective mechanism that facilitates recovery of disrupted barrier
structure and function [6]. In the dextran sulfate sodium (DSS)-induced mouse model of co-
lonic injury, treatment with AMP peptide protected against bloody diarrhea and loss of weight,
preserved colon length, and reduced the development of mucosal erosions [1]. Thus, AMP-18
appears to be a promising new agent that could heal the injured intestinal epithelium.

Ulcerative colitis (UC) and Crohn’s Disease (CD) are chronic inflammatory disorders that
occur in genetically predisposed patients with abnormal intestinal epithelial function and ho-
meostasis in response to bacterial pathogens [7,8]. Increasing evidence suggests that intestinal
epithelial cells (IEC) have multiple functions including creating and maintaining a physical
barrier and controlling its permeability, producing mucus and regulating its composition, and
serving as non-professional antigen presenting cells by processing and presenting antigens di-
rectly to cells of the intestinal immune system [9]. To perform these diverse functions, epitheli-
al cells communicate with their surrounding microenvironments and cells through converging
integrated signaling cascades to maintain integrity of the barrier, which is essential for prevent-
ing pathological entry of food-derived antigens, microorganisms and their toxins into GI tis-
sues [7]. When the epithelial barrier is disrupted, the resulting increase in mucosal
permeability can allow toxins to pass from the gut lumen into the submucosa, triggering an ab-
errant immune response that can result in development of IBD.

Several changes in barrier function have been identified in IBD which include impaired epi-
thelial junctions, altered mucus components [8] and expression of toll-like receptors (TLR)
[10,11], NOD2 gene mutations, and epithelial cell dysfunction [12]. These findings point to the
importance of epithelial cells as a prominent therapeutic target in patients with IBD. Rather
than being a static, impregnable layer, the epithelial barrier is a highly dynamic structure that
undergoes consistent rapid renewal by adjusting cell proliferation, differentiation and death in
response to a variety of intrinsic and extrinsic signals. A well-regulated balance between prolif-
eration and apoptosis in mucosal epithelial cells is essential to maintain normal homeostasis
and barrier function [13,14], whereas chronically dysregulated homeostasis is speculated to be
responsible for barrier dysfunction in IBD [15–18]. Increased apoptosis and dysregulated pro-
liferation of the colonic epithelium have been reported in animal models of IBD [16,19–21].

Inflammation has devastating effects on intestinal epithelial function and homeostasis in
which pro-inflammatory cytokines play an important role. TNF-α is a key regulator of immu-
nological responses, and its aberrant production underlies the pathogenesis of many human
diseases, in particular acute and chronic inflammatory diseases [22], for which TNF-blocking
agents have become an established treatment, as for IBD [23]. Barrier dysfunction in IBD is
closely associated over-production of inflammatory cytokines such as TNF-α, interferon
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(IFN)-γ, and interleukin (IL)-13 due to uncontrolled immune responses. TNF- 7! has been
shown in many studies to disrupt epithelial barrier structure and increase mucosal permeabili-
ty, at least in part by disrupting TJ structure and function between epithelial cells [24]. In cul-
tures of the colonic epithelial cell line Caco-2, TNF-α increases monolayer permeability and
flux of small molecules within 24 h of treatment, and reduces transepithelial electrical resis-
tance (TER) after 48 h. This increased permeability is accompanied by a decrease in the TJ pro-
tein, ZO-1. Exposure to this cytokine was also associated with internalization of TJ
transmembrane proteins, such as JAM-1, occludin, and claudin-1/4; the detergent solubility
profiles of JAM-1 and E-cadherin, and their affiliation with "raft-like" membrane microdo-
mains, were modified as well. In vivo administration of TNF-α results in occludin endocytosis
and increased epithelial permeability [25]. In addition, TNF-α can induce apoptosis in the epi-
thelium which may contribute to disruption of mucosal integrity and barrier function. In pa-
tients with IBD, increased apoptosis has been found in the acute inflammatory sites
throughout the entire crypt-villus axis in contrast to apoptosis normally restricted to the apical
aspect of the villus. Apoptosis/proliferative rates were found to increase significantly in line
with the inflammatory process [26]. Increased IEC apoptosis in chronic UC is associated with
elevated TNF-a. The introduction of anti-TNF agents was a breakthrough in the management
of IBD, as these biologics can inhibit IEC apoptosis [27,28], rapidly induce mucosal healing
and restore intestinal mucosal barrier function, thereby inducing remission.

The aim of this study is to characterize therapeutic mechanisms by which AMP-18 can re-
store and maintain homeostasis in cultured intestinal epithelial cells and an animal model of
IBD; specifically to identify molecular targets of AMP-18 that mediate its cell proliferative and
anti-apoptotic effects. IECs undergo vigorous turnover through consistent and balanced prolif-
eration and apoptosis along the crypt-villus axis [29]. Thus, the balance between apoptosis and
proliferation must be strictly maintained to sustain tissue homeostasis. In somatic cells, apo-
ptosis and cell proliferation are linked by cell-cycle regulators and apoptotic stimuli that affect
both processes. Cell cycle progression is controlled by complexes formed by specific cyclins
and cyclin-dependent kinases (CDKs) through different phases of the cell cycle, and are nega-
tively regulated by CDK inhibitors such as p21WAF1/CIP1 (subsequently referred to as p21) [30].
p21 is one of the best described members of the Cip/Kip family of CDK inhibitors. It binds to
and inhibits the activity of multiple cyclin/CDK complexes throughout the cell cycle. In addi-
tion, p21 also plays an important role in apoptosis, terminal differentiation, and cellular senes-
cence [31–34]. In the present study we found that by targeting p21, AMP-18 appears to
maintain tissue homeostasis during protection and repair of injured intestinal epithelial cells.

Materials and Methods

Materials
Chemically synthesized AMP peptide (LDALVKEKKLQGKGPGGPPPK), a scrambled peptide
(GKPLGQPGKVPKLDGKEPLAK), and recombinant human (rh)AMP-18 were prepared by
GenScript (Piscataway, NJ) as described previously [5]. RhAMP-18 was expressed and purified
as a His6-tagged fusion protein. Briefly, the coding sequence for full-length human AMP-18
was cloned into an E. coli expression vector, pGSE3, and the expressed protein was purified
from 5 L of culture medium by affinity column chromatography. AMP peptide and rhAMP-18
were found to be equally effective (data not shown), as previously reported (1, 15, 16) and
therefore both were used. Cell culture medium, fetal bovine serum (FBS), and penicillin and
streptomycin were obtained from Gibco BRL, Life Technologies (Gaithersburg, MD). Total
p21, phosphorylated p21 (ser 146), and Alexa Fluor 647 conjugated-p21 antibodies were
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obtained from Santa Cruz Biotechnology (Dallas, TX); TNF-α from PeproTech (Rocky Hill,
NJ); and other reagents from Sigma-Aldrich unless otherwise specified.

Cell Cultures
Nontransformed IEC-18 epithelial cells (ATCC) derived from normal rat ileum were used to
model the GI epithelium. Cells were grown in Dulbecco’s modified Eagle medium (DMEM)
with 10% (vol/vol) FBS, penicillin (50 U/mL) and streptomycin (50 μg/mL), (Gibco BRL) at
37°C in a humidified incubator supplemented with 5% CO2. When treated with TNF-α in the
presence or absence of rhAMP-18 or AMP peptide, cells were serum starved in DMEM with
0.5% FBS for at least 3 to 6 h.

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis
(SDS-PAGE) and Immunoblotting
To prepare cell lysates, cultures were rinsed and then harvested in iced phosphate buffered sa-
line (PBS) by scraping the monolayer with a cell lifter. The detached cells were pelleted at 4°C
and extracted on ice for 30 min in lysis buffer (50 mM Tris-HCl, pH 7.4, 1% Nonidet P-40,
0.25% sodium deoxycholate, 150 mMNaCl, 100 mMNaF, 10% glycerol, 10 mM EDTA) con-
taining protease and phosphatase inhibitors (2 mM sodium orthovanadate, 1 mM phenyl-
methylsulfonyl fluoride, 50 μg/ml antipain, 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml
pepstatin). Cell lysates were clarified by centrifugation at 14000 × g for 15 min at 4°C. Protein
concentration was determined by BCA assay (Pierce). For immunoblotting assays, 30 to 50 μg
protein/lane was resolved by SDS-PAGE, transferred onto Immobilon membranes (Millipore,
Bedford, MA) followed by blocking with 5% bovine serum albumin in TBST buffer (20 mM
Tris-HCl, 150 mMNaCl, 0.1% Tween 20 at pH 7.5), and incubated with designated antibodies.
After incubation with horseradish peroxidase (HRP)-conjugated secondary antibodies, immu-
noreactive bands were visualized using chemiluminescence (ECL, Amersham Biosciences).
When reprobed, blots were first stripped with a buffer containing 50 mM Tris-HCl, pH 6.8, 2%
SDS, and 0.1 M 2-mercaptoethanol. Images were analyzed by densitometry. The immunoblot
shown in each figure represents one of at least three experiments.

Cell Cycle and p21 Expression Analyzed by Flow Cytometry
Cell monolayers were rinsed with PBS, detached with Accutase cell detachment solution (BD
Biosciences), and washed twice with cold PBS before fixation with 3% paraformaldehyde on ice
for 30 min. After washing with PBS twice, cells were permeabilized with cold methanol. DNA
content was analyzed by staining with 40 μg/ml propidium iodide (PI) in the presence of
100 μg/ml DNAse-free RNAse A. The level of p21 protein was assessed with Alexa Fluor 647
conjugated-p21 antibody. Stained cells were analyzed by FACScanto (BD Biosciences) using
FACSDiva (BD Biosciences).

Chemically-Induced Colitis Model and AMP Peptide Treatment
Mice were housed in a barrier facility, exposed to a 12-h light/dark cycle, and food and water
were provided ad libitum. Colitis was induced using 2,4,6-trinitrobenzenesulfonic acid
(TNBS), as described previously, in 8 to 12 week-old wild type (wt) (n = 15) and vitamin D re-
ceptor knockout (VDR-/-) mice (n = 15) [35]. VDR-/- mice are particularly susceptible to DSS-
or TNBS-mediated injury and develop very severe colitis leading to high mortality with high re-
producibility and predictability [35,36]. Overnight-fasted mice were treated, under anesthesia,
with 100 mg/kg TNBS (Sigma-Aldrich) dissolved in 50% ethanol via intra-rectal injection
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using a 1-ml syringe fitted with an 18-gauge stainless steel gavage needle; 50% ethanol treat-
ment served as a control. Body weight, stool consistency, and GI bleeding were monitored
daily throughout the study. AMP peptide (25 mg/kg body weight) or the vehicle (PBS) was ad-
ministered intraperitoneally once daily for 5 days before animals were given TBNS, and contin-
ued thereafter for 5 days. Clinical scores and colonic damage scores were estimated as detailed
previously [35,37,38]. Animals that lost greater than 20% of their starting body weight would
have been euthanized with CO2, but none did. Five days after TNBS administration, animals
were sacrificed by cervical dislocation after euthanasia with CO2, and colons were collected and
fixed immediately. Colonic histological analyses were performed using the “Swiss roll”method
or “bread-loafing” cross sections. These studies were approved by the University of Chicago
Animal Care and Use Committee.

Histology and Immunohistochemical Staining
Freshly dissected colons were fixed overnight with 4% formaldehyde in PBS (pH 7.2), pro-
cessed, and embedded in paraffin wax. Tissues were cut into 4-μm sections, and stained with
hematoxylin and eosin, or anti-p21 antibodies (Santa Cruz Biotechnology, Inc.) followed
by staining with HRP-conjugated anti-IgG as second antibodies. Antigens were then
visualized with 3, 30-diaminobenzidine substrate (Sigma-Aldrich) and observed under a light
microscope.

Results

p21 Induction by TNF-α is Inhibited by AMP-18
We have reported that AMP-18 inhibits apoptosis induced by TNF-α in epithelial cells, and
that AMP peptide is protective and can speed healing in mice when colonic injury is induced
by DSS [1,4,6]. To identify molecular target(s) of AMP-18 we used an apoptosis array (R & D
Systems) to compare apoptosis-related proteins in IEC-18 cells exposed to TNF-α in the pres-
ence or absence of AMP-18 (data not shown). This array assay allowed us to detect the relative
levels of 35 apoptosis-related proteins simultaneously that may be affected by AMP-18 treat-
ment. Of these 35 proteins, p21 and cleaved caspase 3 (as a marker for apoptosis) were elevated
in cells exposed to TNF-α alone, but significantly reduced when cells exposed to the cytokine
were treated with AMP-18.

p21 is one of the best described members of the Cip/Kip family of cyclin-dependent kinase
(CDK) inhibitors whose function has been implicated in cell cycle regulation, differentiation,
apoptosis and senescence [33]. As shown by immunoblotting in Fig 1A, the level of p21 protein
was increased 4.9-fold in IEC-18 cells exposed to TNF-α. Pretreatment with AMP-18 signifi-
cantly inhibited this induction by 44% (P = 0.02). The down-regulation of p21 by AMP-18
could contribute to its growth-promoting activity on epithelial cells we reported previously
[2,3,5]. Induction of p21 by TNF-α also suggests a mechanism by which TNF-α elicits its pro-
apoptotic effect on permissive cells. Indeed, as suggested in the apoptosis array assay, we found
that cleaved caspase 3 was induced by 7.7-fold in cells exposed to TNF- 7! whereas treatment
with AMP-18 inhibited TNF- 7!induced cleavage of caspase 3 by 73% (Fig 1B). No significant
change in p21 or cleaved caspase 3 was observed in cells treated with AMP-18 alone (data not
shown). Therefore, TNF-α can increase the level of p21 protein and could induce apoptosis in
intestinal epithelial cells, whereas pretreatment of cells with AMP-18 can suppress these effects
of TNF-α, suggesting that p21 could be a critical target by which AMP-18 limits apoptosis and
thereby restores homeostasis in the epithelial barrier.
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AMP-18 Reverses Apoptotic and Antiproliferative Effects of TNF-α
TNF-α is a pleiotropic cytokine that can exert antiproliferative and proapoptotic effects in dif-
ferent types of cells [39,40], and is an important mediator of GI mucosal injury in IBD. It has
been shown to induce apoptosis in IEC-18 cells [41].

To characterize the effects of AMP-18 on the antiproliferative and proapoptotic effects in-
duced by TNF-α, the cell cycle was analyzed in IEC-18 cells in the presence of AMP-18 and/or
TNF-α using flow cytometry. IEC-18 cells were exposed to 50 ng/ml TNF-α with or without
AMP-18 for 6 h and different phases of cell cycle were identified by PI staining of cellular
DNA. In control cells that were serum starved, a small subG1 fraction (4.47%) was observed,
representing a low level of apoptosis (Fig 2A). The majority of cells were in G0/G1 phase
(57.0%). TNF-α induced a>60% increase in subG1 cells (7.81%, P<0.001), and>10%
increase in G1 phase cells (62.9%, P<0.01), indicating proapoptotic and antiproliferative effects
(Fig 2B). In contrast, treatment with AMP-18 completely reversed cell cycle changes induced
by TNF-α, seen in subG1 and G0/G1 cells (4.64% and 56.0%, respectively) back to the control
level (Fig 2C).

The relationship between p21 expression and the cell cycle was investigated by double stain-
ing cells with Alexa 647 conjugated antibody to total p21, and PI to depict p21 protein levels
during different phases of the cell cycle (Fig 2D and 2E). p21 expression (Fig 2D, blue contours)
increased in 93.5% of cells displayed as the population within the gate at all phases of the cycle
following exposure to TNF-α (including the subG1 phase) compared to untreated cells (gray
contours), suggesting that p21 might mediate the proapoptotic and antiproliferative effects in-
duced by TNF-α.

Fig 1. Pretreatment with AMP-18 blocks TNF-7! induction of p21 and cleavage of caspase 3. IEC-18
cells were untreated (Con), or treated with rhAMP-18 (2 �g/mL) for 30 min before exposure to TNF- 7!
(50 ng/mL) for 2 h. Expression level of total p21 (Panel A) and cleaved caspase 3 (Panel B.) were detected
by immunoblotting. Actin was assessed as a loading control. Representative results of 3 independent
experiments are shown.

doi:10.1371/journal.pone.0125490.g001
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Treatment with AMP-18 in the presence of TNF-α decreased p21 expression in all phases of
cell cycle (Fig 2E, red contours) compared to TNF-α alone (blue contours) by 16% (P<0.04) of
the gated population. This suggested that p21 could serve as a therapeutic target by which
AMP-18 antagonizes TNF-α induced proapoptotic and antiproliferative effects. Indeed, our
previous studies [6], and Fig 1B demonstrate that AMP-18 is antiapoptotic.

Pathways Induced by AMP-18 that Regulate p21 Function
Function and expression of p21 are regulated at transcriptional and post-translational levels
through mechanisms including protein phosphorylation, stabilization, and ubiquitination
[30,31]. We set out to determine which pathway(s) mediates AMP-18 regulation of p21. Our
previous observations indicate that AMP-18 activates several signaling pathways such as
MAPK (ERK, JNK and p38), PI3K/AKT, and RhoA [5]. p21 is known to be regulated by several
pathways including MAPK and PI3K/AKT [42]. To investigate which of these pathways medi-
ates regulation of p21 by AMP-18, cells were treated with TNF-α or AMP-18 alone, or together
in the presence of different inhibitors that target the specific pathways (U0126 for ERK,
SB203580 for p38, JNK inhibitor for JNK, LY294002 for PI3K, and AKT Inhibitor VIII for
AKT). We found that the PI3K inhibitor or AKT inhibitor was able to significantly inhibit p21
phosphorylation (Fig 3A), while treatment with MAPK inhibitors showed negligible effects on
p21 phosphorylation (data not shown). These findings are consistent with the notion that the
PI3K/AKT pathway targets p21 to confer antiapoptotic and prosurvival signals, resulting in in-
creased S phase entry, growth promotion, and resistance to death signals [42]. AKT-mediated
phosphorylation of p21 is associated with its cytoplasmic localization and increased stability

Fig 2. Effects of AMP-18 treatment on cell cycle. IEC-18 cells were untreated (PanelA), treated with TNF-
7! (50 ng/mL) alone for 2 hr (Panel B), or with rhAMP-18 (2�g/mL) for 30 min before exposure to TNF-
7!(50 ng/mL) (Panel C). Then cells were harvested, fixed and permeabilized before staining for DNA content
with PI for cell cycle analysis. Double staining with PI showing DNA content at different phases of cell cycle,
and Alexa Fluor 647 conjugated antibody to measure p21 expression level are depicted in panelsD and E.
Gray contours: untreated cells; blue contours: cells exposed to TNF-α alone; red contours: cells treated with
rhAMP-18 before exposure to TNF-α. The gate in panelsD and E contains cell populations with increased
p21 expression. Representative results of 3 independent experiments are shown.

doi:10.1371/journal.pone.0125490.g002
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[42,43]. We therefore explored the effects of these two inhibitors on p21 phosphorylation in
the presence of AMP-18 or TNF-α alone, or in combination. As shown in Fig 3A, treatment
with AMP-18 induced a 26% increase in p21 phosphorylation (P = 0.002). When PI3K inhibi-
tor or AKT inhibitor was present, AMP-18 induced phosphorylation was reduced by 48% and
35%, respectively. That both PI3K and AKT inhibitors reduce AMP-18 mediated

Fig 3. PI3K/AKT pathwaysmediate AMP-18-induced phosphorylation of p21. Cells were untreated
(Con); treated with rhAMP-18 (2 μg/mL), PI3K inhibitor (Inh) (LY294002, 10 μM), AKT inhibitor (VIII, 2 μM)
alone, or a combination of AMP-18 with either of the inhibitors (Panel A); or treated with TNF-α (50 ng/mL),
AMP-18 alone, or TNF-α and AMP-18 in the presence or absence of PI3K inhibitor (Panel B); or AKT inhibitor
(Panel C). When cells were exposed to multiple agents, they were pre-treated with either inhibitor for 30 min,
followed by treatment with rhAMP-18 for 30 min before final exposure to TNF-α for 2 h. Phosphorylation of
p21 was determined by immunoblotting with a phospho-p21 antibody, and equal loading was verified by
immunoblotting of actin. Representative results from 3 independent experiments are shown.

doi:10.1371/journal.pone.0125490.g003
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phosphorylation of p21 confirms our previous observation that AMP-18 stimulates PI3K/AKT
(data not shown). Exposure to TNF-α alone, slightly but consistently reduces phosphorylation
of p21 by 24% (P = 0.012, Fig 3B and 3C).

When cells were exposed to either the PI3K or AKT inhibitor followed by AMP-18 and TNF-
α, phosphorylation of p21 was reduced further by 81% (P = 0.003) and 56% (P = 0.02), respec-
tively (Fig 3B and 3C). These results suggest that AMP-18 may, at least in part, target PI3K/AKT
pathways to regulate p21 phosphorylation, although other pathways could also be involved.

AMP-18 Induced Subcellular Redistribution of p21 Protein
Subcellular localization is another important mechanism that regulates function of p21 [44]. p21
and other Cip/Kip family CDK inhibitors share a C-terminal nuclear localization signal that ap-
pears to enable it to translocate between the cytoplasm and nucleus. Different functions are ex-
hibited by p21 in cytoplasm and nucleus, likely due to specific targets in each location. It has
been reported that cytoplasmic localization of p21 promotes cell growth and protects cells
against apoptosis, whereas nuclear localization is associated with inhibition of cell cycle progres-
sion [45,46]. Therefore, we sought to determine if AMP-18 affects subcellular localization of p21
protein. As shown in Fig 4, left panel, control cells demonstrated only scattered occasional stain-
ing of p21 (red) in the nucleus (blue). TNF-αmarkedly increased accumulation of p21 protein
within the nucleus which appears in a granular pattern (middle panel). Pretreatment with AMP-
18 substantially reduced nuclear accumulation of p21, so that only scattered staining was visible
in nucleus and cytoplasm (right panel). These observations suggest that AMP-18 can reduce
TNF-αmediated nuclear accumulation of p21, thereby stimulating cell growth.

Role of p21 in AMP Peptide Treatment of TNBS Colitis
To investigate the role of p21 in maintaining mucosal epithelial homeostasis in AMP-mediated
protection of epithelial cells in vivo, we studied expression of p21 in TNBS-induced colitis in vi-
tamin D receptor (VDR)-deficient (VDR-/-) mice. Emerging evidence suggests that the VDR
plays a critical role in mucosal barrier homeostasis by preserving the integrity of cell junction
complexes and the healing capacity of colonic epithelium [35,36,47]. Genetic VDR deletion in
mice is associated with normal histology but leads to increased vulnerability to TNBS- or DSS-
induced colitis [35,36]. VDR-/- mice given TNBS exhibit a greater loss of intestinal transepithe-
lial electric resistance (TER), disruption of epithelial junctions, and typical IBD symptoms such
as severe diarrhea, rectal bleeding and marked body weight loss, as well as increased mortality.

Fig 4. Pretreatment with AMP-18 reduces TNF-7! induced nuclear translocation and accumulation of p21. Cells were untreated (CON), treated with
TNF-7! (50 ng/mL) alone, or with rhAMP-18 (2�g/mL) for 30 min before exposure to TNF-7! (50 ng/mL) (AMP-18 + TNF-7!) for 2 h. Subcellular localization
of p21 (red) was visualized by immunofluorescence. The nucleus was counterstained with DAPI (blue). TNF-7! induced nuclear accumulation of p21 (center
panel) was reduced by pretreatment with AMP-18 (right panel). Representative results from 3 independent experiments are shown.

doi:10.1371/journal.pone.0125490.g004
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Histological examination revealed extensive ulceration and impaired wound healing in the co-
lonic epithelium in the VDR-/- mice [35], along with crypt hyperplasia, loss of crypts, severe
focal ulceration, thickened colonic walls and severe inflammation (Fig 5). In addition, VDR
knockdown in cultured Caco-2 cell monolayers with small interfering (si) RNA reduced junc-
tion proteins and TER [36]. Therefore, vitamin D deficiency compromises the mucosal barrier
leading to increased susceptibility to mucosal damage and increased risk of IBD. To evaluate
the therapeutic efficacy of AMP peptide in TNBS colitis, wt and VDR-/- mice were given the
peptide (25 mg/kg, i.p.) once daily for 5 days before receiving TNBS. Treatment with AMP
peptide was continued for 5 days after TNBS, while control animals received the vehicle (PBS).
AMP peptide treatment did not demonstrate a significant survival benefit in 5 wt mice, which
was 80%, as observed in previous studies [35]. In contrast, all 5 VDR-/- mice treated with vehi-
cle died by day 5 after TNBS, as reported previously [35], whereas treatment of 4 VDR-/- mice
with AMP peptide resulted in 50% survival. The capacity of AMP peptide to preserve colonic
mucosal integrity and prevent transmural inflammation in these animals is depicted in Fig 5.

p21 protein levels were assessed by immunohistochemistry in freshly-dissected and 4%
formaldehyde-fixed colon tissues. Expression of p21 protein in untreated wt control (con) and
VDR-/- mouse colon was not readily detectable (Fig 6, left panels). Staining of p21 was occa-
sionally observed in wt mice given TNBS (top,middle panel), whereas treatment with AMP
peptide appeared to reduce the number of p21 positive cells, although it was not possible to
measure this accurately because of the small number of p21 positive cells (top, right panel). In
contrast, p21 positive cells became numerous in VDR-/- mice given TNBS, whereas treatment
with AMP peptide remarkably reduced the number of p21-stained cells (bottom middle and
right panels, respectively). These data indicate that AMP peptide can reverse induction of p21
in vivo (by TNBS) as well as in cell culture (by TNF-α), thereby alleviating growth inhibition
and allowing progression of the cell cycle to repair the injured mucosa.

Discussion
In this study we set out to identify new molecular targets and mechanisms that mediate the
therapeutic efficacy of AMP-18. Treatment with AMP-18 reduced p21 expression (Fig 1A), ap-
optosis (Fig 1B) [6], and disturbed cell cycle kinetics in epithelial cells induced by the cytokine
TNF-α, a known mediator of GI mucosal barrier injury (Fig 2). AMP-18 appears to act through
PI3K/AKT pathways (Fig 3) to reduce nuclear accumulation (Fig 4) of p21, thereby overcom-
ing the antiproliferative effects of TNF-α. In VDR-/- mice with TNBS-induced IBD, the in-
crease in p21 expression in colonic epithelial cells was suppressed by treatment with AMP

Fig 5. Therapeutic effect of AMP peptide in mice with TNBS colitis.Colitis was induced using TNBS in
VDR-/- mice (n = 15). Treatment with vehicle (PBS) (left panel) or AMP peptide (25 mg/kg, i.p.) (right panel)
was initiated once daily 5 days before exposure to TNBS and continued 5 days afterwards. Colons were
collected, fixed and subjected to histological analyses as described in Materials and Methods.
Representative images from a total of 15 animals are shown.

doi:10.1371/journal.pone.0125490.g005
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peptide (Fig 6). By targeting p21, AMP peptide could maintain and/or restore the homeostatic
balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair
disrupted mucosal barrier homeostasis and function.

p21 is the best described member of the Cip/Kip family of cyclin-dependent kinase (CDK)
inhibitors. When localized in the nucleus, p21 forms a quaternary complex with cyclins (A, B,
D or E), CDKs (1, 2 or 4), and proliferating cell nuclear antigen (PCNA), and functions as a
key regulator of progression at the G1/S phase of the cell cycle in response to various exogenous
and endogenous factors. In addition to its primary role as an inhibitor of the cell cycle, p21 is
also implicated in terminal differentiation, cellular senescence, and apoptosis [31–34], although
its role in apoptosis is highly dependent on cellular context [32,48–51].

Function and expression of p21 can be regulated by multiple pathways at transcriptional
and post translational levels through mechanisms involving phosphorylation, subcellular local-
ization, RNA stabilization, and ubiquitination [31,43,44,52]. p21 expression can be induced
through p53-dependent or-independent pathways by growth factors or cytokines such as TNF-
α. When TNF-α has been shown to induce cell cycle arrest and block proliferation in specific
cells, the G1/S checkpoint appears to be an important target of its effect on cell cycle regulation
[53]. When localized in the cytoplasm, p21 protects cells against apoptosis by forming a com-
plex with Rho kinase 2 (Rock2) and apoptosis signal regulating kinase 1 (ASK1), and acts as an
inhibitor of stress fiber formation [45,46]. In addition, this cytoplasmic localization is closely
correlated with phosphorylation of p21 that appears to be mediated by the AKT pathway
[42,43]. In the present study, AMP-18 reduced nuclear accumulation of p21 which suggests at
least one mechanism by which AMP-18 could exert its anti-apoptotic and growth-promoting
effects in the presence of TNF-α.

Fig 6. Role of p21 in AMP peptide treatment of TNBS colitis. TNBS was used to induce colitis in wild type (3 top panels) and VDR-/- mice (3 bottom
panels). Untreated wild type and VDR-/- animals served as controls (con) (left panels). Wild type and VDR-/- mice given TNBS were treated with vehicle (PBS)
(center panels). In mice receiving AMP peptide (25 mg/kg, i.p.) treatment was initiated once daily 5 days before exposure to TNBS and continued 5 days
afterwards (day 10) (right panels). Total p21 (white arrows) was analyzed by immunohistochemistry with anti-p21 antibody in freshly dissected and 4%
formaldehyde-fixed colon tissues from wild type (top panels) and VDR-/- mice (bottom panels). Representative images from a total of 30 animals are shown.

doi:10.1371/journal.pone.0125490.g006
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Dysregulated apoptosis/proliferation in epithelial cells has been observed in patients and an-
imal models of IBD [26]. This disturbed homeostasis in IBD is considered, at least in part, to
be a result of increased cytokine production (e.g., TNF-α) by over-activated immune cells,
which can induce apoptosis in the epithelium and thereby contribute to disruption of mucosal
integrity and barrier function. Current therapy targets the increased cytokine production and
inflammation utilizing a TNF-neutralizing antibody (infliximab) which benefits these patients.
Anti-TNF antibody treatment effectively reduces epithelial cell apoptosis and increases muco-
sal repair, accompanied by reduced Fas/CD95 expression in the intestinal epithelium of mice
[27]. Furthermore, in the acute DSS colitis mouse model, anti-TNF treatment reduced expres-
sion of gene targets that might mediate epithelial cell injury; and in chronic DSS colitis it abro-
gated elevated levels of cleaved caspases 3 and 9, highlighting the importance of apoptosis in
these conditions [16].

The participation of cell apoptosis in the maintenance of intestinal epithelial barrier func-
tions has been controversial in the literature [54,55]. Under normal conditions, balanced ho-
meostasis between proliferation and apoptosis is maintained, which allows a “normal” number
of apoptotic cells to be shed without disrupting barrier function [56]. However, in IBD, over-
production of inflammatory cytokines, especially TNF-α, may cause a marked increase in apo-
ptosis that is beyond the cell proliferation capacity of the tissue, thereby compromising barrier
function and structure. For example, it was reported that TNF-α-induced apoptosis in HT-29/
B6 cells accounts for 56% of the TNF-α-mediated increase in epithelial monolayer permeability
[55]. Extensive apoptosis, as occurs in UC, can impair epithelial integrity [57]. An intact intes-
tinal epithelium can be maintained after apoptosis of single cells; however, substantial apopto-
sis can compromise barrier function and crypt-villus architecture. An agent that maintains
and/or restores the homeostatic balance between proliferation and apoptosis in epithelial cells,
such as AMP peptide, would be of great therapeutic value to protect the mucosal barrier, and
speed its recovery after injury in patients with IBD. In addition to its effects on cell homeosta-
sis, to determine if AMP peptide also acts through other mechanisms, such as inhibition of cy-
tokine production and activation of inflammatory cells in IBD [58], will require further study.

Dysregulation of epithelial homeostasis is closely related to loss of cell cycle control. It has
been reported that high p21 expression and p53 accumulation are characteristic of the active
and remission phases of UC [59]. A study that analyzed expression of p21 and other cell cycle-
related proteins found that p21 expression was higher in colonic epithelial cells in patients with
IBD compared to healthy controls, and p21 expression levels were correlated with disease activ-
ity [60]. In the present study we found that treatment with AMP-18 inhibited p21 expression
and nuclear localization induced by TNF-α, and completely reversed the cell cycle disturbance
and cell apoptosis, suggesting that p21 can serve as a therapeutic target through which AMP-
18 antagonizes TNF-α induced proapoptotic and antiproliferative effects. However, treatment
with AMP peptide would be untenable if it stimulates growth of tumor cells or inhibits antineo-
plastic therapies, a concern that was proven to be untrue in a xenograft model [6]. AMP-18/
peptide appears to act differently on p21 and cell homeostasis in non-transformed cells (Figs 1,
2D and 2E) compared to gastric cancer cells in which transfection of AMP-18 cDNA increased
the level of p21, inhibited cell proliferation, induced apoptosis [61], and inactivated the PI3K/
AKT pathway [62].

In summary, epithelial homeostasis plays an essential role in maintaining intestinal barrier
function that is important for a normal host defense against pathogens in the gut lumen while
allowing transport of nutrients. In IBD, dysregulated epithelial homeostasis can occur between
apoptosis and proliferation leading to increased barrier permeability. AMP peptide, which acts
by targeting p21, could restore mucosal epithelial homeostasis and thereby provide a new ther-
apeutic agent to treat patients with this condition.
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