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The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the
endogenous catecholamines, norepinephrine, and epinephrine. They play a key role
in the regulation of the sympathetic nervous system along with β and α2-AR family
members. While all of the adrenergic receptors bind with similar affinity to the
catecholamines, they can regulate different physiologies and pathophysiologies in the
body because they couple to different G-proteins and signal transduction pathways,
commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have
long been known to be primary regulators of vascular smooth muscle contraction,
blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving
cognition, protecting the heart during ischemia and failure, and regulating whole body
and organ metabolism are not well known and are more recent developments. These
advancements have been made possible through the development of transgenic and
knockout mouse models and more selective ligands to advance their research. Here, we
will review the recent literature to provide new insights into these physiological functions
and possible use as a therapeutic target.
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INTRODUCTION

α1-Adrenergic receptors (ARs) regulate the sympathetic nervous system by binding and
transducing the effects of the endogenous catecholamines, epinephrine, and norepinephrine
(Graham and Lanier, 1986). ARs are members of the G-protein-coupled receptor (GPCR)
superfamily and are composed of nine adrenergic receptor subtypes (α1A, α1B, α1D, α2A, α2B,
α2C, β1, β2, and β3) from the three distinct families (α1, α2, β) which are activated by the same
catecholamines and are related as paralogs.

The α1-AR subtype cDNAs were cloned in the late 1980s and early 1990s (Cotecchia et al.,
1988; Schwinn et al., 1990; Lomasney et al., 1991; Perez et al., 1991, 1994; Laz et al., 1994).
They have distinct pharmacological properties which helped to determine their classification and
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characterization. Before the cloning of the receptors, α1-ARs
were already subdivided into the α1A- and α1B-AR subtypes
based upon radioligand binding data in various tissues which
showed two-site competition binding curves to the antagonists
WB4101 and phentolamine. The α1A-AR subtype was defined
as having a 10–100-fold higher binding affinity for these two
antagonists while the α1B-AR subtype was defined as having the
weaker binding affinity (Morrow and Creese, 1986). The α1C-AR
designation is missing from the α1-AR subtype lineage because of
a misclassification early on in the cloning of the receptors1.

α1-ARs are mainly coupled to the heterotrimeric Gq/11
(Gαq) family of G-proteins to activate phospholipase Cβ1
(PLCβ1), resulting in the hydrolysis of membrane-bound
phosphatidylinositol 4,5-bisphosphate and the cytosolic release
of inositol triphosphate (IP3) and diacylglycerol (DAG) (Piascik
and Perez, 2001; Table 1). The IP3 plays a key role in
calcium regulation by binding to IP3 receptors located on the
endoplasmic reticulum resulting in calcium channel opening and
the release of intracellular calcium. The DAG activates protein
kinase C (PKC) which can phosphorylate many other types of
proteins and signals downstream in the signaling cascade. There
are also reports that α1-ARs can couple to Gi G-proteins under
overexpressed conditions or in certain cell lines (Akhter et al.,
1997; Melien et al., 2000; Snabaitis et al., 2005) but this has not
been shown to occur in vivo. α1-ARs can also signal through
G-protein-independent mechanisms involving β-arrestins which
act as scaffolds to recruit and activate other second messengers
such as ERK 1/2, p38, and Src (Perez-Aso et al., 2013; Segura
et al., 2013). α1-ARs can also couple to phospholipase A2
and calcium channels though this may not be direct coupling
(Perez et al., 1993).

While the α1-AR subtypes display differences in
internalization resulting in spatio-temporal changes in signaling
(Stanasila et al., 2008; Perez-Aso et al., 2013; Segura et al., 2013),
there is some evidence that the α1-AR subtypes differentially
couple to different signaling proteins, such as Regulators of
G-protein Signaling (RGS) (Hague et al., 2005). These G-protein
modulators can interact with the alpha subunits of large
G-proteins to increase the rate of GTP hydrolysis and to stop the
receptor signaling process. RGS2 can directly bind to the third
intracellular loop of the α1A-AR to inhibit its signaling process
but does not bind at the α1B- or α1D-AR subtypes (Hague et al.,
2005). As RGS2 plays a prominent role in regulating GPCR
cardiovascular functions (Tang et al., 2003; Zou et al., 2006) and
GPCR G11 signaling pathways (Cunningham et al., 2001), α1A-
AR coupling to RGS2 may regulate many of its subtype-specific
functions. Another way that α1-ARs create differential signaling
pathways is through biased agonism (Wootten et al., 2018).
Cirazoline or A61603, imidazolines which are α1A-AR selective
agonists, can bias the receptor toward cAMP signaling rather
than Ca+2 release or ERK phosphorylation (Evans et al., 2011;
da Silva et al., 2017) or can enhance the α1A-AR desensitization

1The α1C-AR was first designated novel but more detailed analysis revealed that
it was a bovine analog of the α1A-AR (Schwinn et al., 1990; Laz et al., 1994;
Perez et al., 1994). To avoid confusion, an actual novel α1-AR subtype discovered
through molecular cloning was designated the α1D-AR (Perez et al., 1991) and the
α1C designation was dropped from the classification scheme.

and internalization process (Akinaga et al., 2013) leading to
differential coupling to β-arrestin-mediated signaling.

TRANSGENIC AND KNOCKOUT MOUSE
MODELS

Due to the lack of sufficiently selective pharmacological agents
to use in order to distinguish subtype-specific effects, a number
of transgenic and knockout (KO) mouse models were developed
that were used to determine long-term in vivo stimulatory or
inhibitory effects of the α1-AR subtypes on physiology and
pathophysiology (Table 2). KOs of the α1A-AR (Rokosh and
Simpson, 2002; Zhang et al., 2020), α1B-AR (Cavalli et al.,
1997), and α1D-AR (Tanoue et al., 2002) were developed
using traditional insertion of the β-galactosidase or neomycin
resistance gene in place of the first exon of the receptor. Recently,
a cardiac-conditional KO of the α1A-AR was developed (Zhang
et al., 2020). There is also a double KO model created by
mating together the α1A and α1B-AR KO mice (O’Connell
et al., 2003) and a triple KO of all three subtypes (Sanbe et al.,
2007). Transgenic mice overexpressing α1-ARs were designed
to either target to the myocyte using the α myosin heavy chain
promoter to drive only cardiac expression of wild-type (WT) or
constitutively active mutations (CAMs) in the receptor (Milano
et al., 1994; Grupp et al., 1998; Eckhart et al., 2000; Lin et al.,
2001) or used CAMs in the receptors that were driven by
large fragments of the endogenous mouse promoters to generate
systemic expression (Zuscik et al., 2000, 2001; Ross et al., 2003;
Rorabaugh et al., 2005). The systemic expression of the CAMs
also allows assessment of cardiovascular effects due to chronic
α1-AR expression outside of the myocyte as well as in the brain
or other organ systems. There is also only mild overexpression
of the receptor in the heart and brain (2–3 fold) and throughout
the body in using the endogenous promoters as compared to
using the α myosin heavy chain promoter which caused very
high amounts of receptor overexpression, often exceeding 100-
fold. The use of CAMs instead of the WT receptor results in
continuously activated receptors that do not need an agonist to
be present and can be representative of a chronically stimulated
condition, but this is still debated. In both overexpressed and
KO mouse models, there is always the possibility of changes in
the expression of other genes and receptors in compensation
or as a result of additional insertion or deletion of genetic
material, a widespread phenomenon that is hard to decipher
and under reported (El-Brolosy and Stainier, 2017). Recognizing
these limitations and seeing if general phenotypes repeat in
the various mouse models of particular receptor subtypes is
suggested. These different types of mouse models will be referred
to throughout this review.

COGNITION

Localization in the Brain
The expression of the specific α1-AR subtypes in the brain
was previously difficult to determine because of the lack of
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TABLE 1 | Properties of the α1-AR subtypes.

Subtype α1A α1B α1D

Signal transduction Gq/G11/PLC/PKC/ DAG/IP3/Ca+2

RGS2
Gq/G11/PLC/PKC/ DAG/IP3/Ca+2 Gq/G11/PLC/PKC/ DAG/IP3/Ca+2

Selective Agonists A61603, cirazoline None None

Selective Antagonists Niguldipine, 5-Methylurapidil, None BMY-7378

Allosteric Amilorides (NAMs) 9-aminoacridine
(NAM)

Conopeptide rho-TIA (NAM)
9-aminoacridine (NAM)

None

Tissue distribution Hippocampus, amygdala, cerebral
cortex, neural stem and progenitor
cells, interneurons, hypothalamus,
myocyte, smooth muscle, vascular,
mesenteric arteries

Cerebral cortex, myocyte, smooth
muscle, vascular

Reticular thalamic nuclei,
hippocampus, spinal cord, aorta,
smooth muscle, vascular, coronary
arteries

Physiological function Cognition, neurogenesis, LTP,
spatial memory, blood pressure,
positive inotropy, contraction
smooth muscle, blood pressure,
cardiac hypertrophy, cardiac
adaptive, cardiac ischemic
protection, glucose uptake (all
tissues), glycolysis (cardiac,
adipocytes, skeletal muscle),
glucose tolerance, whole body fatty
acid oxidation.

Memory consolidation,
fear-motivated exploration, spatial
learning-novelty, contraction
smooth muscle, blood pressure,
negative inotropy, cardiac
hypertrophy, cardiac maladaptive,
baroreflex, glucose uptake
(non-cardiac tissues), glycolysis
(adipocytes, skeletal muscle),
glucose tolerance, whole body fatty
acid oxidation.

Contraction smooth muscle,
contraction-mesenteric beds, blood
pressure.

high avidity antibodies to the α1-ARs (Jensen et al., 2009c;
Böhmer et al., 2014). Initial autoradiography studies used non-
selective radiolabels that could not distinguish between the α1-
ARs subtypes but did demonstrate high abundance throughout
the rat brain (Unnerstall et al., 1985). Eventually, more specific
and sensitive techniques were developed to determine the α1-
AR subtype localization in the brain such as using the full-
length cDNA sequence of the α1A-AR in hybridization studies
(Domyancic and Morilak, 1997) or transgenic and knock-out
(KO) mouse models of the α1-AR subtypes with the α1-ARs
tagged with endogenous promoter-driven expression of EGFP
or use of the β-galactosidase gene to KO the receptor (Papay
et al., 2004, 2006). Using these approaches, the α1A- and α1B-
ARs were shown to be expressed in similar areas of the brain,
but the relative expression was different (Papay et al., 2004,
2006). The α1A-AR subtype was more noticeably expressed in
the cognitive areas such as the hippocampus, amygdala, and
particular cortical areas (Table 1; Papay et al., 2006), while the
α1B-AR appeared more prominent throughout the cortex and
thalamus (Drouin et al., 2002; Papay et al., 2004). The α1A-
AR subtype was also more prominently expressed in neural
progenitors and stem cells (Papay et al., 2006; Gupta et al., 2009).
Using long sequences of antisense to the α1D-AR to assess brain
localization, the α1D-AR although of low overall abundance, was
present in the reticular thalamic nuclei, hippocampus, cortex
and spinal cord (Harasawa et al., 2003). Using the α1-AR KO
mice and comparing the total amount of α1-AR radioligand
receptor binding to normal wild-type mice, it was concluded
that the brain contains the highest amount of the α1A-AR
subtype at ∼55% (Rokosh and Simpson, 2002), followed by
the α1B-AR at 35% (Cavalli et al., 1997) but only 10% of the
total α1-AR pool for the α1D-AR subtype (Tanoue et al., 2002;
Sadalge et al., 2003).

The localization of the α1-ARs in the brain may have some
species variation (Palacios et al., 1987; Zilles et al., 1991), but the
cognitive areas appear similar in humans with high expression in
the hippocampus and prefrontal cortex and the lowest expression
in the caudate and putamen (Shimohama et al., 1986; Szot
et al., 2005). The α1A-AR subtype appears to be prominent in
expression in the hippocampus as assessed by RNA (Szot et al.,
2005), single cell PCR (Hillman et al., 2005), protein localization
using the EGFP-tagged transgenics (Papay et al., 2006) and
functionally by regulating the CA1 hippocampal interneurons
(Jurgens et al., 2009). In addition, the α1A-AR subtype regulated
adult neurogenesis in the mouse subgranular and subventricular
zones (Gupta et al., 2009; Jurgens et al., 2009; Collette et al.,
2010) as assessed by increased BrdU incorporation and co-
localization studies of EGFP-tagged α1A-ARs with stem cell and
neural progenitor markers (Table 2). In addition, when normal
WT mice were given the α1A-AR selective agonist, cirazoline, they
also displayed increased neurogenesis (Gupta et al., 2009). The
regulation of neurogenesis by the α1A-AR and its regulation of
hippocampal function and translation to human brain domains
may potentially play a therapeutic role to increase synaptic
plasticity and cognition in diseases of dementia.

General Cognition
The α1-ARs have been previously associated with general roles in
learning and memory functions (Sirviö and MacDonald, 1999)
but these studies were not well characterized nor assigned to
specific AR subtypes because of the lack of subtype-specific
ligands. A few early studies suggested that α1-AR stimulation
inhibits memory functions in monkeys (Arnsten and Jentsch,
1997; Mao et al., 1999) or in chickens (Gibbs and Summers, 2001)
but used very low replicates, very high concentrations of ligands
rendering them non-selective or attributed to species variation.
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TABLE 2 | Genetic animal models of the α1-AR subtypes.

Animal model Genotype Cognitive phenotype Cardiac phenotype Metabolic phenotype References

α1A-AR CAM, systemic
overexpression
expression (2–3 fold)

Increased spatial
memory, learning, LTP,
paired pulse,
neurogenesis

Adaptive-ischemic
preconditioning,
increased contractility,
no changes in BP

Higher whole-body
FAO, increased glucose
uptake in cardiac and
other tissues, cardiac
glucose oxidation,
glucose tolerance,
leptin secretion

Ross et al., 2003;
Rorabaugh et al., 2005;
Gupta et al., 2009; Shi
et al., 2016, 2017;
Papay and Perez,
2020; Perez, 2021

α1A-AR αMHC, heart-targeted
overexpression
(66-fold)

Adaptive-increased
inotropy, protects after
TAC and MI, no
hypertrophy,
angiogenesis

Lin et al., 2001; Du
et al., 2004, 2006;
Zhao et al., 2015

α1A-AR αMHC, heart-targeted
overexpression
(170-fold)

Maladaptive-increased
mortality, fibrosis in
aged mice

Chaulet et al., 2006

α1A-AR (rats) αMHC, heart-targeted
overexpression

Adaptive-protects
against MI, ischemic
preconditioning

Zhao et al., 2012, 2015

α1B-AR αMHC, heart-targeted
overexpression (26 and
46-fold)

Maladaptive-negative
inotropy, dilated
cardiomyopathy, no
hypertrophy

Akhter et al., 1997;
Grupp et al., 1998;
Lemire et al., 2001

α1B-AR CAM, αMHC,
heart-targeted
overexpression (3-fold)

Maladaptive-
hypertrophy, increased
progression to HF, no
preconditioning

Milano et al., 1994;
Gao et al., 2000; Wang
et al., 2000

α1B-AR CAM, systemic
overexpression
expression (2-3 fold)

Autonomic failure;
Parkinson’s Disease
Plus neurodegeneration

Maladaptive-negative
inotropy, hypertrophy in
older mice, fibrosis,
hypotension

Higher whole-body
FAO, increased glucose
tolerance and uptake in
non-cardiac tissues,
leptin secretion

Zuscik et al., 2000,
2001; Ross et al.,
2003; Papay et al.,
2013; Shi et al., 2016,
2017

α1AB-AR CAM double systemic
overexpression

No basal hypertrophy
but induced when
either α1A- or α1B-ARs
are individually
stimulated

Papay et al., 2013

α1A-AR KO Poor cognitive behavior Maladaptive-increased
pathology after MI,
normal heart size

Higher whole-body
carbohydrate oxidation,
decreased cardiac
glucose uptake,
glucose intolerance

Doze et al., 2011; Shi
et al., 2016, 2017; Yeh
et al., 2017

α1A-AR Conditional
heart-targeted KO

Maladaptive-increased
mortality; increased
pathology after MI

Zhang et al., 2020

α1B-AR KO Locomotor, decreased
addiction, memory
consolidation,
novelty/fear memory

No changes in basal
BP, decreased induced
BP; loss of NE-induced
hypertrophy, decreased
baroreflex response

Insulin resistance,
higher whole-body
carbohydrate oxidation,
glucose intolerance and
decreased glucose
uptake in non-cardiac
tissues and leptin
secretion

Knauber and Müller,
2000a; Spreng et al.,
2001; Drouin et al.,
2002; Vecchione et al.,
2002; Auclair et al.,
2004; Burcelin et al.,
2004; Townsend et al.,
2004

α1D-AR KO Decreased locomotion,
attention

Decrease basal and
induced BP

Sadalge et al., 2003;
Hosoda et al., 2005

α1A/B-AR Double KO Maladaptive- loss of
heart growth,
decreased survival and
contractility after TAC,
fibrosis, apoptosis

McCloskey et al., 2003;
O’Connell et al., 2003;
Turnbull et al., 2003

α1A/B/D-AR Triple KO Hypotension Sanbe et al., 2007

BP, blood pressure; CAM, constitutively active mutation(s); FAO, fatty acid oxidation; HF, heart failure; KO, knockout; LTP, long-term potentiation; MHC, myosin heavy
chain promoter; MI, myocardial infarction; TAC, transverse aortic constriction.
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However, as will be discussed, most of the recent studies indicate
that α1-AR stimulation increases various types of memory in both
formation and storage.

Long-Term Potentiation
Long-term potentiation (LTP) is a type of long-lasting synaptic
plasticity that increases the strength of synaptic transmission over
a long period of time (i.e., mins-hours) (Hopkins and Johnston,
1984; Kandel, 2001). LTP is considered a major mechanism of
learning and memory, particularly in the hippocampus (Bliss
and Collingridge, 1993). α1-AR stimulation can induce LTP
in the hippocampus (Izumi and Zorumski, 1999; Sirviö and
MacDonald, 1999; Lv et al., 2016) and there is one report in the
neocortex (Pankratov and Lalo, 2015) which is also a center for
neuronal spatial and recognition memory (Vann and Albasser,
2011). Interestingly, the α1-ARs can also stimulate ATP release
on astrocytes to induce LTP via ATP receptors on the pyramidal
neurons in the neocortex, suggesting that glial cell regulation
by α1-ARs may also be involved in memory formation. Glia
communicate through calcium signaling to neurons, causing
the release of ATP and its subsequent increase in synaptic
plasticity and LTP (Pascual et al., 2005). LTP stimulation by α1-
ARs may be α1A-AR-specific as the CAM α1A-AR transgenic
mice significantly increased LTP at hippocampal synapses (Doze
et al., 2011; Table 2). The CAM α1A-AR mice also increased
cognitive scores in a series of behavioral tests while the α1A-
AR KO mice performed poorly compared to normal controls
(Doze et al., 2011). The α1A-AR selective agonist, cirazoline also
increased cognitive scores in normal mice when administered for
2 months. While the α1B-AR KO mice had impaired cognition
in some behavior tests (Knauber and Müller, 2000a,b; Spreng
et al., 2001), there was no assessment of effects of α1B- or α1D-
AR KO on LTP.

Long-term depression (LTD) is also a form of long-term
synaptic plasticity that can contribute to cognitive functions by
increasing the flexibility of the synapse to store information
(Heynen et al., 1996), such as remembering the exposure
to novel objects (Manahan-Vaughan and Braunewell, 1999).
Novelty exposure can reverse LTP in the hippocampus (Xu
et al., 1998), suggesting a correlation between LTD and LTP
that may impart different forms of synaptic information during
spatial learning (Kemp and Manahan-Vaughan, 2004). There
are reports that α1-AR mediated LTD required co-activation
with a number of partners such as β-ARs (Katsuki et al.,
1997), NMDA (Scheiderer et al., 2004) and the M1 muscarinic
receptor (Scheiderer et al., 2008). α1-ARs have been shown
to induce LTD at excitatory CA3–CA1 synapses in the rat
hippocampus (Dyer-Reaves et al., 2019) through ERK signaling
in the pyramidal neurons (Vanhoose et al., 2002; Scheiderer et al.,
2008) and had characteristics of a novel form of synaptic plasticity
(Hebb, 1949). However, there is no evidence of which α1-AR
subtype(s) mediate LTD. This Hebbian LTD requires coincident
presynaptic and postsynaptic NMDAR activity (Scheiderer et al.,
2004) and is different and independent of the “classical” LTD
which is induced by low frequency synaptic stimulation that
is repetitive (Mulkey and Malenka, 1992). The mechanism
of the Hebbian LTD also involves postsynaptic activation

of the α1-AR as the paired pulse facilitation ratio did not
change (Scheiderer et al., 2004). Paired pulse facilitation is a
measurement of synaptic enhancement observed under a short
period of time (i.e., milliseconds). For a pulse facilitation
effect, a second evoked excitatory postsynaptic potential is
increased when it follows immediately after a first evoked
excitatory postsynaptic potential (Foster and McNaughton, 1991)
and is used as evidence of an increase in the probability of
neurotransmitter release. Increases in paired pulse facilitation
that occur with LTP suggest a presynaptic mechanism (Schultz
et al., 1994), because potentiated presynaptic neurons must
increase neurotransmitter release.

Spatial Memory
The hippocampus also regulates spatial and associative learning
functions (Mahmoodi et al., 2010) in addition to long-term
memory functions. α1-AR blockage using the α1-AR antagonist
prazosin in the hippocampus demonstrated impaired spatial
learning (Petrasek et al., 2010) while stimulation of the α1-AR
improved spatial memory (Puumala et al., 1998; Torkaman-
Boutorabi et al., 2014). Transgenic mice overexpressing CAM
α1A-ARs, or WT mice given the α1A-AR selective agonist
cirazoline, displayed increased learning and memory using
several spatial memory behavioral tests such as the Barnes, dry
multi-T, and Morris water mazes (Doze et al., 2011), while α1A-
AR KO mice showed decreased learning and memory compared
to normal controls in the same cognitive tests (Doze et al., 2011;
Collette et al., 2014; Table 2). The α1B-AR KO mice also had
impaired spatial learning to novelty and exploration (Spreng
et al., 2001) and a decrease in non-spatial memory functions such
as memory consolidation, fear-motivated exploration (Knauber
and Müller, 2000a), and short and long-term latency in a passive
avoidance test (Knauber and Müller, 2000b). α1D-AR KO mice
did not show changes in several different behavioral cognitive
tests (Sadalge et al., 2003) but did show changes in locomotion
and attention (Mishima et al., 2004). Together with enhancement
of LTP and paired pulse facilitation (a type of short-term synaptic
plasticity) in the CAM α1A-AR transgenic mice (Doze et al.,
2011), these studies suggest that the α1A- and perhaps the α1B-
AR to a lesser degree but not the α1D-AR are involved in spatial
learning and memory processes.

Spatial Working Memory
Spatial working memory involves executive-type or motivational-
related types of memory and relies more on the prefrontal
cortex than the hippocampus as the task is more complex
(Robbins, 1996). α1-AR stimulation increases while α1-AR
blockade inhibits working memory (Pussinen et al., 1997;
Puumala et al., 1998; Lapiz and Morilak, 2006; Hvoslef-Eide et al.,
2015) by promoting both focused and flexible attention (Berridge
et al., 2012; Berridge and Spencer, 2016). There is also an
improvement in working memory with the cognitive-enhancing,
wake-promoting neurochemical modafinil that is hypothesized
to be mediated by α1-ARs since effects are blocked by prazosin
(Duteil et al., 1990; Stone et al., 2002; Winder-Rhodes et al., 2010).

α1-ARs regulate spatial working memory through the release
of glutamate in the prefrontal cortex due to a sustained excitatory
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effect on the pyramidal neurons increasing synaptic plasticity
(Marek and Aghajanian, 1999; Zhang et al., 2013). When the
ventral hippocampus was lesioned in vivo and α1-AR function
was impaired, there was a decrease in glutamatergic synaptic
plasticity within the prefrontal cortex which caused memory
and learning dysfunction (Bhardwaj et al., 2014). Glutamatergic
synaptic plasticity mediated through α1-ARs signals through
PKC-dependent pathways in various cortical areas (Mouradian
et al., 1991; Marek and Aghajanian, 1996; Chen et al., 2006;
Kobayashi et al., 2008; Velásquez-Martinez et al., 2012; Luo
et al., 2014, Luo et al., 2015a,b) and may require the co-
signaling from both glutamate and the N-type Ca2+ channels
(Luo et al., 2015a). PKC can increase synaptic plasticity and
associated memory processes through the phosphorylation of
synaptic proteins or enhancing the sensitivity to calcium which
promotes the exocytosis of the synaptic vesicles, increasing
neurotransmitter release (Shimazaki et al., 1996; Stevens and
Sullivan, 1998; Hilfiker and Augustine, 1999; Wu and Wu, 2001).

Besides glutamatergic mechanisms, the disruption of
GABAergic transmission in the prefrontal cortex can also cause
a decrease in working memory (Enomoto et al., 2011; Bañuelos
et al., 2014). α1-AR stimulation in the medial prefrontal cortex
inhibits the inwardly rectifying potassium channels (Kirs) located
on the interneuron, leading to depolarization and an increased
calcium influx through calcium channels resulting in increased
GABAergic transmission onto the pyramidal neurons (Luo
et al., 2015b). The excitation can be enhanced when the α1-ARs
stimulation is facilitated by postsynaptic α2-ARs decreasing the
hyperpolarization of cyclic nucleotide-gated cation channels
(Zhang et al., 2013). Therefore, α1-ARs may work to improve
spatial working memory through both glutamatergic and
GABAergic mechanisms which suggests that α1-AR agonists
could be used to target enhancement of spatial working memory.

Memory Consolidation
α1-AR activation can enhance memory recall and consolidation.
The process of memory consolidation changes recent and labile
memories into long-lasting ones. The process starts in the
hippocampus but as time passes and the memory is reorganized,
the long-lasting memory is then distributed in the neocortex
(Squire et al., 2015). The α1-AR antagonist, prazosin, blocked
the norepinephrine-facilitated reconsolidation of memory during
fear conditioning (Gazarini et al., 2013) and the consolidation
of both short-term and intermediate-term memory in chickens
(Gibbs and Bowser, 2010). The mechanism for α1-ARs to
consolidate memories was suggested to be mediated through
an increase in free cytosolic calcium in astrocytes as effects
were blocked with glycolytic inhibitors (Gibbs and Bowser,
2010). Astrocytes, unlike neurons, mediate learning and memory
utilizing glycogenolysis, which the astrocyte needs for the
synthesis of glutamate (Gibbs et al., 2008; Newman et al., 2011).

The basolateral nucleus of the amygdala (BLA) can also
be involved in the storage and consolidation of memory
(Ferry and McGaugh, 2000). As cAMP signaling is mainly
involved in mediating the effects of norepinephrine on memory
consolidation, the β-ARs were previously considered the
main AR to transduce those effects (Ikegaya et al., 1997;

Ferry and McGaugh, 2000; Ferry and Quirarte, 2012). However,
both β- and α1-ARs may be needed together to mediate memory
storage in the BLA. The stimulation of cAMP through a β-AR
agonist in the BLA can be blocked with an α1-AR antagonist
and memory storage is increased with use of a synthetic cAMP
analog (Ferry et al., 1999a,b). Similarly, stimulation of α1-ARs
can potentiate β-AR-mediated cAMP formation in the BLA to
enhance memory storage (Ferry et al., 1999a,b). α1B-AR KO
mice had a decrease in latency in the passive avoidance test
suggesting deficits in memory consolidation in vivo (Knauber and
Müller, 2000b; Table 2). Research performed in amnesia patients
developed the concept of memory consolidation as time was
needed for this process to occur and greater memory deficits were
seen in retrograde amnesia patients with loss of information from
recent memory (Brown, 2002). α1-AR stimulation can reverse
cannabinoid-induced (Moshfegh et al., 2011) and scopolamine-
induced amnesia (Azami et al., 2010) and enhance recall when α1-
AR agonists were administered before electroconvulsive shocks
(Anand et al., 2001).

Dementia-Related Diseases
α1-AR functions may change and contribute to the aging process
in the loss of memory function. α1-AR protein is increased in
the aging mouse brain and with improved learning, supporting a
role for these receptors in age-related cognitive decline (Knauber
and Müller, 2000b). In patients suffering from Alzheimer’s
Disease (AD), α1-AR protein and mRNA is reduced in the
prefrontal cortex (Shimohama et al., 1986; Kalaria, 1989; Szot
et al., 2007). The mRNA levels of the α1A-AR were significantly
decreased in the prefrontal cortex with AD with no changes in
the mRNA of the α2-AR (Szot et al., 2007). There is also an
α1A-AR polymorphism that associates with AD (Hong et al.,
2001). Decreases in spatial memory that are due to the aging
process were improved in rats when the α1-AR was stimulated
(Riekkinen et al., 1997).

The 3xTG (Transgenic) is a widely used AD mouse model
that contains three genetic mutations associated with familial AD
(APP Swedish, MAPT P301L, and PSEN1 M146V) (Oddo et al.,
2003). This AD mouse model displays β-amyloid deposits, tau
immunoreactivity, cognitive impairment, and decreases in LTP
and basal synaptic transmission (Oddo et al., 2003). When the
3xTG AD mouse model was given a selective α1A-AR positive
allosteric modulator, spatial memory as assessed in the Barnes
maze was improved along with LTP (Perez, 2021). These results
suggest that selective agonists that increase α1A-AR functions
may be able to improve cognitive decline in AD.

Another cognitive disease is vascular dementia which is
the second-most frequent form of dementia after AD. α1-AR
autoantibodies with agonistic function were found in 50% of
people with dementia (Karczewski et al., 2010, 2012, 2018;
Hempel et al., 2016; Thyrian et al., 2018). While these agonistic
autoantibodies may also cause vascular damage, shown for
several neurotransmitters (Wu and Li, 2016), one interpretation
of the data consistent with the role of the α1A-AR in improving
cognition, but also speculative, is that they may develop during
dementia to compensate for the loss in receptor density as
documented by Shimohama et al. (1986) and Szot et al. (2007).
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CARDIOPROTECTION

The heart expresses both the α1A and α1B-AR subtypes with
relative expression levels depending upon the species (Steinfath
et al., 1992; Michel et al., 1994; Jensen et al., 2009a). The
α1D-AR is weakly expressed if at all in the myocyte (Price
et al., 1994; Scofield et al., 1995) but is present in vascular
smooth muscle, particularly in the coronary arteries, mesenteric
beds and the aorta (Table 1; Hrometz et al., 1999; Gisbert
et al., 2002; Chalothorn et al., 2003; Turnbull et al., 2003;
Hosoda et al., 2005; Jensen et al., 2009b; Methven et al., 2009;
Martínez-Salas et al., 2011). A KO mouse model of the α1B-
AR was created with a human placental alkaline phosphatase
inserted into the first exon to facilitate reporting (Myagmar
et al., 2017). Using this new KO model and the conventional
α1A-KO which has the β-galactosidase reporter, the authors
report a heterogenous population of the α1B and α1A-AR
subtypes in the myocytes. The α1B was present in all of
the myocytes but the α1A was present in only 60% of the
myocytes and 20% of those had very high expression levels.
This intermittent variable expression of the α1A-AR subtype
was also observed in the mesenteric arteries in the α1B/D
double KO and in the transgenic systemically expressing α1-AR
WT mice that were tagged with the green fluorescent protein
(Papay et al., 2004; McGrath, 2015). Since this intermittent
expression is only present in genetically altered mouse models,
this suggests that intermittent expression may be an artifact.
However, the current lack of highly avid α1-AR antibodies
that can be used for in vivo localization (Jensen et al.,
2009c; Böhmer et al., 2014), precludes using immunoassays to
determine if intermittent expression is an artifact. A potential
experiment that may confirm intermittent expression in a WT
mouse would be to perform autoradiography with and without
selective α1-AR blockers such as niguldipine to block the α1A-
AR subtype.

It is generally accepted that α1-AR stimulation can regulate a
positive inotropic response in the heart, although the response
can be variable and display negative inotropy depending upon
the species and the region in the heart analyzed (Endoh et al.,
1991; Nishimaru et al., 2001; Endoh, 2016). The α1A- and not
the α1B-AR is suggested to play a role in positive inotropy
(Lin et al., 2001; Ross et al., 2003; Luo et al., 2007; Janssen
et al., 2018). The systemically over-expressed CAM α1B-AR mice
had no changes in basal cardiac parameters but had autonomic
failure (Zuscik et al., 2001). The autonomic failure in the CAM
α1B-AR mice indicated reduced circulating catecholamine levels,
bradycardia, reproductive problems and weight loss. Together
with the widespread neurodegeneration and a phenotype that
was consistent with a Parkinson Disease plus syndrome, the basal
hypotension seen in these mice was likely due to the autonomic
failure rather than a direct effect on the ability to contract
vascular smooth muscle. The CAM α1B-AR mice also had a
negative inotropic response to phenylephrine (Ross et al., 2003).
Radioligand binding analysis revealed that there was decreased
α1A-AR density which was likely causing the negative inotropic
effect (Ross et al., 2003). This functional antagonism of the
positive inotropy of the α1A-AR by the α1B-AR was also found

in a mouse model of right ventricular failure (Cowley et al.,
2015). The heart-targeted WT α1B-AR also displayed negative
inotropy (Grupp et al., 1998). In contrast, both the cardiac-
targeted WT and systemically expressed CAM α1A-AR mediated
a positive inotropic response in the mouse heart (Lin et al.,
2001; Rorabaugh et al., 2005; Table 2). In human myocardium,
the α1A-AR selective agonist, A61603, had a strong positive
inotropic response representing about 70% of the β-AR response
(Janssen et al., 2018).

Heart Failure
In human heart failure, radioligand binding indicates that β1-ARs
are downregulated (Bristow et al., 1982, 1986; Rockman et al.,
2002) while α1-AR are either unchanged (Bristow et al., 1988;
Jensen et al., 2009a) or decreased (Limas et al., 1989; Zhao et al.,
1996; Fischer et al., 2008; Shi et al., 2013). MicroRNA-133 was
found to be a key control in the downregulation of the β1-AR and
several components of its signal transduction cascade in the heart
(Castaldi et al., 2014), opening up new avenues of therapeutics in
addition to β-blockers. Radioligand binding of human hearts with
end-stage dilated cardiomyopathy versus non-failing controls
revealed that while β1-ARs are downregulated as previously
reported (Bristow et al., 1982, 1986), there was also a loss in the
α1A-AR subtype receptor levels (Shi et al., 2013). The differences
in these studies of the density of α1-ARs could be the severity
of the heart failure (Limas et al., 1989), the level of sympathetic
overdrive (Zhao et al., 1996) or the etiology of heart failure
studied (ischemic versus non-ischemic) as α1-ARs are known to
increase in density during ischemia (Corr et al., 1981; Maisel et al.,
1987; Kurz et al., 1991) and could have masked the decrease in
α1A-ARs during failure.

α1-ARs also can mediate cardiac hypertrophy, an increase
in protein mass of the myocyte through an increase in protein
synthesis which remodels the heart in response to various
physiological and pathophysiological stimuli (Simpson, 1983;
Fuller et al., 1990; Ikeda et al., 1991; Perez-Aso et al., 2013;
Cotecchia et al., 2015). While both the α1A and α1B-ARs are
involved in hypertrophy, the α1A-AR seems better coupled to
enhance hypertrophic signaling pathways. The α1A-AR agonist,
A-61603, increased the size of the myocyte by increasing the
rate of protein synthesis (Autelitano and Woodcock, 1998). The
various transgenic mouse models showed variable degrees of
cardiac hypertrophy but have never been as robust as seen in
cell cultures (Table 2). Cardiac hypertrophy can be a normal
physiological response which is adaptive and improves function
while hypertrophy that is associated with fibrosis or apoptosis
is maladaptive and can lead to heart failure. Both the α1A-
and α1B-AR subtypes are required for physiological cardiac
hypertrophy (O’Connell et al., 2003) as single KO do not
have decreased heart size (Vecchione et al., 2002; Table 2).
The systemic-expressing CAM α1A displayed adaptive cardiac
hypertrophy without increasing blood pressure (Papay et al.,
2013). The heart-targeted CAM α1B mouse induced hypertrophy
(Milano et al., 1994) but displayed maladaptive remodeling
after pressure overload (Wang et al., 2000). The systemically
expressing CAM α1B also induces cardiac hypertrophy (Zuscik
et al., 2001) but was more pronounced when the mouse aged
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(Papay et al., 2013). A systemically expressing WT α1B-AR also
displayed a lower degree of hypertrophy that only manifested
in aged mice with fibrosis indicating a maladaptive cardiac
hypertrophy (Zuscik et al., 2001). KO of the α1B-AR had a loss
of NE-induced hypertrophy but not a decrease in heart size
at birth (Vecchione et al., 2002). While a heart-targeted WT
α1B with high overexpression did not induce hypertrophy, it
did induce a maladaptive dilated cardiomyopathy (Akhter et al.,
1997; Grupp et al., 1998; Lemire et al., 2001). The α1B-AR
has been suggested to regulate cardiac hypertrophy differently
than the α1A-AR and the two AR subtypes may need to be
co-activated to regulate hypertrophy (Papay et al., 2013). The
CAM α1A-AR mice selectively secreted interleukin-6 (IL-6) and
atrial naturietic factor while the CAM α1B-AR mice activated
nuclear factor-kB (Papay et al., 2013). The α1AB-AR double
KO mice also failed to develop hypertrophy when stimulated
with IL-6 but WT mice developed hypertrophy when given
IL-6. These hypertrophic signals were blocked in each mouse
model and no increase in heart weight observed when the other
AR was coactivated or when the two transgenic mouse models
were crossbred, resulting in a CAM α1A/B-AR double transgenic
mouse model (Papay et al., 2013). Hypertrophy became apparent
in the CAM α1AB-AR double transgenic when either the α1A-AR
or α1B-AR were independently stimulated (Papay et al., 2013).
These results suggest that both the AR subtypes can increase
hypertrophy through different signaling pathways. Increased
α1A-AR signaling can induce an adaptive hypertrophy consistent
with its postulated role of cardiac protection while increased
α1B-AR signaling induces a maladaptive hypertrophy in the
heart. These differences between adaptive versus maladaptive
hypertrophy may be due to differences in α1-AR mediation of
IL-6, ANF, and NF-kB signaling pathways.

α1A-AR Mediated Protection in Heart
Failure
It is postulated that selective α1A-AR stimulation may be a
potential therapeutic in heart failure (Perez and Doze, 2011;
Janssen et al., 2018) while α1B-AR stimulation, on the other
hand, is maladaptive. This is evidenced by the heart-targeted
WT α1B-AR mice induced dilated cardiomyopathy (Lemire et al.,
2001) while heart-targeted CAM α1B-AR progressed to heart
failure after pressure-overload (Wang et al., 2000; Table 2). In
contrast, the heart-targeted WT α1A-AR mice were protected
against pressure-overload induced heart failure (Du et al.,
2004) or dysfunction due to myocardial infarction (Du et al.,
2006) compared to non-transgenic controls. This mouse model
also showed increased vascular endothelial growth factor-A
expression which induced angiogenesis and resulted in increased
capillary density and blood flow to the heart, postulated to be a
contributing mechanism for cardioprotection (Zhao et al., 2015).
This phenotype of induced angiogenesis could be reproduced
when WT mice were given the α1A-AR agonist, A61603. A61603
or dabuzalgron also increased survival and prevented the damage
due to the cardiotoxic agent, doxorubicin (Beak et al., 2017;
Montgomery et al., 2017) and increased contraction in a mouse
model of right heart failure (Cowley et al., 2015).

Preconditioning and Ischemia
The high metabolic rate of the heart can cause the heart to
be sensitive to the lack of oxygen (i.e., ischemia) resulting
in injury to the muscle. α1-AR have long been known to
mediate protective effects against ischemia or preconditioning
in ischemia in several species (Banerjee et al., 1993; Kitakaze
et al., 1994; Tsuchida et al., 1994; Salvi, 2001; Rorabaugh
et al., 2005; Zhao et al., 2012; Nazari et al., 2019; Papay and
Perez, 2020). In preconditioning, short periods of ischemia
can stimulate signaling in the heart that protects the cardiac
muscle from subsequent ischemic injury. The mechanism has
been multi-faceted and attributed to PKC (Tsuchida et al., 1994;
Mitchell et al., 1995; Rehring et al., 1996; Rorabaugh et al.,
2005), mitochondrial potassium channels (Nazari et al., 2019),
mitochondrial permeability transition pore (Naderi et al., 2010),
5′-nucleotidase activity (Tsuchida et al., 1994) or angiogenesis
(Zhao et al., 2012). In recent studies, the ischemic protective
effect of the α1-AR observed in primary cardiomyocytes was also
proposed to be through the metabolic effects of glucose (Papay
and Perez, 2020). Most models of ischemic preconditioning
and particularly those by α1-ARs converge first on PKC, then
diverge to other downstream effectors (Downey and Cohen, 1997;
Simkhovich et al., 2013) and are postulated to also do so in the
human heart (Speechly-Dick et al., 1995).

α1A-AR Mediated Protection in Ischemia
The α1A-AR subtype has been shown to mediate the
cardioprotective effects of α1-ARs in ischemic preconditioning.
These studies have been performed in transgenic or KO mouse
models as blocking one subtype is still not specific enough to
perform with antagonists. The systemically expressed CAM
α1A mice were inherently preconditioned against ischemia
while the CAM α1B was not (Rorabaugh et al., 2005; Table 2).
The heart-targeted CAM α1B-AR also did not show ischemic
preconditioning (Gao et al., 2000). In corroboration, the heart-
targeted WT α1A-AR transgenic rat exhibited preconditioning
that appeared during the second window of protection that
occurs days (and not minutes) after ischemia (Du et al., 2006;
Zhao et al., 2012, 2015). There are also two reports that α1B-AR
stimulation in WT mice can induce ischemic preconditioning
involving PKC but used sensitivity to chloroethylclonidine as a
criteria to block α1B-ARs selectively (Hu and Nattel, 1995; Gao
et al., 2007). However, chloroethylclonidine was shown to not be
selective against the α1B-AR but can block all the α1-AR subtypes
(Xiao and Jeffries, 1998). Transgenic rats with myocyte-specific
α1A-AR overexpression protected the heart from permanent
coronary occlusion and during preconditioning (Zhao et al.,
2012, 2015). The α1A-AR KO or conditional cardiac KO of the
α1A-AR also had more pathological injury from myocardial
infarction after left anterior descending ligation (Yeh et al., 2017;
Zhang et al., 2020). Together, these results strongly suggest that
the α1A-AR subtype mediates ischemic protection in the heart.

Hypertension
α1-ARs are highly expressed in vascular smooth muscle (Hussain
and Marshall, 1997; Martí et al., 2005). The rise in calcium
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upon stimulation of α1-ARs in the vasculature activates myosin
light chain kinase and actin/myosin cross-bridge formation to
induce vascular muscle contraction and increased blood pressure
(Somlyo and Somlyo, 2003). The smaller resistance arteries play
a more important role in blood pressure regulation and are
under stronger control from the sympathetic nervous system.
Signals mediated through α1-AR activation have been shown to
be involved in blood pressure regulation through their control
of calcium release and sensitization and signaling through
mechanisms involving PKC, PI3K, Rho Kinase, and MAPK (Woo
and Lee, 1999; Wier and Morgan, 2003; Villalba et al., 2007;
Gutiérrez et al., 2019).

While α1-AR antagonists are effective blockers to treat
hypertension, they are used as a second line of defense
(Chobanian et al., 2003) because of the side effects, poorer
outcomes, and worsening or increased risk of heart failure
(ALLHAT Collaborative Research Group, 2000). Using KO mice,
the α1A was found to decrease blood pressure upon deletion,
but only by 15% of the full phenylephrine effect (Rokosh and
Simpson, 2002; Table 2). However, the α1B-AR KO mediated 45%
of the phenylephrine response (Cavalli et al., 1997; Vecchione
et al., 2002). Similar minor effects on blood pressure were
observed in the α1D-AR KO compared to the α1A-AR or α1B-AR
KOs (Cavalli et al., 1997; Hosoda et al., 2005). Only the α1D-AR
KO decreased basal resting levels of blood pressure (Vecchione
et al., 2002; Hosoda et al., 2005).

Since all of the α1-ARs appear to regulate blood pressure to
a certain degree, specific blockage of the α1D-AR may provide
better therapeutics to treat hypertension with less overall side
effects on other organ systems. This is because the α1B-AR
appears to have the strongest effect on blood pressure while
α1D-AR blockage would still lower blood pressure but is not
expressed or minimally expressed in the heart (Price et al., 1994;
Scofield et al., 1995) or the brain (Tanoue et al., 2002; Sadalge
et al., 2003), thereby reducing potential side effects. The α1D-
AR is also expressed and regulates contraction in the small
resistance mesenteric beds which is an important contributor
to total peripheral resistance (Christensen and Mulvany, 1993;
Hrometz et al., 1999; Gisbert et al., 2002; Methven et al., 2009).
The α1B-AR subtype controls the neuroeffector junction and
sympathetic regulation of the baroreflex response (Townsend
et al., 2004) and both the α1A- and α1B-AR subtypes regulate
physiological hypertrophy (O’Connell et al., 2003). The α1A-AR
as reviewed above is a major regulator of neurotransmission
and cognition; thus, blockage of α1A- or α1B-ARs would affect
more off targets than vascular smooth muscle. Therefore,
antagonists against the α1D-AR subtype might be more effective
therapeutically against hypertension by avoiding negative side
effects on the heart and brain but may focus effects better on
blood pressure regulation.

METABOLISM

The sympathetic nervous system is known to regulate many
aspects of metabolism. α1-ARs stimulation has long been known
to regulate gluconeogenesis in the liver (Chan and Exton, 1978;

Hue et al., 1978; García-Sáinz and Hernández-Sotomayor, 1985;
de Oliveira et al., 2013). α1-ARs also regulate somatostatin-
induced gluconeogenesis in the kidney (Dileepan et al., 1982;
Dileepan and Wagle, 1985). Gluconeogenesis generates the
synthesis of glucose from non-carbohydrate sources while
glycolysis breaks down glucose to yield energy (i.e., ATP).
Gluconeogenesis becomes important during fasting or starvation
when glucose is needed by the cell after glycogen is depleted.
α1-AR agonists also stimulate glycogen phosphorylase activity,
the rate limiting step in glycogen breakdown, which inhibits
glycogen synthesis, and increases the breakdown of glycogen
(Assimacopoulos-Jeannet et al., 1977; Aggerbeck et al., 1980;
Thomas et al., 1985; Ballou et al., 2001; de Oliveira et al.,
2013) and stimulates the release of glucagon from the pancreas
(Ahrén and Lundquist, 1987; Skoglund et al., 1987; Vieira
et al., 2004). However, recent studies have indicated that
α1-ARs regulate metabolism at a much more systemic level
as reviewed below.

α1-AR Stimulation Increases Glucose
Tolerance
α1-AR stimulation is known to increase glucose uptake in
the heart or in primary myocytes (Doenst and Taegtmeyer,
1999; Egert et al., 1999; Shi et al., 2016, 2017; Sato et al.,
2018; Papay and Perez, 2020). The systemically expressing
CAM α1A but not the CAM α1B-AR mice increased glucose
uptake into the heart and only the α1A-AR KO mice displayed
decreased glucose uptake into the heart (Shi et al., 2017).
In corroboration, the α1A-selective agonist, A61603 increased
glucose uptake into primary cardiomyocytes or human α1A-
AR transfected Chinese hamster ovary (CHO) cells (Sato et al.,
2018). While glucose uptake into the heart appears α1A-AR
specific, both the α1A- and α1B-AR subtypes mediate glucose
uptake into other tissues. The systemically expressing CAM α1A
and α1B-AR mice both increased glucose uptake into adipose
tissue and skeletal muscle while KO of the respective subtype
decreased glucose uptake into those same tissues (Shi et al.,
2017). The mechanism of α1A-AR mediated glucose uptake in the
myocyte was through PKCδ signaling that resulted in GLUT 1/4
translocation which causes their activation to transport glucose
into the cell (Shi et al., 2016).

The KO and CAM mice also displayed effects on glucose
utilization and homeostasis. Both the systemically expressing
CAM α1A- and α1B-AR mice had an increased tolerance for
glucose, lower fasting glucose levels while KO mice had poor
tolerance and high blood glucose after fasting (Shi et al.,
2017). α1-AR stimulation also increased glucose absorption
in the intestines (Mourad and Saadé, 2011). Hypothalamic
central administration of prazosin increased plasma glucose
levels (Murashita et al., 2007; Ikegami et al., 2013b) and
glucose intolerance (Ikegami et al., 2013a). When fatty acid
oxidation was suppressed centrally in the brain, α1-ARs
stimulated the counter-regulatory increases in plasma glucose
levels (Sajapitak et al., 2008). A metabolomic analysis in a
neuronal cell culture also showed that α1-AR stimulation
results in lower levels of carbohydrates (Wenner et al., 2016).
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These results are consistent with other studies in the α1B-AR
KO mice which displayed insulin resistance and dysfunctional
glucose homeostasis (Burcelin et al., 2004) and the use of
prazosin treatment, an α1-AR antagonist, which increases
risk of metabolic syndrome and high fasting plasma glucose
levels in patients with benign prostatic hyperplasia (Lee et al.,
2013). The mechanism of the increase in glucose tolerance
and lowering of plasma glucose levels is likely due to the
increased utilization of glucose through uptake and oxidation
in various organs.

α1-AR Mediated Glucose Oxidation in the
Heart
α1-AR stimulation can also directly increase glucose oxidation
in both normal and ischemic primary adult myocytes performed
by measuring the rate of 14C-CO2 production using 14C-glucose
as a substrate (Papay and Perez, 2020). This study confirmed
that the glucose uptake into the heart also drives the oxidation
of glucose for energy utilization to the heart. Stimulation of
glucose oxidation in the heart improves the recovery from
damage during ischemia (Dyck et al., 2006; Ussher et al., 2012;
Masoud et al., 2014; Li Y. et al., 2017). Ischemia in the heart
can increase glucose uptake by increasing the translocation of
GLUT 1/4 (Egert et al., 1999), as this was also shown to be
mediated by the α1A-AR (Shi et al., 2016). The α1-AR mediated
glucose oxidation in primary myocytes was also blocked by PKC
and AMPK inhibitors (Papay and Perez, 2020) consistent with
the role of PKCδ in translocating the glucose transporters in
the heart by the α1A-AR (Shi et al., 2016). α1-AR stimulation
increased glucose uptake in the L6 skeletal muscle cell line
also through an AMPK pathway (Hutchinson and Bengtsson,
2006). AMPK is an energy sensor that can regulate the rate of
glucose and fatty acid uptake and oxidation according to the
needs of the cell. AMPK signaling is cardioprotective during
heart failure by switching the energy production in the heart
from fatty acid oxidation to glucose oxidation (Kim et al., 2012).
AMPK also can increase glucose uptake during ischemia to
prevent post-ischemic cardiac damage and dysfunction (Russell
et al., 2004; Kim et al., 2011). While α1A-AR mediated ischemic
preconditioning was mediated through PKC (Rorabaugh et al.,
2005), PKC was also shown to mediate its protection against
ischemic damage through AMPK (Wang et al., 2011). These
results suggest that glucose uptake and subsequent oxidation in
the heart may be α1A-AR specific, signal through PKC/AMPK
activation and may mediate α1A-AR’s cardioprotective effects
during ischemia and heart failure.

α1-AR Mediated Glucose Metabolism in
Other Tissues
α1-ARs are the main receptors that regulate the control of
hepatic glucose metabolism in mice (Chu et al., 2000; Miyamoto
et al., 2012; de Oliveira et al., 2013). α1-AR stimulation
increased glucose uptake into L6 muscle cells (Hutchinson
and Bengtsson, 2005, 2006) and C2C12 skeletal myoblasts (Liu
et al., 2001). α1-AR stimulation also increases glucose uptake
into brown and white adipocytes (Faintrenie and Géloën, 1998;

Cheng et al., 2000; Boschmann et al., 2002; Flechtner-
Mors et al., 2002, 2004; Chernogubova et al., 2005). The
sympathetic nervous system enhances glucose uptake into
human adipocytes independently of insulin action through
the α1-AR (Flechtner-Mors et al., 2002, 2004; McCarty,
2004). In obese people that have insulin resistance, α1-
AR stimulation may provide a critical alternative pathway
for glucose uptake.

α1-ARs Mediated Fatty Acid Oxidation
The KO and transgenic mice of the α1-AR subtypes were used
to discern effects of the specific subtypes on general whole-body
metabolism. Systemically expressing CAM mice were assessed by
indirect calorimetry and found that both CAM α1A- and α1B-
AR mice decreased the respiratory exchange ratio (RER) (ratio
of CO2 production and O2 consumption) which indicated an
increase in whole body preference to metabolize fatty acids as
a substrate (i.e., fatty acid oxidation) while the KO mice from
both subtypes preferred to burn carbohydrates and increased
the RER (Shi et al., 2017). It is likely that α1-AR stimulation
increases fatty acid oxidation in the skeletal muscle as that
muscle utilizes 40–50% of a body’s whole energy metabolism.
While there is a report that prazosin can increase angiogenesis in
skeletal muscle resulting in increased capillarization to improve
the diffusion of glucose into the muscle and may increase glucose
oxidation due to substrate availability (Akerstrom et al., 2014),
prazosin’s effect was due to improved blood flow and not to
GLUT 1/4 translocation.

Both systemically expressing CAM α1A- and α1B-AR mice
displayed increased plasma levels of leptin while KO mice
decreased leptin levels (Shi et al., 2017). In obese humans, α1-AR
blockade reduces leptin levels (Ihara et al., 2006). While leptin
can also directly increase glucose oxidation in the absence of
insulin in skeletal muscle through a neural hypothalamic β-AR
mechanism (Nevzorova et al., 2006; Glund et al., 2007; Shiuchi
et al., 2009; Minokoshi et al., 2012; Cadaret et al., 2017), leptin
mainly increases fatty acid oxidation in skeletal muscle and the
liver through α1-AR stimulation of AMPK activity (Minokoshi
et al., 2002, 2012; Miyamoto et al., 2012).

α1-ARs can also couple to peroxisome proliferator-activated
receptor-delta (PPARs) to regulate fatty acid oxidation and
utilization (Tanaka et al., 2003). PPAR subtypes β/δ are nuclear
receptors and serve as sensors of fatty acid levels. They bind
and are activated by fatty acids and their derivatives and
activate transcription factors to regulate metabolism (Poulsen
et al., 2012). Using midodrine to non-selectively stimulate
α1-ARs, α1-ARs activated PPARs and AMPK to increase
oxidative phosphorylation in rat skeletal muscle or in C2C12
skeletal muscle cells (Lee et al., 2020). PPARs are crucial to
maintain normal cardiac function and its energy requirements.
Cardiac-targeted KO of PPARδ decreases basal fatty acid
oxidation leading to cardiac dysfunction, lipid accumulation
and heart failure (Cheng et al., 2004). Overexpression of a
CAM PPARβ/δ leads to increased levels of fatty acid oxidation
(Barak et al., 2002).

Tissue transglutaminase (TG2) is an ubiquitous and multi-
functional protein and enzyme with regulatory crosslinking
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functions in cell adhesion and the cytoskeleton but also has
GTP hydrolyzing activities (Fesus and Piacentini, 2002; Eckert
et al., 2014). Phenylephrine, an α1-AR non-selective agonist
was injected into TG2 KO mice and resulted in a lowering of
the RER indicating that the mice were burning more whole-
body fatty acids than glucose when compared to normal mice
with intact TG2 (Lénárt et al., 2020). α1-AR stimulation also
resulted in lower organ damage particularly in the heart but
also in the lung, liver, kidney, and skeletal muscle and a weaker
vasoconstriction response compared to normal mice (Lénárt
et al., 2020). When the same mice were given a β3-AR agonist,
the RER was lowered and organ damage was changed to the
same extent in both TG2 KO or normal mice (Lénárt et al.,
2020). A β3 agonist lowers the RER because of its high density in
adipose tissue (Ferrer-Lorente et al., 2005). These results concur
with the whole-body indirect calorimetry studies that showed
that the systemically expressing CAM α1-AR mice burned more
fatty acids (Shi et al., 2017) and protected the heart from ischemic
damage (Rorabaugh et al., 2005; Shi et al., 2016). TG2 is a protein
ubiquitously found in cells and can function in both protein
cross-linking and bind GTP to act as a G-protein transducer at
α1-ARs (Nakaoka et al., 1994; Baek et al., 1996; Feng et al., 1996;
Kang et al., 2004).

α1-AR stimulation can increase the rate of lipolysis in
obese individuals (Flechtner-Mors et al., 2002) increasing the
availability of fatty acids. α1-ARs stimulation also increase
fatty acid oxidation in the liver or in hepatocytes (Sugden
et al., 1980; Kosugi et al., 1983; Oberhaensli et al., 1985; de
Oliveira et al., 2013) and during a high-fat diet can reduce
hepatic steatosis (i.e., fatty liver disease) (Nakade et al., 2020).
Using a metabolomic analysis, the α1A-AR selective agonist,
A61603, produced a reduction in cardiac polyunsaturated
fatty acids (Willis et al., 2016). The systemically expressed
CAM α1A-AR mice displayed significantly decreased fasting
plasma triglycerides while α1A-AR KO displayed increased
levels of triglycerides (Shi et al., 2017). In contrast, α1-AR
blockers such as prazosin or doxazosin have been reported to
lower triglycerides and cholesterol but increase high density
lipoproteins in humans (Ferrara et al., 1986; Weinberger, 1986;
Trost et al., 1987). The reason for this discordance is unknown.
However, α1-AR quinazoline-based antagonists and particularly
prazosin and doxazosin have known non-α1-AR mediated off-
target effects (Benning and Kyprianou, 2002; Lin et al., 2007;
Isgor and Isgor, 2012).

PHARMACOLOGICAL INTERVENTIONS

Development of α1-AR
Subtype-Selective Ligands
Development of selective α1-AR subtype ligands has not been
a focus in the pharmaceutical industry because of the ALLHAT
Collaborative Research Group (2000) clinical trials and the major
cardiovascular events that occur when α1-AR antagonists are
used. There are still no selective blockers or agonists for the
α1B-AR, and while BMY 7378 is somewhat selective for the

α1D-AR (Goetz et al., 1995), there is no clear clinical target. α1A-
AR antagonists have fared better in drug development because
they target prostate and lower urinary tract problems which
often affect men with increasing age and who also have high
blood pressure; thus, tackling two problems with one therapeutic
(Van Asseldonk et al., 2015). However, these therapeutics, as are
all α1-AR antagonists, are contraindicated in people with heart
problems (O’Connell et al., 2013). Recent studies also suggest
that α1-AR antagonists increase mortality rates in hospitalized
patients with Covid-19 (Rose et al., 2020).

The above review indicates that the α1A-AR subtype may be
a target for drug development for cardioprotection and cognitive
enhancement in dementia-type diseases. The potential for α1A-
AR agonists to be used to treat these diseases has a major
problematic side effect of increasing blood pressure (Woo and
Lee, 1999; Wier and Morgan, 2003; Villalba et al., 2007; Gutiérrez
et al., 2019). This drawback has limited the development of α1-
AR-based therapeutics by pharmaceutical companies (Fordyce
et al., 2015). However, there are two avenues of development that
are recently being used to circumvent the blood pressure effect
of α1A-AR agonists. The first one is the use of the imidazoline
pharmacophore instead of the endogenous phenethylamine
pharmacophore that is possessed by norepinephrine, epinephrine
and several other α1-AR agonists (Figure 1).

Imidazolines
In general, imidazolines have better binding and functional
agonistic selectivity for α2-ARs and reduce blood pressure by
decreasing norepinephrine release at the α2A-AR autoreceptor
(Ruffolo et al., 1983). However, in the early days of α1-AR agonist
drug development, it was noted imidazolines interacted with
the α1-ARs in a different way structurally than with α2-ARs.
The Easson-Stedman hypothesis states that adrenergic agonists
that are chiral by possessing an asymmetric hydroxyl-substituted
benzylic carbon atom will have higher binding affinity and
potency for the R(–) (i.e., right hand) isomer when compared
to the S(+) (i.e., desoxy) isomer (Easson and Stedman, 1933).
Imidazoline binding to α1-ARs did not adhere to the Easson-
Stedman hypothesis that held with phenethylamines, such as
norepinephrine (Patil et al., 1974; Ruffolo et al., 1980, 1983;
Hieble et al., 1986). While most imidazolines that selectively bind
to the α2-AR are agonists, they become weak antagonists at the
α1-AR (Ruffolo and Waddell, 1982). During drug development,
specific substitutions off the imidazoline pharmacophore can
convert imidazolines from α2-AR agonists to α1-AR agonists
(Ruffolo et al., 1980; Hieble et al., 1986; Knepper et al., 1995).
Furthermore, subsequent studies indicated that imidazolines that
had higher affinity for the α1-AR than the α2-AR had agonist-
selectivity for the α1A-AR subtype in both binding affinity and
function compared to the other two α1-AR subtypes, the α1B-
or α1D-AR (Minneman et al., 1994). Structure-function analysis
revealed that imidazolines, while agonists at the α1A-AR, interact
with amino acid residues closer to the cell surface in the α1A-
AR binding pocket, similar to α1-AR antagonists, confirming the
differences seen with the Easson-Stedman hypothesis (Waugh
et al., 2001). These differences in binding also explained why most
imidazolines are partial and not full agonists at the α1-ARs.
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FIGURE 1 | Chemical structures for common α1-AR agonists. Ligands such as norepinephrine that contain a phenyl, two-carbon ethyl, and amine group in their
structural backbone are referred to as phenethylamines. Ligands that contain an imidazole ring in its structural backbone instead of the phenyl ring are referred to as
imidazolines.

There are several commercially available imidazolines, such
as cirazoline and A61603, that are selective for the α1A-AR
versus the α1B- and α1D-AR subtypes and with lower affinity
against the α2-AR. An analog of cirazoline and an α1A-AR partial
agonist, RO 115–1240 and later by the commercial product
dabuzalgron, was shown to reduce stress urinary incontinence
without increasing blood pressure (Blue et al., 2004; Musselman
et al., 2004). The therapeutic index is wide enough that R0 115–
1240 can contract bladder smooth muscle at a much lower dose
than required to contract vascular smooth muscle by the α1A-AR.
This is possible because of the higher receptor density of the α1A-
AR in the urinary tract compared with vascular smooth muscle
and its partial agonist activity that allows reflex mechanisms to
control changes in blood pressure (Ford et al., 1996; Walden
et al., 1997; Kava et al., 1998; Musselman et al., 2004; Michel
and Vrydag, 2006). While all of the above are indeed possible
mechanisms for α1A-AR agonists to avoid increasing blood
pressure, imidazolines were subsequently shown to have bias
signaling or agonist trafficking which can lead to lower efficacy
of the signaling pathways known to increase blood pressure.
Imidazolines induce a more robust cAMP signaling response

versus the inositol phosphate signal which increases calcium
release to cause the vascular smooth muscle contraction (Evans
et al., 2011; da Silva et al., 2017). Confirming the role of α1A-
AR-selective imidazolines in cardioprotection, dabuzalgron was
shown to protect against cardiac damage induced by doxorubicin
(Beak et al., 2017; Montgomery et al., 2017) and A61603 increased
inotropy in a mouse model of right heart failure (Cowley et al.,
2015), but blood pressure was not assessed at the dosage used
in these experiments. Confirming the role of α1A-AR-selective
imidazolines in enhancing cognition, cirazoline, which crosses
the blood brain barrier, was shown to increase cognition in
normal mice (Doze et al., 2011).

Allosteric Modulators
A second avenue of drug development for α1A-AR agonists with
a wide therapeutic index to avoid increases in blood pressure
are allosteric modulators. Allosteric modulators offer greater
selectivity in both binding and signaling than conventional
ligands which bind to the natural endogenous site on the
receptor (i.e., orthosteric) (Christopoulos, 2002). Besides greater
selectivity because they bind in a different place than orthosteric
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agonists that is non-conserved between subtypes of the receptor,
allosteric modulators offer many other benefits in therapeutics.
These are the saturability of its binding site (i.e., ceiling effect)
and conformational or probe bias that can alter the receptor to
induce a bias in signaling and activation properties but only when
the receptor is already occupied with a specific ligand or probe
(Christopoulos, 2002).

Allosteric modulators are classified by their ability to
modulate function. Positive allosteric modulators (PAMs)
increase a receptor’s functional response while negative allosteric
modulators (NAMs) decrease the functional response. There are
also neutral or silent allosteric modulators (SAMs) that bind
to the receptor and display no measurable changes in function
(Lindsley et al., 2016) but can block the effects of PAMs or NAMS
(Rodriguez et al., 2005). There are now many GPCR allosteric
modulators that have been developed (Chen et al., 2008; Wold
et al., 2019; Zhou and Cunningham, 2019; Fasciani et al., 2020)
with several in clinical trials or with FDA approval (Wold et al.,
2019). The HIV entry inhibitor maraviroc is the most known
clinically used GPCR allosteric modulator against the CCR5
receptor (Maeda et al., 2012).

There are a few NAMs that have been characterized for the
α1-AR but have not been developed for clinical use (Leppik
et al., 2000; Sharpe et al., 2003; Chen et al., 2004; Lima et al.,
2005; Ragnarsson et al., 2013; Campbell et al., 2017). We have
developed the first PAM of the α1-ARs with selectivity at the
α1A-AR subtype. It has the imidazoline pharmacophore and can
cross the blood brain barrier in sufficient concentration to cause
neurological effects without increased blood pressure (Perez,
2021). We have demonstrated its ability to significantly increase
LTP in a mouse model of AD along with increases in cognitive
behavior using the Barnes maze and fear-conditioning tests. This
was achieved using a 10-month dosing scheme and studies are
underway to test effects of this compound in a dose-efficacy
preclinical trial for 3 months (Perez, 2021).

Therapeutic Autoantibodies and
Vaccines Against α1-ARs
There has been recent work in therapeutic vaccines directed
at the α1-AR subtypes and their roles in hypertension and
cardiovascular disease. Autoantibodies against the α1-ARs were
first found in patients over 20 years ago with severe hypertension
(Fu et al., 1994; Luther et al., 1997; Wenzel et al., 2008). A vaccine
made against the second extracellular loop of the α1D-AR was
found to have antagonistic behavior (Li et al., 2019). The vaccine
was injected into spontaneously hypertensive rats (SHR) with
or without pre-treatment with NG-nitro-L-arginine methyl ester
(L-NAME) to generate NO and to reduce blood pressure (Li
et al., 2019). This α1D-AR vaccine reduced the systolic blood
pressure up to 15 mmHg in the SHR group and up to 29 mmHG
in the SHR + L-NAME group. This vaccine also prevented
cardiac hypertrophy and fibrosis, vascular remodeling, and renal
injury even better than compared to treatment with prazosin,
suggesting that the antibody has blocking activity. There is one
commercially available α1D-AR antagonist, BMY7378 (Goetz
et al., 1995), but is not sufficiently selective to avoid blocking

the other α1-AR subtypes for therapeutic use. Because of the
unique amino acid sequence used in a non-conserved region of
the second extracellular loop of the receptor, vaccines against the
α1D-AR subtype would be highly selective and avid to regulate
the blood pressure response and avoid blocking the other α1-AR
subtypes.

However, the vast majority of autoantibodies are associated
with agonistic activity resulting from a rise in intracellular
calcium, and postulated to result in a vasoconstrictive effect
(Bkaily et al., 2003; Karczewski et al., 2010; Yan et al.,
2014). However, one controlled clinical study indicated that
hypertensive patients with α1-AR autoantibodies displayed
normal cardiovascular responses to α1-AR stimulation and
removal of α1-AR autoantibodies by immunoadsorption did not
alter that response (Schroeder et al., 2012).

While the autoantibody against the α1D-AR appears
antagonistic, several autoantibodies have been developed or
discovered against the first or second extracellular loop of
the α1-AR appear to be agonistic in behavior (Zhou et al.,
2008; Karczewski et al., 2012; Hempel et al., 2016; Wallukat
et al., 2020). While developing these autoantibodies for
cardioprotective effects for the α1A-AR may be tempting,
they may not be regulated by the normal desensitization and
negative feedback mechanisms common in GPCRs to turn off
or wane the signal, resulting in abnormal and non-physiological
signaling and proliferation (Zhou et al., 2008; Karczewski
et al., 2018; Becker et al., 2019; Wallukat et al., 2020). This
abnormal signaling and proliferation may account for the
vascular damage that many autoantibodies also impart (Zhou
et al., 2008; Karczewski et al., 2012, 2018; Becker et al., 2019;
Wallukat et al., 2020). Autoantibodies against the α1-AR have
also been associated with coronary heart disease (Thyrian et al.,
2018), cardiac remodeling and dysfunction (Zhou et al., 2005; Li
T. et al., 2017), pre-eclampsia (Ma et al., 2013), thromboangiitis
obliterans (Buerger’s Disease) (Klein-Weigel et al., 2014), AD and
vascular dementia (Karczewski et al., 2012, 2018; Hempel et al.,
2016), and prostate cancer (Wallukat et al., 2020). Therefore,
both agonistic and antagonistic autoantibodies against the
α1-AR subtypes would need to be thoroughly analyzed for
off target effects.

SUMMARY

α1-ARs are part of the adrenergic family of sympathetic control
and have long been known to regulate blood pressure, smooth
muscle contraction and cardiac hypertrophy. In recent work,
α1A-AR stimulation also mediates adaptive effects and signals
in the heart that lead to protective outcomes against ischemia
and heart failure. They are also highly expressed in the cognitive
centers of the brain and stimulation of α1-ARs, particularly
the α1A-AR, can increase both short-term as well as LTP
leading to increased learning and memory functions. With its
ability to increase adult neurogenesis, there is a potential for
α1A-AR agonists or positive allosteric modulators to treat AD
and to protect the heart at the same time. α1-AR stimulation
also mediates several aspects of whole-body and organ-specific
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metabolism to regulate glucose uptake, gluconeogenesis, glucose
breakdown, lipolysis, and fatty acid oxidation for energy
production. The regulation of cardiac metabolism by the α1A-
AR is likely a contributing factor for its protective effects in
the heart. For pharmacological interventions, it is suggested that
therapeutics that focus on α1A-AR agonism be developed. To
avoid the potential side effects on blood pressure, the imidazoline
rather than the phenethylamine pharmacophore should be of
primary focus for drug discovery. Several α1A-AR imidazoline-
based agonists have been used in preclinical studies and allosteric
agonists that will not increase blood pressure are now in
development for heart failure and AD.
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