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Abstract

Juvenile dermatomyositis (JDM) is a chronic inflammatory myopathy and vasculopathy

driven by genetic and environmental influences. Here, we investigated the genetic under-

pinnings of an analogous, spontaneous disease of dogs also termed dermatomyositis

(DMS). As in JDM, we observed a significant association with a haplotype of the major

histocompatibility complex (MHC) (DLA-DRB1*002:01/-DQA1*009:01/-DQB1*001:01),

particularly in homozygosity (P-val = 0.0001). However, the high incidence of the haplo-

type among healthy dogs indicated that additional genetic risk factors are likely involved

in disease progression. We conducted genome-wide association studies in two modern

breeds having common ancestry and detected strong associations with novel loci on

canine chromosomes 10 (P-val = 2.3X10-12) and 31 (P-val = 3.95X10-8). Through whole

genome resequencing, we identified primary candidate polymorphisms in conserved

regions of PAN2 (encoding p.Arg492Cys) and MAP3K7CL (c.383_392ACTCCACAAA>
GACT) on chromosomes 10 and 31, respectively. Analyses of these polymorphisms and

the MHC haplotypes revealed that nine of 27 genotypic combinations confer high or mod-

erate probability of disease and explain 93% of cases studied. The pattern of disease risk

across PAN2 and MAP3K7CL genotypes provided clear evidence for a significant epi-

static foundation for this disease, a risk further impacted by MHC haplotypes. We also

observed a genotype-phenotype correlation wherein an earlier age of onset is correlated

with an increased number of risk alleles at PAN2 and MAP3K7CL. High frequencies of

multiple genetic risk factors are unique to affected breeds and likely arose coincident with

artificial selection for desirable phenotypes. Described herein is the first three-locus asso-

ciation with a complex canine disease and two novel loci that provide targets for explora-

tion in JDM and related immunological dysfunction.
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Author summary

Juvenile dermatomyositis (JDM) is an autoimmune disease of the skin and muscle influ-

enced by both genetic and environmental components. Although genes independent of

the MHC are thought to contribute to disease pathogenesis, their identification has been

complicated by a paucity of biological samples, disease heterogeneity, and genetically

diverse subjects. A naturally occurring inflammatory disease of domestic dogs, also

termed dermatomyositis (DMS), is analogous to JDM and is the only animal model avail-

able for genetic study. We first determined that, as in JDM, a particular MHC haplotype

confers susceptibility to DMS. Capitalizing on the genetic isolation of dog breeds and

extremely low MHC diversity within affected breeds, we used multibreed genome-wide

association studies to identify two novel loci. Through genome resequencing and addi-

tional genotyping, we uncovered highly associated polymorphisms in conserved positions

of PAN2 and MAP3K7CL. Analysis of three-locus genotypes revealed uniquely high fre-

quencies among affected breeds and nine allelic combinations that confer moderate or

high risk for DMS. The pattern of disease probability illustrates the presence of gene-gene

interaction, as well as an inverse correlation between age of onset and number of risk

alleles. This study highlights the utility of canine models for mapping susceptibility loci in

complex diseases and detecting patterns of genetic interactions obscured in diverse

human populations.

Introduction

Juvenile dermatomyositis (JDM) is an autoimmune vasculopathy that causes a characteristic

skin rash (heliotrope rash across the eyelids and Gottron’s papules on the bony prominences)

and proximal muscle weakness [1]. It is the most frequently diagnosed childhood inflamma-

tory myopathy, comprising 80% of all cases [1] and affecting 3.2 in every million children

between the ages of 2 and 17 within the USA [2]. Prognosis is positively correlated with early

diagnosis and swift treatment with corticosteroids and/or immunosuppressants [1,3]. While

treatment of JDM is much improved overall, many children still suffer from chronic flare-ups

[1].

Though the etiology is unknown, JDM is thought to be triggered by exposure to a virus or

other environmental agent. Manlhiot et al. [4] reported that 71% of JDM patients had a clinical

history consistent with infection prior to symptoms. Investigations into the class II major

histocompatibility complex (MHC), TNF, and IL1 identified several susceptibility and protec-

tive alleles, but their collective contribution to pathogenesis is poorly understood [5–8]. Recent

genome-wide association studies (GWASs) to identify additional susceptibility loci in JDM

confirmed a strong association with the MHC but failed to detect novel major risk factors,

likely because of a paucity of biological samples and genetically heterogeneous populations

[9,10].

In domestic dogs, an inflammatory vasculopathy of the skin and muscle, also termed

dermatomyositis (DMS), is clinically, histologically, and immunologically similar to JDM and

provides the only animal model available to study genetic risk factors [11–16]. The earliest

clinical signs of DMS are crusting and scaling on the face, ears, tail tip, and/or across the bony

prominences of the limbs and feet [17–19] (S1 Fig). Alopecia and more extensive skin lesions

may develop over time, resulting in dermal scarring associated with erythema and mottled pig-

mentation [17,19]. Lesions persist for weeks to months, and may or may not chronically recur
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[17]. Muscle wasting manifests as atrophy of the head musculature; difficulty eating, drinking,

and swallowing; and an atypical, high-stepping gait [17,19].

Similar to JDM, DMS is an immune-mediated disease [13,18,20] that typically develops fol-

lowing an environmental trigger, such as vaccination or viral infection, and is exacerbated by

subsequent stressors like exposure to UV light [13,17,21,22]. Anecdotal reports indicate that

rabies vaccination, parvovirus infection, owner surrender, or mistreatment commonly precede

disease onset. Consistent with an environmental trigger, age at onset is variable with many

cases occurring between seven weeks and six months of age, but others not developing until

well into adulthood [17–19,23].

DMS is diagnosed almost exclusively in the genetically [24] and phenotypically similar col-

lie and Shetland sheepdog breeds, suggesting the presence of a strong heritable component(s)

arising from ancestors common to both breeds. A 1980s study of disease transmission in the

collie eliminated simple Mendelian modes of inheritance [14]. In two test matings, an affected

male collie sired litters from an affected collie and a healthy Labrador retriever. All six collie

puppies were affected with variable degrees of severity, while three of the four mixed breed

puppies developed milder forms of DMS. Retrospective pedigree analyses of the collie sire and

dam showed a complete absence of affected ancestors [14].

The availability of a naturally-occurring canine model provides a new opportunity for the

identification of genetic risk factors of JDM. The conserved genomic backgrounds of geneti-

cally isolated dog breeds have enabled detection of risk loci in complex diseases that are often

obscured by heterogeneity within human cohorts [25–30]. Here, we evaluated class II MHC

haplotypes, performed multibreed GWASs, and generated whole genome and transcriptome

sequencing data to dissect the genetic basis of DMS. We uncovered common polymorphisms

of the MHC and two novel loci that are strongly associated with DMS, as well as patterns of

allelic inheritance that explain 93% of cases studied. A genetic test is now available to deter-

mine the likelihood of a dog developing DMS and to facilitate breeding decisions that avoid

progeny having high-risk genotypes.

Results and discussion

Association of a major histocompatibility complex haplotype

Given the involvement of MHC genes in JDM, we first determined alleles of the highly poly-

morphic canine MHC class II dog leukocyte antigen (DLA) genes: DLA-DRB1, -DQA1, and

-DQB1. Two locus (DLA-DRB1 and -DQB1) and three locus (DLA-DRB1, -DQA1, and -DQB1)

haplotypes were first generated for 50 collies and 117 Shetland sheepdogs, respectively.

Because all observed haplotypes contained a unique DLA-DRB1 allele, the 355 remaining dogs

were genotyped for this locus only and the haplotype was inferred (Table 1).

We observed remarkably low DLA diversity among collies, with only three haplotypes

present in 225 collies worldwide. This lack of heterogeneity precluded detection of associa-

tions with DMS, as 91% of collies were homozygous for the haplotype DLA-DRB1�002:01/-
DQA1�009:01/-DQB1�001:01. In 297 Shetland sheepdogs, we identified two predominant

haplotypes, 002:01/009:01/001:01and 023:01/003:01/005:01. The former was over-repre-

sented among cases (P-val = 0.0010, OR = 2.20), primarily because of increased homozygos-

ity (P-val = 0.0001, OR = 2.98). We therefore conclude that 002:01/009:01/001:01 is a risk

factor for DMS and that homozygosity confers increased susceptibility. Under the assump-

tion that the causal alleles derive from an ancestor common to both breeds, we extrapolate

the observed DLA risk to collies. The high frequency of the DLA risk haplotype in both pop-

ulations indicates that additional loci must influence disease progression.

Novel susceptibility loci in a canine model of juvenile dermatomyositis
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Genome-wide association studies reveal signals on chromosomes 10 &

31

We conducted an independent GWAS for each breed, using a total of 97 cases (31 collies, 66

Shetland sheepdogs), 68 controls (23 collies, 45 Shetland sheepdogs), and 98,520 SNPs after fil-

tering. In collies, a single signal (P-val = 1.47X10-8) composed of 17 SNPs at the centromeric

end of chromosome 10 exceeded Bonferroni significance (Fig 1A). In Shetland sheepdogs, this

Table 1. Frequency of DLA-DRB1/-DQA1/-DQB1 haplotypes in collies and Shetland sheepdogs.

COLLIE

DLA-DRB1*/-DQA1*/-DQB1* Cases (2n = 80) Controls (2n = 370) OR 95% CI P-value

002:01/009:01/001:01 74 353 0.59 0.23–1.56 0.40

006:01/050:11/007:01 0 3 - - -

015:01/009:01/001:01 6 14 2.06 0.77–5.54 0.23

SHETLAND SHEEPDOG

DLA-DRB1*/-DQA1*/-DQB1* Cases (2n = 184) Controls (2n = 410) OR 95% CI P-value

002:01/009:01/001:01 † 158 301 2.20 1.38–3.52 0.0010

015:01/009:01/001:01 1 6 0.37 0.04–3.08 0.4454

023:01/003:01/005:01 24 102 0.45 0.28–0.73 0.0011

Other haplotypes 1 1 - - -

The number of times each haplotype was observed is reported for cases and controls with odds ratios (OR), 95% confidence intervals, and Fisher’s exact

two-tailed P-values. Significant statistics are bolded.
†71 out of 92 cases and 109 out of 205 controls were homozygous for the 002:01/009:01/001:01 haplotype (OR = 2.98, 95% CI = 1.70–5.21, P-

val = 0.0001).

doi:10.1371/journal.pgen.1006604.t001

Fig 1. Manhattan plots of DMS GWASs in two breeds. (A) Collies: 31 cases and 23 controls. (B) Shetland sheepdogs: 66 cases and 45 controls. The

–log10P-values (y-axis) for 98,520 Illumina SNPs are plotted against chromosome position (x-axis). The threshold for Bonferroni significance is shown as a

black horizontal line. The P-value and position (canFam3) of the lead SNPs are reported.

doi:10.1371/journal.pgen.1006604.g001

Novel susceptibility loci in a canine model of juvenile dermatomyositis

PLOS Genetics | DOI:10.1371/journal.pgen.1006604 February 3, 2017 4 / 20



association was replicated (P-val = 2.56X10-7), and a second signal (P-val = 1.83X10-9) com-

posed of 11 SNPs surpassing Bonferroni significance was detected on chromosome 31 (Fig

1B). Both associations persisted in a combined breed analysis (chr10: P-val = 2.3X10-12, chr31:

P-val = 3.95X10-8) (S1 Table, S2 Fig); although the breeds possessed a common haplotype on

chromosome 31, the Shetland sheepdogs appeared to drive this association. No associated

SNPs were detected near the MHC loci on chromosome 12, likely a result of high homogeneity

in our cohort and poor SNP coverage on the array [25].

On chromosome 10, 97% of all affected dogs were homozygous or heterozygous for the risk

alleles of the lead SNPs. On chromosome 31, 88% of affected Shetland sheepdogs, but only

39% of affected collies, shared the risk alleles of the lead SNPs. As neither locus appeared to be

independently necessary for disease development, we surveyed the extent of regional linkage

disequilibrium (LD) to demarcate candidate intervals of ~1.33 Mb on chromosome 10 (Fig

2A) and ~696 kb on chromosome 31 (Fig 2B), harboring ~65 and 6 genes, respectively. The

large size of the chromosome 10 region is attributed to lower recombination rates near the

centromere and a dearth of informative SNPs.

Identification of candidate variants in PAN2 and MAP3K7CL

Whole genome resequencing was performed for four affected dogs (three collies and one Shetland

sheepdog) and two unaffected collies, resulting in 17X to 41X coverage. Variants were filtered for

those lying within our delineated intervals (chr10:1–1,333,693; chr31:24,026,411–24,722,836) and

following the inheritance pattern of the most significantly associated SNPs in the affected dogs

(S2 and S3 Tables). Five intergenic and two intronic variants were unique to these breeds (i.e., not

present in the Boxer reference genome, dbSNP, or 27 whole genome sequences from 16 other

breeds); however, most were in repetitive regions and none were in conserved positions. Thus,

the pathogenic variants were likely to be common polymorphisms, so we next prioritized variants

within predicted exons and splice sites of genes expressed in skin for further study.

To confirm exon/intron boundaries predicted by Ensembl 79 and establish expression of

variants in affected tissue, we generated RNAseq data. We obtained a minimum of 89 million

reads per tissue from active skin lesions of two affected dogs (one collie and one Shetland

sheepdog) and skin from one unaffected Australian shepherd dog. All genes expressed in skin

within the candidate regions were also expressed in affected tissues. Seventeen exonic variants

were expressed; seven of these were nonsynonymous and evaluated using in silico programs

[31–33] (Table 2).

We genotyped a subset of our mapping population for three nonsynonymous SNPs on chro-

mosome 10 (ANKRD52 g.565958G>C, PAN2 g.627760G>A, and STAT6 g.1239562G>A) that

were predicted to be deleterious or probably damaging by more than one in silico program. The

ANKRD52 and PAN2 variants were more strongly associated with DMS than the lead SNP. These

variants were in perfect linkage disequilibrium with each other; however, PAN2 g.627760G>A was

assigned damaging scores with higher confidence by in silico programs (Table 2). We therefore

focused further studies on PAN2 g.627760G>A, encoding p.Arg492Cys (XP_531635.3), although

ANKRD52 cannot be excluded. On chromosome 31, we genotyped Shetland sheepdogs for a SNP

(g.24132343A>C) and an indel (c.383_392ACTCCACAAA>GACT, XM_846337.4), both located

in a 50 non-coding exon of MAP3K7CL. Only the indel was associated with DMS (Table 2, S3 Fig).

In an expanded, combined population (132 affected and 390 unaffected collies and Shetland sheep-

dogs), both the PAN2 (P-val = 2.08X10-35) and MAP3K7CL (P-val = 1.45X10-33) variants were

highly associated with DMS (S4 Table).

PAN2 (or USP52) encodes the catalytic subunit of the poly(A) nuclease deadenylation complex

(PAN2-PAN3) and is one of two exonucleases involved in mRNA degradation in eukaryotes

Novel susceptibility loci in a canine model of juvenile dermatomyositis
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[34,35]. Deadenylation plays a role in translational regulation of inflammatory response [36].

Independent of this function, PAN2 also stabilizes HIF1A transcripts via their 30-UTR, which

contain AU-rich elements (AREs), and may be involved in regulating other transcripts having

AREs [37]. HIF1A, a key regulator of inflammation [38], and other ARE-containing transcripts,

such as IL-6 [39], are upregulated in JDM [40, 41]. PAN2 is widely expressed and highly evolu-

tionarily conserved [35]; human (NP_001120932.1) and dog (XP_013972628.1) amino acid

sequences share 98% identity.

MAP3K7CL (also known as TAK1L or C21orf7) is a poorly studied kinase gene that is tran-

scriptionally active in immunological tissues and expressed primarily in peripheral blood leu-

kocytes [42,43]. Human (NP_001273546.1) and dog (XP_013965340.1) MAP3K7CL protein

sequences share>90% identity. The transcription factors RUNX3 and EP300 bind the 50 non-

coding exon of human MAP3K7CL (UCSC Genome Browser ENCODE Transcription Factor

ChIP-seq track). In this exon, the c.383_392ACTCCACAAA>GACT indel causes the loss of

six conserved base pairs, omitting a RUNX3 binding motif (P-val = 2.07X10-3 from TOMTOM

[44]) (S3 Fig). RUNX3 has known roles in inflammatory response (e.g., thymopoiesis [45,46]

Fig 2. Regional plots depicting LD at two associated loci. Association results (-log10P) for (A) combined

breed GWAS on chromosome 10 and (B) Shetland sheepdog GWAS on chromosome 31 are color-coded

based on pairwise LD (r2) with the lead SNPs (purple diamond). Dotted lines demarcate the candidate

interval. Genes within the region (based on hg18) are shown below the plot with chromosome positions

reported in canFam3. On chromosome 10, the gene track is zoomed in to represent the candidate interval

only; 4 genes were omitted from the figure (DNAJC14, LOC440104, MMP19, and SLC39A5).

doi:10.1371/journal.pgen.1006604.g002

Table 2. Expressed exonic changes on chromosomes 10 and 31.

Position Gene A1/A2 AA change Poly-Phen2 PANTHER SIFT P-value

CHROMOSOME 10 Cases n = 93 Controls n = 63

95042 ITGA7 T/C Val/Val - - - -

121835 RDH5 G/A Ala/Ala - - - -

222809 MMP19 T/G Gln/Pro 0 91 0.43 -

331135 SUOX A/G His/Arg 0 85 N/A -

565958 ANKRD52 G/C Ser/Cys 0.92 361 0.02 1.93X10-17

627760 PAN2 G/A Arg/Cys 1 1628 0 1.93X10-17

1127082 RDH16 C/T Ala/Ala - - - -

1228277 NAB2 G/C Gly/Arg 0 85 N/A -

1239562 STAT6 G/A Thr/Met 0.98 361 0.05 1.52X10-4

1286150 LRP1 C/T Asn/Asn - - - -

1333693 LRP1 G/A Gln/Gln - - - -

CHROMOSOME 31 Cases n = 63 Controls n = 45

24068039 CCT8 T/C Ala/Ala - - - -

24132273 MAP3K7CL Indel/- 50 UTR N/A N/A N/A 2.09X10-11

24132343 MAP3K7CL A/C 50 UTR N/A N/A N/A 1

24292521 BACH1 A/G Asn/Asp 0.007 324 0.21 -

24294659 BACH1 A/G Glu/Glu - - - -

24295208 BACH1 A/G Pro/Pro - - - -

Alleles 1 (A1 = minor allele) and 2 (A2 = reference allele) are reported. Amino acid changes are based on the dog reference genome. P-values are reported

for matched populations. Variants with PolyPhen2 scores ranging from 0.85–1, PANTHER preservation time (in millions of years) >450my, and SIFT scores

ranging from 0–0.05 are considered deleterious/probably damaging. Variants more strongly associated with DMS than the most associated SNPs from the

array are bolded.

doi:10.1371/journal.pgen.1006604.t002

Novel susceptibility loci in a canine model of juvenile dermatomyositis

PLOS Genetics | DOI:10.1371/journal.pgen.1006604 February 3, 2017 7 / 20



and the TGF-β signaling cascade [47]), and it has been directly implicated in a number of

immune-related diseases [48–50]. Furthermore, SNPs disrupting RUNX binding motifs in tar-

get genes confer susceptibility to autoimmune rheumatic diseases, including psoriasis [51] and

systemic lupus erythematosus [52].

Analysis of three-locus genotypes reveal gene-gene interactions

We next considered three-locus genotypes in our expanded, combined population (132 affected

and 390 unaffected dogs) where A = the PAN2 variant encoding p.Arg492Cys, B = MAP3K7CL
c.383_392ACTCCACAAA>GACT, and C = DLA-DRB1�002:01, lower-case letters denote wild

type alleles (c represents any alternate allele of DLA-DRB1). Only 4% of dogs possessed a three-

locus genotype with cc, barring further analysis of those nine genotypes. We considered nine of

the remaining genotypes to be low-risk, as less than 6% of dogs with these allelic combinations

had DMS (Table 3). Among healthy dogs (Fig 3A), the most frequently observed genotypes

Table 3. Distribution of three-locus genotypes in 132 cases and 390 controls with penetrance, 95% confidence intervals, and P-values.

Genotype Collies Shetland sheepdogs Combined

Cases (n = 40) Controls (n = 185) Cases (n = 92) Controls (n = 205) Penetrance (%) Risk* 95% Confidence

Interval

P-value**

aabbcc 0 1 0 1 - - 0–0.842 1

aabbCc 0 5 0 18 - low 0–0.148 0.0023

aabbCC 1 43 1 17 - low 0.004–0.112 0

Aabbcc 0 0 0 3 - - 0–0.708 0.577

AabbCc 0 3 1 15 - low 0.001–0.260 0.060

AabbCC 2 71 2 23 - low 0.011–0.101 0

aaBbcc 0 0 0 5 - low 0–0.522 0.399

aaBbCc 0 1 0 21 - low 0–0.154 0.002

aaBbCC 0 10 0 32 - low 0.084 0

AaBbcc 0 0 0 1 - - 0–0.975 1

AaBbCc 0 0 0 14 - low 0–0.232 0.028

AaBbCC 0 13 2 23 - low 0.006–0.177 0.002

AAbbcc 1 0 0 0 - - 0.025–1 0.253

AAbbCc 4 6 1 1 42 moderate 0.152–0.723 0.194

AAbbCC 15 31 7 3 39 moderate 0.265–0.532 0.021

aaBBcc 0 0 0 1 - - 0–0.975 1

aaBBCc 0 0 0 6 - low 0.0459 0.348

aaBBCC 0 0 6 7 46 moderate 0.192–0.749 0.107

AaBBcc 0 0 2 1 - - 0.094–0.992 0.160

AaBBCc 0 0 5 5 50 moderate 0.187–0.813 0.136

AaBBCC 3 0 23 3 90 high 0.762–0.978 0

AABbcc 0 0 3 0 - - 0.292–1 0.016

AABbCc 0 0 2 4 33 moderate 0.043–0.777 0.647

AABbCC 11 1 11 1 92 high 0.730–0.990 0

AABBcc 0 0 0 0 - - - -

AABBCc 0 0 7 0 100 high 0.590–1 0.0001

AABBCC 3 0 19 0 100 high 0.846–1 0

Significant values in bold.

*Risk interpretations were only made for three-locus genotypes observed at least five times.

**P-values are calculated for each genotype compared to the population as a whole (0.253, 132 affected dogs out of 522 total dogs).

doi:10.1371/journal.pgen.1006604.t003
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were AabbCC (24%) and aabbCC (15%). Based on penetrance, we classified five genotypes as

conferring moderate risk (33–50%) and four as high risk (90–100%) for DMS. All cases pos-

sessed at least two risk alleles and all but one were homozygous for at least one risk allele. The

most common genotypes of affected dogs (Fig 3B) were AaBBCC (20% of cases), followed by

AAbbCC, AABbCC, and AABBCC (17% of cases each).

Interestingly, only affected dogs possessed AABBCc or AABBCC (n = 29), indicating that

DMS is fully penetrant in dogs having these combinations. Epistasis plots illustrated that geno-

types with at least one a or b allele confer a lower probability of disease when a c allele is pres-

ent, compared to their CC counterparts (Fig 3, compare 3C and 3D). The plots also depicted a

greater probability of disease than expected under a strictly additive model, providing evidence

for additive-by-additive epistasis between the chromosome 10 and 31 loci [53,54]. We noted at

least one ARE in MAP3K7CL, presenting a mechanism for interaction with PAN2. No differ-

ence in gene interactions was observed between the sexes (S4 Fig).

Information regarding age at onset or diagnosis was available for 91 dogs. We compared

dogs having two, three, or four risk alleles across PAN2 and MAP3K7CL and observed an

inverse correlation between age of onset and number of risk alleles (S5 Fig). Dogs having four

risk alleles developed DMS at a significantly younger median age (5 months) than did dogs

with only two risk alleles (18.5 months). The complete penetrance of AABB genotypes, com-

bined with an early age of onset, suggest that these dogs may be hypersensitive to common-

place environmental stimuli (e.g., routine puppy vaccinations).

Collies and Shetland sheepdogs have uniquely high frequencies of

associated alleles

All three identified variants associated with DMS are polymorphisms present in several breeds,

raising the question: why are other breeds rarely, if ever, affected by DMS? We genotyped five

or more unrelated individuals from each of 30 diverse breeds for all three loci (Fig 4). The only

other breeds to possess all three risk alleles were Cardigan Welsh corgis and Cairn terriers.

Three Jack Russell terriers had moderate-risk genotypes (AAbbCc), as did one Cardigan Welsh

corgi (AABbCc); both breeds are occasionally diagnosed with dermatomyositis-like disease

[55,56]. None of the 229 individuals possessed a high-risk genotype (S5 Table). Interestingly,

Labrador retrievers had both B and C, which could have enabled moderate or high risk geno-

types (AaBBCc or AaBBCC) in puppies from the outcross mating described by Haupt et al.

[14].

Combined frequencies of risk alleles in other breeds were dramatically lower than those

observed among collie and Shetland sheepdog populations, and homozygosity for a risk allele

(a characteristic of all moderate- to high-risk genotypes) was rare. Additionally, breeds having

a high frequency of one risk allele had few or no risk alleles at the other loci. For example,

Cairn terriers had a high frequency of A (75%) but low frequencies of B (19%) and C (3%), and

no high- or moderate-risk genotypes were observed among 18 individuals. These findings sug-

gest that independently the polymorphisms are neither deleterious nor selected against.

It is likely that recent artificial selection for phenotypes shared by collies and Shetland

sheepdogs led to increased frequencies of A. We propose that persistence of A in these two

breeds is attributed to linkage disequilibrium (D0 = 0.998) between wildtype PAN2 (a) and

another chromosome 10 allele, Merle of PMEL. In heterozygosity, Merle causes a popular pig-

mentation pattern (see collie in Fig 1A), but homozygosity for the allele results in severe hypo-

pigmentation often with auditory and ocular defects [58]. Wildtype PMEL occurred on

chromosomes with either A or a, whereas Merle was only found in conjunction with a.

Accordingly, the Merle phenotype was underrepresented in affected dogs (P-value = 0.0018),
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64% of which were homozygous for A. Consistent selection for heterozygosity (but not homo-

zygosity) for Merle would simultaneously encourage maintenance of both PAN2 alleles. To our

knowledge, there are no loci on chromosome 31 under positive selection for maintenance of a

characteristic phenotype of collies and/or Shetland sheepdogs.

Across five collie genomes, we observed a 1.2 Mb selective sweep on chromosome 12 (S6

Fig) encompassing the MHC class II loci and leading to near fixation of the 002:01/009:01/
001:01 haplotype. We suggest that essentially all purebred collies have increased susceptibility

for DMS, conferred by homozygosity for allele C. The Shetland sheepdog population has

Fig 3. Three-locus genotype disease probabilities and frequencies (132 cases, 390 controls). Word clouds of three-locus genotypes

illustrate frequency differences between (A) controls and (B) cases with high-risk genotypes in red, moderate-risk in yellow, and low-risk in blue.

Probability of disease (y-axis) for all combinations of PAN2 (x-axis) and MAP3K7CL genotypes are plotted in dogs (C) homozygous and (D)

heterozygous for DLA-DRB1*002:01.

doi:10.1371/journal.pgen.1006604.g003
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retained a less common second haplotype that permits heterozygosity at the DLA loci, associ-

ated with a lower risk for developing DMS. Ironically, this reduced risk may have masked the

presence of otherwise high-risk genotypes (i.e., AABb and AaBB) and hindered selection

against A and B alleles.

We observed striking allele frequency differences between the two affected breeds at PAN2
and MAP3K7CL: collies had a higher frequency of A, 42% (25% in Shetland sheepdogs),

whereas Shetland sheepdogs had a higher frequency of B, 38% (5% in collies) (Fig 4). Conse-

quently, the frequency of observed allelic combinations varied between the breeds. The most

common genotypes in healthy dogs were aaBbCC in Shetland sheepdogs, 16% (5% in collies),

Fig 4. Frequencies of DMS-associated polymorphisms across breeds. The number of alleles used to

calculate the frequencies is shown to the left of the breed name, if > 10. Risk allele frequencies (x-axis) for

each gene are represented by a single, segmented colored bar: the PAN2 variant encoding p.Arg492Cys is

represented in purple, MAP3K7CL c.383_392ACTCCACAAA>GACT in gray, and DLA-DRB1*002:01 in

orange. The number of homozygous dogs observed is reported on the corresponding color bar. Asterisks

denote breeds lacking DLA-DRB1*002:01 in this study, but which were previously reported to possess the

allele [57].

doi:10.1371/journal.pgen.1006604.g004
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and AabbCC in collies, 38% (11% in Shetland sheepdogs). Among affected dogs, AaBBCC pre-

dominated in Shetland sheepdogs, 25% (8% in collies), whereas AAbbCC was the most fre-

quent genotype in diseased collies, 38% (8% in Shetland sheepdogs). The latter finding is

interesting given that AAbbCC is only a moderate-risk genotype. Among collies having this

genotype, 67% were unaffected by age 8, whereas only 30% of Shetland sheepdogs with this

genotype were disease-free. This discrepancy in disease probabilities between breeds was

unique to this genotype. Further studies will be necessary to determine if other loci confer

additional risk for or protection from DMS.

The contribution of alleles from multiple loci explains the spontaneous appearance of the

disease in lines with no prior history [14] and has hindered elimination of DMS in the absence

of a genetic test. For example, a mating between two healthy dogs having low risk genotypes (e.
g., AaBbCC x AaBbCC) can produce puppies with low, moderate, or high risk for DMS. This

study has led to the first three-locus genetic test for a complex disease of dogs, which will allow

breeders to carefully reduce the frequency of A and B among collie and Shetland sheepdog

populations while preserving genetic diversity and desirable breed characteristics.

In a canine model of JDM, we have identified a complex pattern of causation involving

three independent loci, two of which offer new targets for exploration in JDM. Furthermore,

these data provide support for the involvement of genetic risk factors independent of the

MHC in human inflammatory myopathies. While further experiments are necessary to deter-

mine the exact contribution of the chromosome 10 and 31 loci, our findings suggest that DMS

may result from an inability to properly regulate inflammatory response. This work highlights

the utility of the canine model for unraveling genetic susceptibility conferred by common

polymorphisms and/or gene-gene interactions in complex diseases.

Methods

Ethics statement

All samples were obtained with informed consent according to protocols approved by the

Clemson University Institutional Review Board (IBC2008-17) and IACUC (2012–039).

Study population. Three populations were assembled: DMS-affected dogs (92 Shetland

sheepdogs, 40 collies), control dogs for GWAS (45 Shetland sheepdogs, 23 collies), and unaf-

fected dogs (160 Shetland sheepdogs, 162 collies). Affected dogs were diagnosed either through

histopathology (75 Shetland sheepdogs, 30 collies) or by a veterinarian based on clinical signs

and elimination of demodectic mange, a differential diagnosis. Pedigrees were collected when

available; some samples were obtained from affected dogs surrendered to rescue organizations

without paperwork. Twenty percent of affected dogs were collected internationally, and in

each case a regionally-matched control sample was obtained.

Control dogs for GWAS were eight years of age or older at time of collection, had no

known family history of DMS, had no personal history of skin disease, and were unrelated to

other study participants within two (most often three) generations. Pedigrees were obtained

from all control dogs. The population of unaffected dogs had no clinical signs of DMS and

were eight years of age or older at time of collection. This subset was collected without regard

to family history of DMS, presence of other skin disorders, or relationship to other study par-

ticipants. Archival samples from 229 dogs of 30 other breeds were not closely related to each

other to our knowledge.

Whole blood or buccal cells were obtained from each dog, and genomic DNA was isolated

according to the Puregene DNA Isolation protocol (Gentra). Skin punch biopsies from active

lesions or healthy tissue were also obtained from one Shetland sheepdog, one collie, and one

Australian shepherd dog and preserved in RNAlater (Ambion).
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DLA class II genotyping. The hypervariable regions of DLA-DRB1, -DQA1 and -DQB1
were sequenced and genotyped according to protocols previously described [59–61].

DLA-DQA1 was largely uninformative in collies and was inferred. Association of a haplotype

or allele state with DMS was assessed through Fisher’s exact tests, using VassarStats (Web Site

for Statistical Computation, Vassar College, Poughkeepsie, NY).

Genome-wide association and LD analyses. Genotyping was performed for 166 dogs (85

males and 81 females) using the Illumina CanineHD BeadChip, containing 173,662 SNPs. One

sample having call rates <95% was excluded. SNPs having call rates <95%, minor allele fre-

quencies <5%, and/or significant deviation from Hardy-Weinberg equilibrium (P-value

<0.0001) in the control dogs were excluded. No evidence of genomic inflation was observed in

the combined Shetland sheepdog and collie analysis (λ = 1.04). Fisher’s exact P-values were

calculated under a dominant model.

LD pairwise analysis was performed to calculate r2 values, which were plotted using Locus-

Zoom [62]. We calculated r2 values between SNPs on chromosome 10 using all controls. For

chromosome 31, r2 values were calculated using only control Shetland sheepdogs because no

association was detected in collies alone. Assuming that the pathogenic variant would be in

high LD with the lead SNP, candidate regions were characterized by SNPs with pairwise r2�

0.6 and defined by the first flanking associated SNPs in lower LD. Filtering and statistical anal-

yses were conducted with SNP & Variation Suite v8 (SVS, Golden Helix). All chromosome

positions throughout the text are reported in CanFam3.1.

Whole genome resequencing. Three affected and two control collies were selected for

whole genome resequencing along with one affected Shetland sheepdog. Genomic DNA frag-

ments of approximately 500bp were gel size selected for each sample and sequenced on two

lanes of an Illumina HiSeq 2000, generating 2x100 (collies) and 2x125 bp (Shetland sheepdog)

paired-end reads. 531 to 997 million total reads were generated for the five collies. Over one

billion total reads were generated for the Shetland sheepdog. Paired reads were aligned to the

indexed reference (CanFam3.1) with Bowtie2 [63] under sensitive parameters. The alignments

were sorted and indexed with SAMtools [64,65] to be visualized in the Interactive Genomics

Viewer [66].

RNA isolation and sequencing. Total RNA was extracted from 30-40mg of skin punch

biopsy tissue from active lesions (collie and Shetland sheepdog) or healthy skin (Australian

shepherd) using the ToTALLY RNA kit (Ambion), according to the manufacturer’s protocols.

RNA samples were treated with DNase to remove DNA contamination, using the DNA-free

kit (Ambion). Samples were quantitated on a NanoDrop 1000 spectrophotometer (Fisher

Scientific).

Three RNAseq libraries were constructed per dog using normalized total RNA and the

manufacturer’s protocol for one of the following: TruSeq RNA library prep kit v2.0 (Illumina)

or TruSeq stranded total RNA library prep kit (Illumina). An Agilent Bioanalyzer 2100 was

used for size validation. Each sample was sequenced at 2x125 bp paired-end on an Illimina

HiSeq 2500 to a depth of at least 22 million reads.

FastQC from the Babraham Institute was used to assess read quality before and after pre-

processing by Trimmomatic [67], which removed low quality bases and remaining sequence

adapters. Trimmed reads for each sample were aligned to CanFam3.1 using gsnap [68], and

SAMtools [64,65] was used to generate sorted and indexed bam files.

Variant filtering and genotyping. SAMtools and BCFtools [64,65] were used to generate

variant call files for each sample, which were analyzed in SVS. On chromosome 10 (1–

1,333,693 bp) variants that were heterozygous in affected collies 1 & 2 and homozygous in

affected collie 3 and the affected Shetland sheepdog (i.e., reference/reference or alternate/alter-

nate), consistent with the allele states at the lead SNPs, were selected. On chromosome 31

Novel susceptibility loci in a canine model of juvenile dermatomyositis
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(24,026,411–24,722,836 bp), all homozygous variants in the Shetland sheepdog were selected.

Ensembl 79 was used to identify variants lying within predicted exons and 10 bp flanking

sequences to capture splice sites. RNAseq data were manually inspected in IGV to determine

whether predicted exonic variants were expressed in the affected dogs. Alternate variants were

investigated using dbSNP and 27 genomes of 16 other breeds (either sequenced as part of

ongoing studies or shared by other research groups) to determine whether any were unique to

collies and Shetland sheepdogs. SIFT [31], PolyPhen [32], and PANTHER [33] were used to

predict the impact of the amino acid substitutions. Genotyping of variants in additional dogs

was accomplished by restriction digest assays or Sanger sequencing (S6 Table).

Age of onset. Because age is not distributed as a normal random variable, we made use of

the Weibull distribution, a density commonly used for time-to-event data [69]. Our goal was

to estimate the mean and median age of onset, along with their confidence intervals, to facili-

tate comparisons across the three genotypic groups.

Taking advantage of a Bayesian strategy, we assume yij ~ Weibull (r, e� bi), where yij is the

observed age at diagnosis for the j-th (j = 1, 2, . . ., ni) dog in the i-th (i = 1,2, . . .,3) genotypic

class and bi is the effect of the i-th genotypic class. With this representation of the scale (r) and

shape (e� bi) parameters of the Weibull density, the median of the i-th genotypic class is e� bi log

(2)1/r and the mean of the i-th genotypic class is e� bi Γ(1 + 1/r).

In addition, we assumed a prior density for the unknown genetic parameters (bi) to have a

null mean and common variance σ (i.e., (bi ~ N(0, σ)). We consider the weakly informative

prior for σ ~ Cauchy(0,25) [70]. For the scale parameter, r, we assume the weakly informative

prior of r ~ exponential(0.001). The Monte Carlo Markov Chain (MCMC) sampling process

was run in 4 chains through the public-domain software Stan [71], with each chain based on

50,000 total samples, and the first 20,000 were removed as part of the warm-up process, then

thinned to every 20th sample, resulting in a MCMC sample of 6,000 values [71]. Convergence

to the posterior density was evaluated by the Gelman-Rubin test statistic, where values less

than 1.05 indicate that the MCMC sampling process was adequate to the data evaluated [72].

Genetic interaction analyses. All affected (n = 132) and healthy (n = 390) dogs were used

to investigate possible interactions between the PAN2 variant encoding p.Arg492Cys and

MAP3K7CL c.383_392ACTCCACAAA>GACT in dogs homozygous for 002:01/009:01/001:01
vs. dogs heterozygous for the haplotype. Three-locus genotypes observed in fewer than five dogs

were excluded. For a given disease state (cases vs. controls) and a given pair of genotypic classes

i (i = A/A, A/a, or a/a) and j (j = B/B, B/b, or b/b), ncases ij ~ Binomial(ncases ij + ncontrols ij, pij)

where ncases ij is the number of observed cases in the combination of the genotypic class of locus

i and that of locus j, ncontrols ij is the number of unaffected dogs in the combination of genotypic

class of locus i and that of locus j. Finally, pij is the probability of disease for the combined geno-

typic classes of i and j.
Estimation of the unknown elements of our model must ensure estimates of pij within the

interval [0, 1], recognizing that several genotypic classes have zero or few cases. We utilized a

hierarchical Bayesian framework facilitated through the public-domain software Stan [71] to

address this problem [73]. Stan can be accessed through the public-domain language R [74].

Log-odds was used to estimate pij, i.e., log(pij /(1- pij)) = intercept + addAi + domAi+ addBj

+ domBj + add x addij + add x domij + dom x addij + dom x domij, where intercept represents

a term common to all genotypic classes, addAi, addBj domAi and domBj represent the additive

and dominance terms respectively for loci A and B, and add x addij + add x domij + dom x

addij + dom x domij represent the four possible epistatic interaction terms for all possible addi-

tive and dominance combinations [53].
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We assumed a prior density for the intercept and unknown genetic parameters, with null

mean and common variance σ (i.e., N(0, σ)). Subsequently, we consider the weakly informative

prior for σ ~ Cauchy(0,25) [70]. We used the same MCMC parameters here as described

above.

Chromosome 12 selective sweeps. We identified all SNPs on chromosome 12 present in

five collie genomes (3 cases and 2 controls) and used a creeping window size�1 Mb to identify

runs of homozygosity [75]. Windows containing fewer than 50 SNPs were excluded and gaps

>10kb between SNPs were ignored. The heterozygosity (Hp) statistic was calculated for all

windows and Z-transformed, making the average Hp value equal to zero and the standard

deviation equal to 1. The–ZHp distribution was plotted in R to show putatively selected

regions greater than 3.4 standard deviations from the mean.

PMEL. D’ between PMEL and PAN2 was calculated as a measure of LD using all dogs for

which coat pattern phenotypes were available (112 cases, 385 controls). A total of 98 dogs (10

cases and 88 controls) were described as merle-patterned, a semi-dominant trait caused by the

Merle (M) allele of PMEL, and assumed to possess the Mm genotype. Computation of D0,

along with a test of significance from zero, was facilitated through the package genetics [76], a

public domain program that is part of the R language [74].

Accession numbers

SNP data are available in dbSNP under BioProject number PRJNA338128. All whole genome

and transcriptome data generated for this study were deposited in SRA genomes under access-

sion number SRP081080. Accession numbers for eight of the 27 other breeds used in variant

filtering are SRX1360633, SRX1360635, SRX1360637, SRX1360639, SRX1022256, SRX10222

62, SRX1022286, and SRP081080.

Supporting information

S1 Fig. Clinical presentation of dermatomyositis. Canine dermatomyositis is a vasculopathy

that initially manifests as cutaneous lesions across the bony prominences of the face, tail tip,

limbs, and feet, shown here. Some dogs develop alopecia and more extensive lesions over time,

resulting in dermal scarring associated with erythema and mottled pigmentation.

(PDF)

S2 Fig. Manhattan and quantile-quantile plots of combined DMS GWAS (97 cases vs. 68

controls). The –log10P-values (y-axis) for 98,520 Illumina SNPs are plotted against chromo-

some position (x-axis). The threshold for Bonferroni significance is shown as a black horizon-

tal line. The P-value and position (canFam3) of the lead SNPs are reported. The Q-Q plot is

boxed in purple and plots observed vs. expected Fisher’s exact –log10P-values. The inflation

factor (λ) is shown on the Q-Q plot.

(PDF)

S3 Fig. MAP3K7CL indel with conservation and RUNX3 binding motif. UCSC 100 Verte-

brates track for human chr21:29,130,846–29,130,860 showing the G insertion and seven base

pair deletion created by MAP3K7CL indel (Dog c.383_392ACTCCACAAA>GACT). Bases in

gray differ from the dog reference sequence. The canine sequence is highlighted in yellow. The

RUNX3 binding motif is underlined.

(PDF)

S4 Fig. Three-locus genotype disease probabilities by sex. Probability of disease (y-axis) for

all combinations of PAN2 (x-axis) and MAP3K7CL genotypes are plotted in dogs (73 affected

and 145 unaffected males; 59 affected and 245 unaffected females) (top) homozygous and
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(bottom) heterozygous for DLA- DRB1�002:01.

(PDF)

S5 Fig. Median age of onset for combinations of PAN2 and MAP3K7CL genotypes. Median

age of onset is plotted for genotypes consisting of 2 (AAbb, aaBB, AaBb), 3 (AABb, AaBB), and

4 (AABB) risk alleles at PAN2 and MAP3K7CL. CC and Cc genotypes were combined for anal-

yses. Number of individuals is shown to right.

(PDF)

S6 Fig. Collie selective sweeps on chromosome 12. ZH(p) values for all creeping windows

containing 50 or more SNPs are plotted against chromosome position. Creeping windows are

�1 Mb.

(PDF)

S1 Table. SNPs exceeding Bonferroni significance (5.08X10-7).

(PDF)

S2 Table. Chromosome 10 variants segregating with the lead SNPs in the affected dogs.

(PDF)

S3 Table. Chromosome 31 variants segregating with the lead SNPs in the affected Shetland

sheepdog.

(PDF)

S4 Table. Frequency of PAN2 and MAP3K7CL genotypes.

(PDF)

S5 Table. Three-locus genotypes for 229 individuals of 30 breeds.

(PDF)

S6 Table. Primers and genotyping method for variants.

(PDF)
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