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A B S T R A C T

Digitization of healthcare will be a major innovation driver in the
coming decade. Also, enabled by technological advancements
and electronics miniaturization, wearable health device (WHD)
applications are expected to grow exponentially. This, in turn,
may make 4P medicine (predictive, precise, preventive and per-
sonalized) a more attainable goal within dialysis patient care.
This article discusses different use cases where WHD could be of
relevance for dialysis patient care, i.e. measurement of heart rate,
arrhythmia detection, blood pressure, hyperkalaemia, fluid over-
load and physical activity. After adequate validation of the differ-
ent WHD in this specific population, data obtained from WHD
could form part of a body area network (BAN), which could serve
different purposes such as feedback on actionable parameters like
physical inactivity, fluid overload, danger signalling or event pre-
diction. For a BAN to become clinical reality, not only must tech-
nical issues, cybersecurity and data privacy be addressed, but also
adequate models based on artificial intelligence and mathematical
analysis need to be developed for signal optimization, data repre-
sentation, data reliability labelling and interpretation. Moreover,
the potential of WHD and BAN can only be fulfilled if they are
part of a transformative healthcare system with a shared responsi-
bility between patients, healthcare providers and the payors, using
a step-up approach that may include digital assistants and dedi-
cated ‘digital clinics’. The coming decade will be critical in observ-
ing how these developments will impact and transform dialysis
patient care and will undoubtedly ask for an increased ‘digital lit-
eracy’ for all those implicated in their care.

Keywords: blood pressure, dialysis, fluid overload, haemodial-
ysis, physical activity

I N T R O D U C T I O N

Artificial intelligence (AI), Big Data and technology-driven sol-
utions will likely create the fourth phase of industrial revolution.

This will encompass a fusion of rapidly evolving technologies
across the physical, digital and biological domains. These
advancements are likely to profoundly influence future health-
care. Next to developments in nanotechnology, omics, genome
editing and tissue engineering, the digitization of healthcare is
also expected to have a major impact in the next decade [1].
Regarding the last factor, it is likely that a major part of this rev-
olution will not be driven by healthcare providers, but instead
by manufacturers and consumers of commercially available
wearable devices that monitor and report personal health-
related data such as physical activity and vital signs in real-time.
Electronics miniaturization is a key enabler for wearable health
devices (WHD). For example, presently a 4.4 � 4.4 mm size
chip can already contain a multiparameter monitor for electro-
cardiography (ECG), photoplethysmography (PPG), pulse ox-
imetry (SpO2) and bioimpedance, including memory, processor
and secured wireless communication (Figure 1) [2].

Many of these developments will likely become relevant for
the treatment of patients with advanced kidney failure, who dis-
play a unique challenge of comorbidities with a premature age-
ing process while undergoing invasive, expensive high-tech care
[3]. A major challenge for the future of healthcare is to provide
personalized care in view of a rapidly expanding healthcare sys-
tem within financial limitations and an increasing demand for
sustainability [4, 5].

Possibly, the digitization of healthcare provides the opportu-
nity for enhancing the 4Ps (predictive, precise, preventive and
personalized) of medicine [6]. However, the healthcare commu-
nity needs to be fully aware of the potential benefits as well as
the challenges with these developments in order to put them in
context. Given the rapidly expanding availability of information
through the Internet or other media, patients increasingly will
expect a high degree of both medical knowledge and digital
literacy of their healthcare providers [7], as well as an ability to
meaningfully interpret these growing data streams to the
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patients’ benefit and to translate this information—where nec-
essary—into appropriate action.

This short review aims to discuss potentially relevant devel-
opments for haemodialysis patients that may help dialysis care-
givers of the future to achieve this goal.

M O N I T O R I N G D U R I N G D I A L Y S I S A N D
B E Y O N D : T O W A R D S A C L I N I C A L
I N T E L L I G E N C E S Y S T E M

Patients on haemodialysis spend considerable time in different
and often separated ecosystems, i.e. the dialysis clinic, hospital
and their home environment. With haemodialysis, they

undergo an intensive treatment that has profound pathophysio-
logic effects. There is substantial evidence suggesting that im-
paired organ perfusion during dialysis can result in irreversible
organ damage [8]. Blood pressure (BP), which is at best an indi-
rect marker of organ perfusion [9], is measured discontinuously
during dialysis, whereas symptomatic drops in BP may sud-
denly occur when ventricular filling is critically reduced [10].
Recently, several studies addressed the relevance of changes in
central venous oxygen saturation (scvO2), which can be mea-
sured continuously by an optical probe connected to the blood
line in patients with a central venous catheter, as a surrogate
marker of upper body perfusion and haemodynamic status.
Changes in scvO2 were related to ultrafiltration (UF) rate but

FIGURE 1: Health patch using system-on-a-chip (SoC) and its high-level architecture [2].
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also independently to outcome [11, 12]. These are just examples
of variables that could be monitored continuously with wearable
and unobtrusive technologies (near-infrared spectroscopy, PPG
or other optical methods). Non-invasive monitoring and inter-
pretation of multiple physiological signals in combination with
dialysis treatment parameters and patient characteristics can be
aided by mathematical models and/or AI, which might result in a
more precise prediction of pending organ ischaemia or sudden
intradialytic hypotension and trigger alerts before a clinical event
ensues. A preliminary example of such an approach was pre-
sented by Barbieri et al. [13], in which an artificial neural network
predicted nadir systolic BP and heart rate with reasonable accu-
racy. In the future, such models could be combined with UF feed-
back control systems [10] that automatically adjust UF rate or
treatment time when the algorithm would predict impending
drops in tissue perfusion or BP [4]. These developments, which
might also be of great relevance for home haemodialysis patients,
may contribute to a clinical intelligence system surrounding dial-
ysis treatments in the future (Figure 2) [4].

These developments logically would first build upon already
existing telehealth systems for home dialysis patients and evolve
from there [14]. Smart automated recognition of meaningful
events, and automated data reliability indicators will increas-
ingly become key to avoid ‘drowning’ clinicians in a flood of
raw traces and false alarms [15].

R E M O T E M O N I T O R I N G

While patients are used to being monitored during a dialysis
session, monitoring during daily life between dialysis

treatments provides other challenges, in terms of patient accep-
tance, reliability of monitoring and liability [15]. Remote moni-
toring applies digital technologies to collect and transmit data
to healthcare providers at a different location. This can be per-
formed either in an online modus, where data are directly visi-
ble to the provider, as well as in an offline modus, where data
can be stored and used for later analysis [16]. Whereas different
technologies for remote monitoring are available, we will focus
in this article on WHD applications.

Although many different applications for pervasive WHD
have been described in the literature [17, 18], we will focus this
review on a choice of monitoring systems for which a clinical
rationale can be deduced. The common ground for these appli-
cations is that all are related to outcome and are potentially
amenable for intervention (actionable).

PPG

One of the most frequently measured parameters by WHD
is heart rate, usually by PPG, which detects the peripheral pulse
by measuring variations in LED-light transmission through or
reflection from the tissue. The ‘peak to peak’ interval is used to
estimate heart rate [19] by means of a tachogram. In validation
studies, PPG methods were generally reliable, at least in healthy
subjects, while excluding episodes with vigorous physical activ-
ity [20, 21]. To the best of our knowledge, its reliability has not
been systematically assessed in patients with abnormalities in
forearm anatomy, such as the presence of an arteriovenous fis-
tula. As will be discussed later, measuring abnormalities in heart
rate or heart rate variability, especially when combined with as-
sessment of physical activity, can be of relevance for the

FIGURE 2: Example of a ‘clinical intelligence system’ [4].
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detection of arrhythmias. Moreover, in a case-based study
changes in heart rate were found to be the first signal of inflam-
matory conditions before the onset of clinical presentation [22].

ECG

ECG measurement is relatively new in WHD (e.g. in patches
or smartwatches). The newest generation Apple Watch, for ex-
ample, offers iECG, measuring lead I between the wrist and the
contralateral finger placed on the watch. Whereas continuous
ECG is not practical in this way, tachyarrhythmias can be
detected by the PPG-tachogram, which can alert the user to per-
form an iECG [19]. In healthy subjects, the ECG quality using
this method was found to be acceptable [23].

Whereas automated detection of atrial fibrillation (AF) from
PPG signals derived from a mobile phone is also possible [24],
the largest trial so far was based on the detection of AF using
smartwatches. In the Apple Heart study, tachogram-deduced
possible AF was alerted to the wearer, who subsequently wore an
ECG patch for 7 days [25]. In this study, the device detected an ir-
regular pulse in 0.52% of subjects, whereas the algorithm showed
a positive predictive value of 0.84 when the ECG was obtained
during the time of irregular pulse notification. It should be noted
that the Apple Watch study population was relatively young.
Therefore, this method might even be more relevant for high-risk
populations such as dialysis patients, where a 40% AF incidence
has been observed [26]. However, it is uncertain whether im-
proved AF detection, although clearly a risk factor for mortality,
would result in a better outcome, certainly in light of the contro-
versy regarding AF treatment with anticoagulation in dialysis
patients [27]. Even in relatively healthy subjects, it is presently
unclear whether subclinical AF should be followed by anticoagu-
lation treatment or not, as results so far are equivocal [7].

Apart from morbidity directly associated with dialysis
treatment, a major part of the mortality occurs during the
inter-dialytic period, with sudden cardiac death as the most
feared complication. A study of implantable loop recorders
showed that bradycardias (defined as heart rate <40 beats/min
during >6 s) occurred in 20% of patients [26], with a far higher
incidence than ventricular tachycardia, which occurred in only
1% of the studied patients. These bradycardias occurred pri-
marily at the end of the inter-dialytic interval, when the rate of
cardiovascular mortality and sudden cardiac death is at its ze-
nith [28, 29]. Recently, bradycardia in dialysis patients was
linked to lower serum calcium levels [30].

It does not seem to be a remote possibility to modify smart-
watch algorithms in such a way that bradycardias, e.g. detected
by a smartwatch PPG-tachogram, would prompt the user to
perform an ECG. Continuous ECG monitoring (e.g. by a wire-
lessly connected health patch) would not even need such a
prompt. In tern, ‘red flag’ alerts could be immediately trans-
ferred to a monitoring unit from which appropriate action
could be taken, or downloaded in case of a less severe alert (like
Holters do presently). Even with present technologies this
would appear to become achievable, as the ECG of an Apple
Watch was able to detect ventricular tachycardias as well as
heart block [31, 32], and health patches (some with multiple
leads) are emerging as well.

BP

Although BP is routinely taken during dialysis sessions, pre-
and post-dialytic BP values are only moderately representative
for BP during the inter-dialytic period, whereas the relation be-
tween high ‘ambulatory’ BP levels and long-term outcome is far
stronger as compared with ‘in-clinic’ BP measurements [33].
Nevertheless, in-clinic low BP levels were found to be strongly re-
lated to short-term mortality [34]. Yet, low inter-dialytic BP levels
can also lead to impaired organ perfusion. Therefore, a rationale
exists for BP measurements in the home setting. Whereas tradi-
tional periodic home BP measurements were shown to outper-
form in-clinic BP measurements on prediction of outcome [33],
they still only represent a very short time period and may also fail
to detect nadir BP levels that would be potentially modifiable by
adjustment of dialysis treatment or medication. Cuffless BP
measurements, provided they are reliable, would appear to be a
major asset in the assessment of dialysis patients. Available cuff-
less BP measurements apply one of two principles: pulse transit
time (PTT) or pulse arrival time (PAT). PAT measures the time
between ECG R-wave (e.g. from a smartwatch or patch) and
pulse wave arrival (from PPG). Variabilities in the heart pre-
ejection period thus directly influence PAT. PTT compares two
PPG signals with a known distance [15]. Both methods exploit
pulse propagation velocity, for which BP is only one of many
determinants, like vascular tree mechanical properties and others.
Therefore, present cuffless measurements need frequent calibra-
tion against a standard (oscillometric) BP measurement, which to
some extent would seem to limit its potential use. Moreover,
the reliability of cuffless BP monitoring devices, which de-
pend on various assumptions, has been questioned [35] and
the method has not yet been validated in dialysis patients.
Presently, the only AQ6Food and Drug Administration-ap-
proved smartwatch-based BP monitoring devices are based
on wrist cuff measurements, which may still be too obtrusive
for patients to wear all day. Such wrist cuff measurements
also have not yet been validated in the dialysis population,
that would provide additional challenges like abnormal vas-
cular wall anatomy or mechanical arterial wall properties.

Hyperkalaemia

While the mechanisms of sudden cardiac death in
haemodialysis patients have not been completely elucidated, ab-
normalities in electrolyte concentrations—most notably hyper-
kalaemia and fluid overload—are very likely to play a major
role in its pathogenesis. Usually, however, potassium levels are
measured only monthly and in the intermediate period hyper-
kalaemia can remain undetected. With the advance of ECG in
WHD, detection of hyperkalaemia may become possible. A re-
cent study showed that hyperkalaemia (serum level
> 5.5 mmol/L) could be detected by a deep learning algorithm
based on a two-lead ECG [36]. The authors, who validated this
method in three different populations, reported sensitivities
around 90% and specificities around 55%. Should an appropri-
ate WHD algorithm become available, one could envision that
hyperkalaemia-prone patients could take daily measurements
and receive advice (dietary modification, potassium binder in-
take or schedule extra dialysis session). However, the likelihood
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of false positives presently appears high, so preferably ECG-
based ‘suggestion’ of hyperkalaemia should be verified by point-
of-care potassium testing. An interesting approach is derivation
from sweat, which has a relatively strong (r¼ 0.78) relation to
plasma concentration when stimulated by pilocarpine iontopho-
resis [37]. Ion-selective sensing in sweat patches or other body
fluids seems feasible [38]. Future studies are needed to validate
all these approaches in the dialysis population.

Fluid overload

It has been convincingly shown in many observational studies
that even minor degrees of fluid overload, assessed by bioimpe-
dance spectroscopy (BIS) but also fluid depletion, are related to
mortality in dialysis patients [39]. Although the evidence is
somewhat less strong, technique-assisted adjustments of dry
weight resulted in an improvement of surrogate outcome param-
eters in dialysis patients as well as in BP control [40]. Providing
patients with feedback on the degree of fluid overload during
non-dialysis days by easily interpretable methods might enhance
patient participation. While especially new generation BIS devi-
ces are easily interpretable as they present fluid overload as an
actual number, these are too expensive for home monitoring and
require some technical expertise. Developments explored in the
context of heart failure could, however, also be of relevance for
dialysis patients, e.g. in the form of ‘smart’ T-shirts based on tho-
racic bioimpedance (Figure 3). In a recent study, 106 patients
wore a ‘fluid accumulation vest’ for 45 days, with daily wireless
data transfer to a mobile phone. Patient acceptability was good
and an accompanying algorithm showed 72% accuracy for iden-
tifying recurrent heart failure events [41].

Physical activity and sleep

It is well known that physical activity is severely reduced in
patients with end-stage kidney disease (ESKD) even before the
start of dialysis [42], and is compatible with a sedentary lifestyle
[43]. A low physical activity is related to mortality and low quality
of life in dialysis patients. Measuring physical activity by activity
trackers is readily achieved by commercially available wearable
devices including smartwatches and smartphones. In general, the
accuracy of these devices regarding basic functions such as step
count appears to be relatively accurate [44, 45], whereas the
method is relatively unobtrusive. The most relevant question is
whether tracking of physical activity by WHD with appropriate

feedback could induce a behavioural change and improve out-
comes. A recent systematic review in elderly subjects showed that
interventions based on activity trackers resulted in a mean in-
crease of 1558 steps/day [46]. In a randomized study of 3-month
duration, the use of pedometers in combination with weekly
counselling by researchers increased their average daily steps by
2256 above those of controls, but the effect was not sustained after
the end of the intervention period [47]. Possibly, the use of digital
assistants in combination with data from WHD could prolong the
motivation. However, for patients with ESKD, no studies on this
subject have so far been reported, and also in other chronic dis-
eases, such as heart failure, the role of WHD in inducing behav-
ioural change, e.g. in combination with app-based feedback, is still
under investigation [48, 49]. Most consumer-grade physical activ-
ity monitoring devices also claim to be able to assess sleep. A ma-
jority of these devices collect signals from position, motion and
heart rate sensors to input into proprietary algorithms that claim
to characterize sleep and sleep stages accurately. Devices that have
oxygen saturation sensors also claim to accurately assess sleep
breathing disorders, e.g. apnoea. Their accuracies, when tested
against gold standard polysomnography, range from poor to fair
[44, 50]. However, given the cost and discomfort associated with
in-centre polysomnography, such more affordable and less intru-
sive devices could present themselves as attractive alternatives.
While sleep measurements may not be accurate every night, they
could be useful in detecting longitudinal trends in sleep patterns.

P R E R E Q U I S I T E S F O R W H D

Several technical prerequisites for WHD have been discussed in
our previous paper as well as by others [15]. These include tech-
nical safety, unobtrusiveness, ruggedness and user-friendliness.
Alongside these, Al-Alusi et al. [51] pointed out three lines of ev-
idence a new technology should provide in order to be clinically
useful: validation (does the device accomplish what it aims to
do), improving outcomes and cost-effectiveness. In order to suc-
cessfully proceed to the next two stages, data derived from the
wearable sensors must be accurate and robust, in order to pre-
vent false-positive findings that may induce anxiety and carry
the risk of unnecessary diagnostic procedures or overtreatment,
as well as false-negative findings that would give an inappropri-
ate sense of security. As for application in dialysis patients, we
clearly are still in the first stage and for a meaningful application

FIGURE 3: Example of a ‘fluid accumulation vest’ based on thoracic bioimpedance for the detection of cardiac congestion, with the accompa-
nying protocol [41].
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of WHD or other forms of telemonitoring in this population,
strategies for patient-specific feedback should be developed to
provide personalized value-based healthcare. However, we can
learn from other fields such as cardiology, where the combina-
tion of telemonitoring and personalized feedback has already
been tested in various studies and, in some cases, was shown to
be associated with improved outcomes [52].

B O D Y A R E A N E T W O R K S A N D I N T E R N E T - O F -
T H I N G S

When combined, data from WHD, or even implantable devices,
could be part of an integrated network, known as body area net-
works (BAN), or, in a more extensive configuration, synergistic
personal area networks (SPAN) [53, 54]. These form part of the
so-called digital phenotype of the patient, which in future devel-
opments should be interpreted in the context of the comorbid-
ity of the patient and information derived from other sources,
varying from genomics to social structure, in order to provide
information for a real ‘personalized medicine’ [4].

In a SPAN, sensors are connected to actuators in a so-called
‘smart environment’, being part of the so-called ‘Internet-of-
Things’ (IoT) (Figure 4) [54, 56, 57].

Such a system includes not only sensors, but also signal pro-
cessors, data loggers and communication protocols [53]. The
use of medical devices connected via the IoT is growing expo-
nentially. In April 2019, it was anticipated ‘that by 2020 there
will be over 161 million of them connected worldwide’ [58].
All these medical IoT devices produce a quickly growing,
heterogeneous, frequently noisy and often incomplete set of
records. Integration, interpreting and analysing all these data
accordingly will become increasingly difficult, especially if all
this needs to be done in (near) real time using centralized com-
puting power [59].

Given the multitude of available data, which also need to be
integrated to display a comprehensive summary of health sta-
tus, AI likely will play an important role in both signal process-
ing [60], which can already be embedded on a sensor chip (‘tiny
AI’), as well as data processing. It may be wise to distribute in-
telligence by a pipeline of reasoning components (Cascade
Reasoning Frameworks) that could be hosted partly within
wearables, partly in the edge of the network and/or partly in the
cloud.

Advanced predictive analytics, likely at least partly mediated
through machine learning techniques, will also play a role in
the contextual interpretation of data, as a ‘combination’ of mul-
tiple parameters and their trends may be more meaningful than
a single parameter value [61]. As an example, we previously ob-
served that systolic BP and inter-dialytic weight gain declined
while inflammatory parameters went up before hospitalization
or death [61, 62]. If factors such as inter-dialytic weight gain
were to be assessed in isolation, completely different predictions
could have arisen. Moreover, using in-clinic BP measurements
in combination with clinical features, Lacson et al. [63] con-
structed a machine-learning programme that predicted features
associated with BP variability but also specific BP profiles that
were strongly related to outcome. In the future, predictive ana-
lytics could also profit from the readiness of massive data from
wearable sensors using AI algorithms, but could also identify
potential contributing factors to high-risk profiles.

BAN and SPAN could thus play a major role both in im-
proving prediction and anomaly detection, as well as diagnosis
and treatment support [53], if data are reliably obtained and
available in a structured and easily interpretable manner.
Moreover, where data derived from the BAN are actionable, it
should be clear for the patient and healthcare provider which
steps should be followed.

FIGURE 4: The IoT spans many application domains, including healthcare. Innovative hardware (semiconductor and system technologies)
and software (digital technology platforms) drive the overall IoT expansion. For healthcare ‘tiny AI’, embedded in WHS will be a key enabler,
completed by uncrackable cyber-safety from physically unclonable features and energy efficient safe wireless connection, all integrated on-chip.
Figure adapted (with permission) from [55].
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C H A L L E N G E S F O R T H E H E A L T H C A R E O F
T H E F U T U R E

Whereas data derived from a combination of WHD could un-
doubtedly contribute to the improvement of 4P medicine and
value-based healthcare, several challenges are apparent.
Alongside the issues of validation, outcome improvement and
cost-effectiveness, an important challenge is the issue of cyber-
security and data privacy. Threats can come from unexpected
sources, as shown in a recent paper discussing the possibility of
cyber attacks on healthcare devices using Unmanned Aerial
Vehicles [55]. Physically unclonable features (PUFs) form an
inherently unique signature method for individual digital chips
(although mass-produced). PUFs are embedded in the hard-
ware itself, forming a key that cannot be hacked by software.
Other challenges are data ownership, liability, reimbursement
and definition of responsibilities [16]. It would seem impossible
that the interpretation of the data derived from the monitoring
systems and the subsequent action would be the sole responsi-
bility of healthcare professionals, as this would lead to an
unmanageable workload and liability issues. In line with the 4P
principle, society will have to define the responsibilities of
patients, healthcare providers and other stakeholders.
Widespread ethical and successful introduction of BAN can, in
our opinion, only be achieved in a situation with shared respon-
sibilities and a transformative and adaptive healthcare system.
Importantly, society may also have to accept the possibilities of
false-negative and false-positive data to some extent. It is also
highly important to define responsibilities for critical and non-
critical conditions. For non-critical conditions, personal digital
assistants [16, 54] may become an intermediate between
patients and healthcare provider, with also a potential interme-
diate in a ‘digital clinic’, where patients can have encounters
with trained employees. Under most circumstances, continuous
monitoring will neither be necessary or desirable, as adequate
information, as in the example of a fluid accumulation vest, can
also be obtained during single daily measurements. If we enter
the era wherre patients are really monitored on a more or less
continuous basis by unobtrusive techniques, then only highly
clinically relevant and immediately actionable data should be
transferred and all others stored for analysis and interpretation
at a later stage [51]. In our opinion, real-time remote monitor-
ing is likely only indicated for patients with a high risk for im-
mediate life-threatening conditions that are also actionable.

C O N C L U S I O N

It is very likely that, also driven by rapid technical and societal
changes, WHD will enter clinical practice in the near future, in-
cluding for dialysis patients. Whereas healthcare professionals
may initiate some of these developments, patient preferences
and a technology push from device manufacturers will also
likely play a major role. Whereas the introduction of WHD, cer-
tainly when accompanied by adequate feedback and educa-
tional modules, could play a major role in the 4P healthcare of
the future, a major challenge is to balance societal expectation
with the workload and liability of healthcare professionals. If
WHD and BAN are really applied on a large scale, then the or-
ganization of healthcare will have to transform to a structure

with shared responsibility and a different structure in which
digital assistants and ‘wireless clinics’ are involved. In order to
handle the massive amount of complex data, AI will likely play
a major role to aid in their structuring, presentation and inter-
pretation. The ultimate goal would be reliable smart automated
recognition of meaningful events, but if and how the develop-
ments in digital medicine will impact the care for dialysis
patients in the next decade remains to be seen. Anyhow, both
patients and their healthcare providers should be ready for these
likely transformative changes in order to fulfil their full promise:
enhancing 4P medicine in partnership with the patient.
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