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Abstract: Experiential decision-making could be explained as a result of either memory-based 

or reinforcement-based processes. Here, for the first time, we show that individual preferences 

between a memory-based and a reinforcement-based strategy, even when the two are 10 

functionally equivalent in terms of expected payoff, are adaptively shaped by individual 

differences in resting-state brain connectivity between the corresponding brain regions. Using 

computational cognitive models to identify which mechanism was most likely used by each 

participant, we found that individuals with comparatively stronger connectivity between memory 

regions prefer a memory-based strategy, while individuals with comparatively stronger 15 

connectivity between sensorimotor and habit-formation regions preferentially rely on a 

reinforcement-based strategy. These results suggest that human decision-making is adaptive and 

sensitive to the neural costs associated with different strategies. 

One-Sentence Summary: Individual preferences between two decision-making strategies can 

be predicted by resting-state brain connectivity.  20 
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Two different frameworks have been proposed to explain how humans change their 

behavior from experience. According to one class of theories, previous decisions and their 

outcomes are recorded as long-term memory traces, and decision-making is guided by their 

sequential retrieval and examination from long-term memory (1, 2). The decision for which the 

best outcomes can be remembered is then chosen. We will refer to this as the “Declarative” 5 

framework. The other class of theories posits that decision-making from experience is guided by 

basic mechanisms of reinforcement learning, whereby the value of the outcome of each previous 

decision incrementally modifies an internal cached value associated with each option (3, 4). When 

making a decision, the option with the highest expected value is chosen. We will refer to this as 

the “Procedural” framework. Despite making similar predictions about the outcome of decision-10 

making processes (5), these two mechanisms depend on different neural resources. In the 

Declarative framework, decisions from experience depend on the brain circuits involved in the 

storage and retrieval of episodes in long-term memory, such as the medial temporal lobe (6) and 

the lateral prefrontal cortex (7). In the Procedural framework, decisions from experience rely on 

brain circuits for implicit reward learning and habit formation, such as the basal ganglia (8) and 15 

the supplementary motor area (9).  

Both systems are concurrently active at any given time (10, 12). So, why should individuals 

choose to rely on one system over the other? One likely explanation is that humans have inherently 

limited processing capacity (13), and therefore adopt different procedures to maximize the 

outcome of a decision while consuming the minimum amount of cognitive resources (14, 15). And 20 

because the cost of a decision also depends on the neural resources it consumes, individuals with 

different characteristics would make decisions in different ways. This paper puts forward the 

hypothesis that individuals rely on Declarative or Procedural processes based on their relative 

efficiency of their corresponding neural circuits. A common index of neural efficiency is 

represented by the resting-state connectivity between regions within a circuit, i.e., the degree of 25 

correlation in their spontaneous activity between pairs of regions (16). Higher correlations at rest 

reflect tighter coupling of neural dynamics and greater exchange and integration of communication 

between regions (17). Thus, relatively higher functional connectivity within the Declarative or the 

Procedural circuit should predict greater reliance on the corresponding system.    

An important obstacle in testing our hypothesis is that the choice between the two systems 30 

does not depend solely on their mental and neural costs but also on their relative effectiveness in 

a given task. For example, it has been argued that the Procedural system would be preferred when 

decisions are probabilistic and the stimuli are difficult to verbalize (12, 18, 19). If, for some reason, 

one system is better suited for a given task than the other, an individual preference based on neural 

efficiency would be overridden by the effectiveness of the alternate system. To investigate the 35 

relationship between brain connectivity and preferred decision-making processes requires a task 

where the Procedural system is as effective as the Declarative system strategy. One such task is 

the Incentive Processing task (IPT: (20), which guarantees that either system yields the same 

expected payoff. In this task, participants repeatedly guess whether a hidden number is greater or 

smaller than five by pressing one of two buttons, and receive monetary feedback for correct 40 

guesses. Once the choice is made, the number is revealed and feedback is provided (Figure 1A). 

Unbeknownst to participants, the number is chosen after their choice and follows a predefined 

feedback schedule. Under these conditions, preferences for either the Declarative or Procedural 

decision-making systems should depend only on the neural costs for each individual participant. 

Because the number of wins and losses is fixed and predefined, behavioral data from the IPT 45 

cannot be analyzed using accuracy measures. Instead, individual behavioral differences can be 

measured by computing the probability of choosing a different option (i.e., from “win” to “lose” 

or vice versa) after receiving feedback from the previous trial, referred to as the shift probability. 
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Shift probabilities were computed for the different types of feedback (“win”, “lose”, or “neutral” 

when the number is exactly five) and the two different types of experimental blocks that were used 

in the task (“Mostly Lose”, in which 6 loss trials pseudo-randomly interleaved with either 1 neutral 

and 1 reward trial, 2 neutral trials, or 2 reward trials,  and “Mostly Win”, in which 6 reward trials 

pseudo-randomly interleaved with either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials). 5 

Under these conditions, individual preferences for Declarative vs. Procedural-based decision-

making should maximally reflect the underlying efficiency of the corresponding circuit.  

To test this hypothesis, we analyzed a subset of 200 participants from the Human 

Connectome Project (21) for whom neural and behavioral measures from the IPT as well as 

resting-state fMRI data were available. Figure 1B illustrates the methodology of this study. To 10 

determine whether a participant relied on the Procedural or Declarative mechanisms, each 

participant’s behavior was fitted to two parametrized computational models, one implementing 

Declarative decision-making and one using the Procedural system. 

In the Declarative model, each decision/outcome pair is stored as an episodic trace. 

Because of forgetting, the availability A(t) of each episodic trace at time t decays according to a 15 

power law (22), i.e.  𝐴(t) =  ∑ log [𝑡 − 𝑡(𝑛)]−𝑑
𝑛 . In this equation, t(n) is the time at which the 

same decision/outcome pair has been experienced for the n-th time and d is an individual-specific 

forgetting rate (23). A decision is made by retrieving the most available memory of a “win” 

outcome and executing the corresponding decision (i.e., “more” or “less”). Memories are selected 

probabilistically by adding transient noise to each memory’s availability, drawn from a logistic 20 

distribution with zero mean and scale parameter μ.   

In the Procedural model, the two possible decisions (“more” or “less”) are represented as 

two actions. Each action has an associated value V that is updated over time. After the n-th decision, 

the value V(n) of an action is updated using a reinforcement-learning-like equation (24): 𝑉(n) =
 𝑉(𝑛 − 1) +  𝛼[𝑅 − 𝑉(𝑛 − 1)]. In this case, R is the reward associated with an outcome, (1 for 25 

“win”, -1 for “lose”), and α is the learning rate. Actions are selected probabilistically by adding 

transient noise to each action’s value, drawn from a logistic distribution with zero mean and scale 

parameter ν. Both models were implemented in the same architecture, ACT-R (25), so that all of 

the other cognitive, perceptual, and motor components could be kept equal between the two. Thus, 

each model depends on one learning parameter (d or α) and one noise parameter (μ or ν). Each 30 

combination of parameters was explored using a grid search and the distribution of their shift 

probabilities for each block was recorded. Each participant was then assigned to either the 

Declarative or Procedural group based on which version of the model had the greatest log-

likelihood of producing their observed behavioral data.  

  35 
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(A)  

 
(B)  

 5 
Fig. 1. (A) Incentive processing task paradigm.  (B) The pipeline of the present study. First, each 

subject’s behavioral data are fit by two distinct cognitive models, Declarative vs. Procedural 

model through maximum log-likelihood. Second, each subject’s neuroimaging data are 

processed to construct resting-state functional connectivity matrices. Lastly, machine learning 

models are trained to predict unseen subject’s decision-making process from the neuroimaging 10 

data.  
 

Although indistinguishable in most cases, the two models behave differently in the IPT. 

Because, in the Declarative model, the availability of a memory grows with the number of times 

it has been experienced as the task continues, feedback from the most recent decision has less 15 

influence on future choices, which are instead affected by the longer history of previous decisions. 

The Procedural model, on the other hand, does not maintain a memory of previous choices and 

adjusts the value of an action after every feedback; thus, it is more sensitive to the most recent 

outcome. Because of this, we expect that individuals best fitted by the Declarative model would 

be less prone to changing their choice preferences immediately after feedback, and thus would 20 

exhibit smaller shift probabilities. And because the two mechanisms rely on different neural 

substrates, we expect that regional differences in BOLD activation would reflect the neural cost 

associated with each. Therefore, we expect individuals best fitted by Declarative models to show 

greater activity in regions associated with episodic encoding and retrieval, such as the 
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hippocampus and the ventral frontal cortex. Correspondingly, we expect individuals best fit by the 

Procedural model to display greater activity in the circuits associated with habit formation, such 

as the medial frontal cortex and the basal ganglia. Finally, we expect the type of decision-making 

processes used to depend on the patterns of functional connectivity at rest. To test this latter 

prediction, a classifier was trained to predict whether a participant would be best fit by a 5 

Declarative or Procedural model from the same individual’s functional connectivity data. We 

expect that functional connections that successfully predict the reliance on the Declarative 

mechanism for decision-making would be found between memory encoding and retrieval regions. 

Conversely, we expected that functional connections predictive of reliance on the Procedural 

mechanism reward-based learning would be found in sensorimotor cortices and the basal ganglia 10 

circuit.  

Results 

Decision-Making Process Identification  

By excluding participants who did not complete the IPT and two sessions of resting-state 

fMRI scanning, a total of 199 participants were fit by the two ACT-R models. Of these, 127 were 15 

best fit by the Declarative model and thus were included in the Declarative group. The remaining 

72 individuals were best fit by the Procedural model and included in the Procedural group 

(Figure 2). A logistic mixed-effects model was conducted using orthogonal contrast coding as 

implemented in the lme4 package in R. Group (Declarative vs. Procedural), Block Type (Mostly 

Win vs. Mostly Loss), and Feedback (Win vs. Loss; Figure 1A) were treated as fixed effects, and 20 

individual subjects were treated as random effects. (Full statistical results are shown in Table 

S1).  

As expected, the switch probability was found to be statistically different between the 

two groups (z = -6.11, p < 0.001), and consistent with the predicted model differences. 

Specifically, participants in the Procedural group showed a significantly greater probability of 25 

shifting their behavior after a “Loss” feedback, while those in the Declarative group rarely did 

so. This finding was consistent with our understanding of the memory retrieval process, with the 

Declarative system becoming less sensitive over time to individual items of feedback in relation 

to the accumulation of historical decision/outcome pairs.  

 30 

 
Fig. 2. The probability of response switching by two groups of individuals identified as either 

preferring Declarative or Procedural strategy in this decision-making task. Of 199 participants, 

127 subjects were best fit by the Declarative model, and 72 were best fit by the Procedural 

model. 35 
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Group Differences in BOLD Activations During Task 

In addition to finding significant behavioral differences between two groups of 

participants, we also found relevant and consistent differences in their task-based fMRI data. In 

line with previous studies using the same dataset (26), our investigation focused on the 

difference in brain activity between Mostly Win and Mostly Lose blocks. A T-test was 5 

performed to identify brain regions more active in one group over the other. The test was 

weighted using the relative log-likelihood of each participant’s being fitted by either of the two 

models, so that participants who had a stronger preference for one process were weighted more 

(See Materials and Methods). The test identified several brain regions that show significant 

BOLD signal differences between the Declarative and Procedural groups (Figure 3; Table S2). 10 

Specifically, participants in the Declarative group showed greater brain activity in regions 

involved in memory encoding (e.g., parahippocampal gyri) and retrieval (ventral frontal cortex), 

while the Procedural group showed greater brain activity in areas involved in habit formation 

(caudate nucleus) and error prediction and correction (dorsal anterior cingulate cortex, insula).   

 15 

 
Fig. 3. Differences between Declarative and Procedural participants during the incentive 

processing task. Regions shown are significant at FDR q < 0.05, corresponding to a voxel-wise 

threshold of T >= 2.83.  

 20 

Predicting Individual Differences in Decision-Making Processes Through Functional 

Connectivity 

Functional connectivity data consisted of pairwise partial correlation matrices between 

each pair of the 264 regions in the Power parcellation scheme (27). To identify which functional 

connectivity features predict whether a participant would belong to the Declarative or Procedural 25 

group, we used a logistic Least Absolute Shrinkage and Selection Operator (LASSO) (28) 

regression model, which reduces the large number of potential predictors while retaining the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.10.523458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523458
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 

Template revised February 2021 

7 

 

most predictive features. The LASSO model was implemented using the glmnet package in R 

(2010). To ensure generalization, we chose the optimal LASSO hyperparameter λ (0.0239) using 

a nested cross validation method (See Supplementary Materials). Having the optimal λ, we refit 

the LASSO model using the Leave-One-Out (LOO) cross-validation approach and obtained the 

correlation coefficient betas (𝛽) for subsequent brain connectivity analysis.  5 

The prediction performance was evaluated by regular LOO cross-validation and nested 

cross validation approaches. After refitting the model with optimal λ, the cross-validation 

accuracy was 99.58%, and ROC-AUC was 0.9996. Nested CV model performance was 

averaged, resulting in a mean training accuracy score of 100%, and a mean testing accuracy 

score of 78%. These results indicate that the LASSO model was successful at predicting an 10 

individual’s preferred decision-making process (Declarative or Procedural) from resting-state 

brain functional connectivity.   

Finally, we examined which functional connectivity features were predictive of 

individual preferences in decision making. After LASSO regularization, 60 functional 

connections (approximately 0.01% of the total) had non-zero 𝛽 parameters, suggesting a very 15 

sparse neurofunctional connectivity. Since the ultimate effect of a β parameter on the predicted 

group assignment depends on the polarity of the underlying functional connectivity, a positive β 

value has different implications if applied to a positive or negative partial correlation between 

two regions. Consider, for example, a connectivity value associated with a positive β value: if the 

underlying connectivity is positive (r > 0), then the degree of functional connectivity can be 20 

taken as a vote in favor of the Declarative system. If, on the other hand, the underlying 

connectivity value is negative (r < 0), then it should be counted as a vote for the Procedural 

system.  

To make the interpretation of the values unambiguous, we multiplied the β matrix with 

the average functional connectivity matrix, obtaining a new group-level weighted averaged 25 

correlation matrix W. The matrix W can now be interpreted unambiguously, since W > 0 predicts 

reliance on a Declarative process and W < 0 predicts reliance on a Procedural process.  Figures 

4(A) and 4(C) show these different functional connections. 

Connections predictive of Declarative processes involved clearly different networks than 

connections predictive of Procedural processes, as shown in Fig 4(B) and Fig 4(D). As expected, 30 

reliance on Declarative processes in decision-making was predicted by greater connectivity in 

the networks of regions associated with task control (frontoparietal networks and attention 

networks) and episodic memory (memory retrieval network). Reliance on Procedural learning 

processes, instead, was predicted by greater connectivity in sensorimotor salience, and the 

subcortical networks including the basal ganglia. 35 
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Fig. 4. The distribution of predictive connections in Declarative and Procedural functional 

networks. (A) Anatomical location of the function connection predictive of Declarative group 

assignment; nodes represent regions, node colors indicate the network they belong to; node size 

indicated the importance of a region (sum of connectivity values). (B) Distribution of the 5 

Declarative functional connections within the Power parcellation networks. (C) Anatomical 

location of the functional connections predictive of Procedural group assignment). (D) 

Distribution of the Procedural connections across the Power parcellation networks.  

Discussion 

This study shows that individuals rely on different mechanisms when deciding from 10 

experience, and that this preference is adaptive and reflects individual differences in the 

functional connectivity between each process’ corresponding circuitry. Specifically, individuals 

exhibiting stronger connectivity between and within frontoparietal and memory retrieval regions 

tend to use Declarative strategies that are more reliant on episodic encoding and retrieval, while 

individuals with stronger connectivity in cingulate, sensory, and basal ganglia regions tend to 15 

rely on habitual actions and reinforcement learning. An individual’s preference can be, in fact, 

successfully predicted from their underlying functional connectivity.  

Although our results shed new light on the neural bases of experiential decision-making, 

a number of limitations must be acknowledged. First, participants were assigned to the 

Declarative or Procedural group based on the log-likelihood of a corresponding cognitive model. 20 

Because no other ground-truth labels were available, these classifications should be interpreted 

with caution. Another limitation is that the incentive processing task differs from most decision-

making paradigms, as there is no winning rule for participants to learn from the feedback. Thus, 

although this task was particularly well suited for the current study, more work is needed to 

determine whether these findings would translate to more realistic situations.   25 

In addition, our study assumes that greater functional connectivity reflects greater 

efficiency. While much experimental evidence points to this, the mechanisms by which 

connectivity translates to computational efficiency are not clear. One proposed solution is that 

connectivity reflects communication efficiency across regions. If so, connectivity should 

correspond to decision-making noise in our models. In fact, a follow-up analysis of individual 30 

model parameters shows that individual preferences for one process over the other largely follow 
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differences in the estimated noise parameter. That is, individuals whose estimated Procedural 

noise was larger than the estimated Declarative noise were significantly more likely to be fit by 

the Declarative model, and vice-versa (see Fig S3A-B and Table S4).               

Although we have found evidence that individuals prefer to implement decision-making 

processes using the circuits that show the greatest connectivity, our analysis does not directly 5 

support a causal direction. To conclusively show a direct causal effect, it would be necessary to 

experimentally alter functional connectivity within the Declarative and Procedural circuits and 

measure subsequent changes in behavior in the same task. Such an experimental intervention is 

difficult to carry out in humans, although they are in principle conceivable using 

pharmacological interventions that directly target one circuit or intracranial direct stimulation of 10 

these circuits in patients with implanted electrodes or ECoG grids. 

Finally, our study still does not directly address the source of differences in functional 

connectivity. Two hypotheses are possible. In principle, these differences could reflect 

underlying genetic or structural differences in brain function. Alternatively, it is possible that 

differences in functional connectivity simply reflect one’s past history of relying on one 15 

particular process (and its underlying circuit) over the other. In this case, individuals might have 

a preference (let’s say, for the Declarative system) and repeated use leads to corresponding 

increases in functional connectivity (let’s say, in the memory retrieval network). The two 

explanations might be intertwined, i.e., small initial differences in the efficiency of these circuits 

might lead to greater use of one process over the other, and practice over time might result in 20 

additional gains in efficiency. 

Further investigation is needed to fully untangle these questions, but these results 

nevertheless represent a promising step forward in directly connecting the mechanical 

underpinnings of brain circuitry with observed human behavior in decision-making.  

  25 
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Materials and Methods 

This study analyzed both behavioral and neuroimaging data obtained from a subset of the 

Human Connectome Project (HCP) dataset (2013). Data were provided by the Human 

Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and 

Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the 5 

NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems 

Neuroscience at Washington University. A total of 199 participants (111 females, 85 males, and 

3 did not disclose) who completed both sessions of the task-based fMRI gambling game were 

included in this study. All participants were healthy adults with no neurodevelopmental or 

neuropsychiatric disorders. The experimental protocol, subject recruitment procedures, and 10 

consent to share de-identified information were approved by the Institutional Review Board at 

Washington University.  

 

The Incentive Processing Task in the HCP 

This incentive decision making task was adapted from the gambling paradigm developed by 15 

Delgado and colleagues (20). Participants were asked to guess if the number on a mystery card 

(represented by a “?”, and ranging from 1 to 9) was more or less than 5. After making a guess, 

participants were given feedback, which could take one of three forms, Win (a green up arrow 

and $1), Loss (a red down arrow and -$0.50), or Neutral (a gray double-headed arrow and the 

number 5). The feedback did not depend on the subject’s response, but was determined in 20 

advance; the sequence of pre-defined feedback was identical for all participants. The task was 

presented in two runs, each of which contains 64 trials divided into eight blocks. Blocks could be 

Mostly Loss (6 loss trials pseudo-randomly interleaved with either 1 neutral and 1 reward trial, 2 

neutral trials, or 2 reward trials) or Mostly Win (6 win trials pseudo-randomly interleaved with 

either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials). In each of the two runs, there 25 

were two Mostly Win and two Mostly Loss blocks, interleaved with 4 fixation blocks (15 

seconds each). All participants received money as compensation for completing the task, and the 

amount of reward is standard across subjects.  

 

fMRI Data Processing and Analysis  30 

This study employed the “minimally preprocessed” version of resting-state fMRI data and 

incentive processing task fMRI data, which has already undergone a minimal number of standard 

preprocessing steps including artifact removal, motion correction, normalization, and registration 

to the standard MNI ICBM152 template. Additional preprocessing steps were performed using 

the AFNI software (29), including despiking, spatial smoothing with an isotropic Gaussian 3D 35 

filter FWHM of 8 mm, and removal of linear components related to the six motion parameters 

and their first-order derivatives. 

Functional connectivity measures were constructed from the HCP resting-state data using 

Power et al.’s whole-brain parcellation (27). This parcellation was used to construct a 264 

Region of Interest (ROI) functional atlas, with each ROI containing 81 voxels. This parcellation 40 

atlas is defined in the MNI space and was applied to all participants in the HCP dataset. The 

extraction of the time series and calculation of the connectivity matrices was performed using R 

(30) and Python. Pearson correlation coefficients and partial correlation coefficients between the 

time series of each brain region were calculated for each participant, resulting in a 264 × 264 

symmetric connectivity matrices for each session for each subject. The average correlation 45 

coefficients across subjects were calculated by first transforming each r value into a Z-value, and 
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then retransforming the average Z value back into an equivalent r value using the hyperbolic 

tangent transformation (31).   

For task-based fMRI data analysis, we specified the first-level analysis model and estimated 

the parameters corresponding to the difference between Mostly Win and Mostly Lose blocks, as 

in (26). The resulting contrast maps from were for each subject were then used in a second-level 5 

weighted t-test between-Declarative and Procedural groups. The test was implemented using 

AFNI’s 3dttest++ software, and its weights corresponded to the absolute difference in log-

likelihood between the best-fitting Declarative and best-fitting Procedural model. This way, the 

contribution of each observation was proportionally scaled to the evidence favoring each 

participant’s assignment to their groups.  The statistical significance level was set at a 10 

significance level of q < 0.05 corrected for multiple comparisons using a False Discovery Rate 

(FDR) procedure.  

 

Response Switch Analysis  

Because in the Incentive Processing task the feedback is scheduled in advance and does not 15 

depend on actions taken by participants, all participants have exactly the same raw performance 

(in terms of “correct” choices), and is thus impossible to analyze their behavior in terms of either 

accuracy or learning. This poses a challenge when trying to analyze behavior since the most 

common metrics used in decision-making from experience (accuracy and learning rates) cannot 

be used.  Instead, the most meaningful way to examine participants’ behavior in response to 20 

feedback is by analyzing their Win-Stay, Lose-Shift (WSLS) probabilities. Thus, our main 

behavioral measurement was the tendency to switch responses after Loss feedback and after Win 

feedback. The response switch is coded as 0 if the current response is the same as the next 

response, and coded as 1 if the current response is not the same as the next response. Because the 

response switch is a binary variable, the analysis was conducted with logistic mixed-effects 25 

models using orthogonal contrast coding as implemented in the “lme4” package in R. Given that 

Neutral trials make up only a small proportion of total trials, they were excluded in statistical 

tests. In the mixed-effect model, Block Type (Mostly Win or Mostly Loss) and Trial Type (Win 

or Loss) were treated as fixed effects, and individual participants were treated as random effects. 

The parameters were estimated based on the maximum likelihood.  30 

On the group level, there is no significant effect of feedback nor Block Type on the 

probability of switching responses. However, and critically for this study, participants do exhibit 

different behavioral response profiles on an individual level. Fig. S1. shows the mean probability 

of response switching as a function of Trial Type (feedback received) and Block Type, each line 

representing the mean performance of a single individual.  35 

We also examined whether the response times change as a function of previous feedback 

(the Trial Type of the previous trial) and Block Type. Excluding neutral trials in the statistical 

analysis, on average, participants tend to take longer when making decisions in Mostly Reward 

blocks than in Mostly Loss blocks (β = 15.21, SE = 6.39, p = 0.017), regardless of previous 

feedback. Compared to the probability of response switching, however, the pattern of RTs was 40 

found to be noisier and less consistent across individuals and was therefore not included in the 

following modeling analysis. 

 

Computational Models 

While the behavioral data does not reveal major effects across subjects, it offers an 45 

exciting opportunity from a modeling perspective. There exist two competing explanations of 

how decision-making occurs in a repeated choice paradigm, one based on episodic memory of 

previous choices (1) and one based on reinforcement learning (3). Each explanation is dependent 
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on different mechanisms, and, ultimately, reliant on different strategies. Both explanations were 

implemented as two computational models in the ACT-R cognitive architecture (25): a 

Declarative model, reliant on memory retrieval, and a Procedural model, which makes use of 

reinforcement learning.  

ACT-R is the most prominent and successful cognitive architecture in psychology and 5 

neuroscience (32), which provides a comprehensive framework to understand a wide variety of 

cognitive functions and learning processes. In ACT-R, decision-making processes are 

represented in two fundamental ways: chunks and production rules. A Chunk is a vector-like 

structure that stores semantic or episodic memories. A Production rule is a basic action unit that 

represents procedural knowledge as an “IF-THEN” conditional statement. Productions and 10 

chunks interact through a set of modules which represent different cognitive processes. Two 

distinct cognitive representations in ACT-R make it the ideal modeling architecture for the 

present study.   

 

Declarative Model  15 

The Declarative model relies on the Declarative module to retrieve a memory of prior 

choices and their corresponding outcomes (Fig. S2. A). When presented with a mystery card, the 

model selects one of the possible choices, LESS or MORE, for evaluation, and attempts a 

retrieval of a previous episodic memory in which that action was used. If the retrieved memory 

contains a WIN result associated with that choice, it will execute that action, but if the history 20 

contains a LOSE or NEUTRAL result, the model will execute the alternate action. After being 

presented with feedback, the mode the model encodes as new memory associating the action 

with its outcome. Memories are retrieved based on their activation, a noisy quantity that depends 

on the frequency and recency with which the decision-outcome episodes have been experienced 

(Eq. 1).  25 

 

Procedural Model  

By contrast, the Procedural model (Fig. S2. B) represents the possible actions of the 

decision-making processes as competing rules, and reinforcement learning is used to increase the 

use of the rule that leads to the best outcomes. Instead of encoding each trial as a memory of 30 

action and associated feedback, the model has two competing rules that execute the MORE and 

LESS actions. When presented with the mystery card, the model chooses one of the rules to 

execute based on its expected value. Initially, both rules have equal value, and one will be 

chosen at random. After each decision, the model is presented with a WIN, LOSE, or 

NEUTRAL response, and this feedback is encoded as the reward term in the reinforcement 35 

learning equation (Eq. 2) (+1 for a WIN result, -1 for a LOSE result, and 0 for a NEUTRAL 

result). Positive rewards will encourage the model to repeat the associated action, while a 

sequence of losses will decrease the value of an action and encourage the selection of the 

alternate action.  

 40 

Individual Fit and Model Evaluation 

To examine the predictions of our model, we used a grid-search approach to find the best 

possible parameters within the parameter space shown in Table S3. Each model simulates 64 

trials, the same as the experimental paradigm for participants, repeated over 50 runs. The 

simulated stimuli were presented in the same order as the real experimental stimuli to avoid any 45 

potential noise from sequence effects in the simulation. Following the six conditions (Reward, 

Loss, Neutral trials in Mostly Reward Block and Reward, Loss, Neutral trials in Mostly Loss 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.10.523458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523458
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 

Template revised February 2021 

16 

 

Block), the mean probability of response switching, P(Switch), and its standard deviation are 

computed. 

In order to evaluate the goodness-of-fit for individual fitting, we estimated maximum 

Log-Likelihood across the parameter space. The likelihood function of a particular model m with 

parameters θ given data x, indicated as 𝐿(m, θ | 𝑥), is the probability that the parameterized 5 

model would produce that data, that is  𝐿(m, θ | 𝑥) = 𝑃(𝑥 | m, θ). Common model comparison 

metrics, such as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC), are both based on likelihood, but rely on closed-form likelihood functions. While it is 

possible to derive such functions for simple models (such as logistic models or linear models), 

they can be incredibly difficult to derive for more complex models and impossible for arbitrarily 10 

complex models based on ACT-R and other high-level architectures. Some attempts have been 

made to evaluate complex models with basic likelihood metrics like BIC (33, 34). However, the 

equation used to estimate BIC is a closed-form approximation that is based on Residual Sum of 

Squares and was originally derived for linear models; as such, it does not necessarily hold for 

ACT-R.  15 

In this paper, we followed the computationally expensive but more accurate solution of 

empirically calculating the likelihood function by simulating each model and set of parameters 

multiple times and calculating the empirical probability distribution of each set of results (35). 

Knowing the mean and standard deviation of this distribution, the value of 𝑃(𝑥|𝑚, 𝜽) can then be 

calculated directly. If a model is designed to predict n data points (corresponding, for instance, to 20 

different experimental conditions), the likelihood can be expressed as the joint probability that 

any of those data points can be produced. For simplicity, and assuming independence, this can be 

expressed as the product of the probability of observing each individual data point in the 

empirical data, i.e., 𝐿(m, 𝜽 | 𝑥1, 𝑥2, … , 𝑥𝑛) =  ∏ 𝐿(𝑚, 𝜽 | 𝑥𝑖)  = 𝑖 ∏ 𝛲(𝑥𝑖|𝑚, 𝜽)𝑖 . The probability 

that a model m with parameters θ would generate the observed data xi can be calculated directly 25 

from the mean 𝜇𝑖,𝑚,𝜃 and standard deviation 𝜎𝑖,𝑚,𝜃 of the model’s output for the i-th variable, 

that is 𝑍(𝑥𝑖 − 𝜇𝑖,𝑚,𝜃)/𝜎𝑖,𝑚,𝜃. Finally, to avoid computational problems with vanishing small 

probabilities, it is common to use log-likelihoods, so that:  

log = log ∏ 𝐿(𝑚,

𝑖

 𝜃 | 𝑥𝑖) =  ∑ log 𝑃(𝑥𝑖 | 𝑚, 𝜃) = ∑ log [𝑍(𝑥𝑖 − 𝜇𝑖,𝑚,𝜃)/𝜎𝑖,𝑚,𝜃]

𝑖𝑖

 

After model fitting, an examination of the resulting parameters for the best-fitting 30 

Declarative and Procedural models for each participant shows that differences in the two noise 

parameters are highly predictive of which model would best fit the behavioral data (Fig. S3). A 

logistic regression model similarly found that noise parameter values in the two models were 

jointly significant in predicting which model would best fit each participant (Table S4), with 

higher levels of Declarative noise predicting a greater likelihood of being best fit by the 35 

Procedural model (p < 0.001), and vice versa (p < 0.001). Note that this does not mean that our 

models are fitting noise, instead, we argue that noise parameters reflect the degree to which 

choice is dependent on the information stored by the respective memory system (declarative or 

procedural), and are thus important in separating the two decision-making strategies.   

   40 

Supervised Classification Model  

To explore if individuals’ behavioral differences between Declarative and Procedural 

strategies are indicated by an individual’s underlying brain structure, we trained three most 

commonly used supervised classification models (Logistic regression model, Decision Tree 

model, and Random Forest Model), using resting-state functional connectivity as input its 45 

variable, and predicted the probability of a participant being labeled as either preferring 
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Declarative or Procedural strategy. Considering the equally high accuracy (> 0.8) among these 

classification models (Random Forest Model (accuracy = 0.92) is slightly outperformed than 

other two models), we are confident to say that our Machine Learning models work very well in 

predicting the strategy selection from an individual’s resting state neuroimaging data.  

In addition to the predictive power of machine learning models, another very important 5 

dimension we need to carefully consider in Machine Learning related research is the model’s 

interpretability. While some ML models are excellent at predicting outcome variables, as 

complexity grows exponentially (Deep neural networks), they become a black box that is 

fundamentally difficult to interpret. Therefore, choosing an appropriate ML model with 

reasonable predictability and interpretability is critical in research. We chose the logistic 10 

regression model because it is the most simple and powerful binary classification model that has 

been widely used in many fields of research. It could be used to predict the likelihood of an event 

happening or a choice being made. Rather than fitting data as a straight line, the logistic 

regression model uses the logistic function to squeeze the output of a linear equation between 0 

and 1. The equation of the logistic function to estimate the probability of an event x is shown 15 

below:  

Ρ(𝑥) =  
1

1 + 𝑒−𝑥
 

In order to handle an imbalanced dataset with unequal target labels, up-sampling was 

applied by randomly adding data from the minority class. We also applied individualized weights 

to each training sample, which is the absolute difference of maximum log-likelihood between 20 

two models. Specifically, for subjects who are better distinguished by two models (Declarative 

vs. Procedural), we increased the weights of these data points in later ML model training, while 

for those who had a very close fit maximum log-likelihood between two models, the training 

procedure was less reliant on these samples. Having 69,696 (264 ROI × 264 ROI) connections, 

we want to select only the most important connections contributing to the prediction, therefore, 25 

Lasso regularization was applied to the Logistic Model. Lasso is a machine learning regression 

analysis technique that performs both variable selection and regularization in order to improve 

the prediction accuracy and interpretability of the computational model. It can reduce model 

complexity by penalizing large numbers of coefficients and also prevents overfitting which may 

result from simple linear regression.  Lasso minimization is calculated using Eq 5 where the 30 

tuning parameter 𝜆 controls the degree of penalty: for greater values of 𝜆, more coefficients are 

forced to become 0.  

Loss = Error(Y - 𝑌̂) +λ ∑ 𝑤𝑖
2

𝑛

1

    

 

To account for the large disparity between the number of participants and the number of 35 

predictors, we performed a Grid search cross-validation using glmnet package in R (2010) to 

determine the best value for the fit hyper-parameter λregular (0.015). To alleviate the potential 

problems of small sample size in neuroimaging studies, Vabalas and colleagues (36) used Nested 

CV approaches producing robust and unbiased model performance regardless of sample size. 

Following their suggestions, we fit the model with n-iteration nested cross-validation (n = 200) 40 

to determine the optimal hyperparameter λ. For each iteration, the dataset was randomly split 

into training and testing (the ratio of training to testing is 1:3). Instead of adopting computational 

expensive Leave-One-Out (LOO), we adopted the k-folds cross-validation (k = 20) method. The 

whole dataset was randomly split into 20 folds and trained on 19 folds of samples and the 

prediction was made on the remaining one-fold of samples to obtain the best hyperparameter 45 
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value λk, which gave the lowest classification error. With each best lambda λk, the model was 

restrained and made predictions on testing datasets. Then the process was repeated k times. To 

guarantee maximum generalizability, we chose the median of lambdas (λnested = 0.0239).  

The mean accuracy score, true positive rate (TPR), true negative rate (TNR), false 

positive rate (FPR), and false negative rate (FNR) were calculated across all folds to evaluate the 5 

overall performance of the model, taking sample weights into account. By definition, the receiver 

operating characteristic curve (ROC) demonstrates the performance of a classification model by 

plotting the relationship between TPR vs. FPR at different classification thresholds. We 

calculated the AUC (Area under the curve), which is one of the most important metrics for 

evaluating a classification model’s performance; as the AUC of a model approaches 1, the model 10 

approximates an ideal, perfect classifier. It provides information about how well a classification 

model is capable of distinguishing between classes.  
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Fig. S1. The mean probability of response switching as a function of feedback and block 

type. Each color dot and gray line represents the mean probability of response switching of a 

single participant, and the black dot represents the mean and 95% confidence interval across 

participants. 
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Fig. S2. (A) The flowchart of the Procedural model in (B) The flowchart of the Declarative 

model. Both models are implemented in the ACT-R cognitive architecture, which includes basic 

cognitive resources and visuo-motor capabilities that are common to both models. Arrows 

represent the flow of information through the model components. Rounded rectangles represent 

fundamental cognitive modules (e.g., visual, motor, long-term memory); squared rectangles 5 

represent atomic mental actions (“production rules” in the ACT-R framework); document icons 

represent episodic traces (“chunks” in ACT-R jargon) and include incoming sensory information.   

 

   

 10 
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Fig. S3: Noise parameters for the best-fitting Declarative and Procedural models are significantly different 

across Declarative and Procedural groups. (A) Distribution of the differences between noise parameters (B) 

Scatterplot of the observed number of participants n for each combination of noise and parameter levels.  
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Table S1. Results of the Logistic Mixed Effects Model of the Probability of Response 

Switch.  

 

Statistical Test odds ratio se z p 

(Intercept) 0.88* 0.05 -2.30 0.022 

Model Group 0.71*** 0.04 -6.11 <0.001 

Block Type 0.98 0.03 -0.80 0.423 

Trial Type 1.08** 0.03 2.84 0.005 

Model Group by Block Type 1.07* 0.03 2.46 0.014 

Model Group by Trial Type 0.8*** 0.02 -8.10 <0.001 

Block Type by 

Trial Type 

1.02 0.03 0.78 0.434 

 Model Group by Block Type by  

Trial Type 

1.10*** 0.03 3.47 0.001 

Random Effect 

σ2 3.29 
 

ICC 0.12 
 

N HCPID 199 
 

observation  9746 
 

Marginal R2/Conditional R2 0.030/0.144 
 

Log-Likelihood -4010.323 
 

* p<0.05   ** p<0.01   *** p<0.001  
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Table S2. Results from Task fMRI. For clarity, only clusters spanning > 50 voxels, and 

anatomical locations spanning > 5% of the cluster, are shown. 

 

Contrast 

Peak 

MNI 

(x, y, 

z) 

Automated Anatomical Labeling (AAL) Locations 
Size 

(voxels) 

Peak 

T-value 

Declarative  

>  

Procedural 

26, -

84, 12 

Right Calcarine fissure and surrounding cortex (23.50%); Right Lingual 

gyrus (11.80%); Right Superior occipital gyrus (7.16%); Right Middle 

occipital gyrus (6.66%); Right Cuneus (5.24%) 

1,983 6.96 

22, -

26, 46 

Right Median cingulate and paracingulate gyri (14.16%); Right 

Supplementary motor area (10.19%); Right Paracentral lobule (7.21%); 

Right Precuneus (7.15%) 

1,511 4.20 

-24, 

42, -16 

Left Superior frontal gyrus, medial orbital (29.44%); Left Inferior frontal 

gyrus, orbital part (26.60%); Left Superior frontal gyrus, orbital part 

(20.08%); Left Orbitofrontal (11.04%) 

951 5.95 

-24, -

58, -8 

Left Lingual gyrus (34.98%); Left Fusiform gyrus (22.79%); Left Calcarine 

fissure and surrounding cortex (13.07%); Left Cuneus (12.19%); Left 

Inferior occipital gyrus (7.24%) 

566 6.26 

-22, 

22, 28 

Left Middle frontal gyrus (50.09%); Left Superior frontal gyrus, dorsolateral 

(12.74%); Left Inferior frontal gyrus (5.66%) 
565 3.73 

-34, -

42, 34 

Left Inferior parietal, but supramarginal and angular gyri (13.40%); Left 

Postcentral gyrus (7.92%); Left Precental gyrus (5.28%); 
530 5.54 

18, -

26, -22 

Right Parahippocampal gyrus (24.35%); Right Cerebelum 3 (10.73%); Right 

Cerebelum 4 (5.76%); Right Hippocampus (5.24%) 
382 5.42 

8, -62, 

-44 

Right Cerebelum_8_R (23.49%); Vermis_8 (13.17%); Right 

Cerebelum_9_R (12.46%); Right Cerebelum_Crus1_R (9.25%) 
281 4.64 

-16, 

32, 10 

Left Superior frontal gyrus, dorsolateral (17.24%); Left Middle frontal gyrus 

(11.49%) 
261 3.91 

-46, -

10, -36 

Left Inferior temporal gyrus (72.92%); Left Middle temporal gyrus 

(21.67%); 
240 5.07 

-14, -

42, 16 

Left Posterior cingulate gyrus (20.38%); Right Posterior cingulate gyrus 

(7.64%); Left Precuneus (5.10%); 
157 5.85 

14, 36, 

42 

Right Superior frontal gyrus, dorsolateral (60.96%); Right Superior frontal 

gyrus, medial (24.66%); Right Median cingulate and paracingulate gyri 

(12.33%) 

146 3.47 

-20, 4, 

4 
Left putamen (68.64%); Left pallidum (16.10%) 118 4.09 

2, 32, -

12 

Right Frontal_Med_Orb_R (33.91%); Left Olfactory cortex (24.35%); Right 

Anterior cingulate and paracingulate gyri (13.04%); Left Anterior cingulate 

and paracingulate gyri (13.04%); Left Gyrus rectus (5.22%) 

115 3.99 

-66, -

38, 8 

Left Middle temporal gyrus (55.96%); Left Superior temporal gyrus 

(40.37%) 
109 6.71 

-36, -

82, 26 
Left Middle occipital gyrus (97.96%) 98 5.77 

30, -

64, 60 

Right Superior parietal gyrus (81.63%); Right Angular gyrus (11.22%); 

Right Inferior parietal and angular gyrus (7.14%); 
98 6.47 

-34, -

70, 54 

Left Inferior parietal, but supramarginal and angular gyri (43.96%); Left 

Superior parietal gyrus (34.07%); Left Angular gyrus (13.19%) 
91 5.43 
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20, -

20, -4 
Right Thalamus (13.64%) 88 4.51 

16, -

14, 22 
Right Caudate nucleus (40.28%); Right Thalamus (18.06%); 72 4.31 

-16, 0, 

66 

Left Supplementary motor area (72.46%); Left Superior frontal gyrus, 

dorsolateral (24.64%) 
69 3.68 

-2, 50, 

10 

Left Anterior cingulate and paracingulate gyri (58.93%); Left Superior 

frontal gyrus, medial (35.71%); Right Anterior cingulate and paracingulate 

gyri (5.36%); 

56 3.31 

-4, -14, 

-28 
Left Parahippocampal gyrus (19.23%) 52 4.13 

Procedural  

> 

Declarative 

36, -

56, -54 

Right Cerebelum 8 (11.43%); Right Cerebelum 9 (10.06%); Right 

Cerebelum 10 (5.86%)  
1,382 -6.57 

-10, -8, 

20 

Left Thalamus (25.14%); Left Inferior temporal gyrus (7.14%); Left 

Hippocampus (6.03%) 
1,261 -5.51 

22, -

36, 76 

Right Middle frontal gyrus (25.70%); Right Superior frontal gyrus, 

dorsolateral (24.53%); Right Precental gyrus (22.43%); Right Postcentral 

gyrus (15.19%) 

428 -5.22 

58, 24, 

24 

Right Inferior frontal gyrus, opercular part (47.40%); Right Inferior frontal 

gyrus, triangular part (40.62%); Right Rolandic operculum (8.33%);  
192 -5.85 

-42, -

48, -40 

Left Crus 1 (47.37%); Left Cerebelum 7b (16.32%); Left Cerebelum 8 

(10.53%); Left Cerebelum 6 (9.47%); Left Cerebelum 4 (7.89%); Left Crus 

2 (7.37%); 

190 -5.55 

52, 28, 

-4 

Right Inferior frontal gyrus, triangular part (54.50%); Right Inferior frontal 

gyrus, orbital part (42.86%) 
189 -4.89 

66, -

18, 20 

Right Rolandic operculum (45.21%); Right Postcentral gyrus (28.08%); 

Right Supramarginal gyrus (13.01%); Right Superior temporal gyrus 

(11.64%); 

146 -4.03 

-6, -70, 

-8 

Left Cerebelum 6 (33.04%); Left Lingual gyrus (30.36%); Vermis 6 

(16.07%); Left Cerebelum 4 (8.04%) 
112 -5.06 

-14, -

80, -34 
Left Crus 2 (94.55%); Left Crus 1 (5.45%); 110 -5.52 

18, 12, 

-4 

Right Lenticular nucleus, putamen (52.27%); Right Lenticular nucleus, 

pallidum (10.23%) 
88 -4.45 

-38, 

20, 6 
Left Inferior frontal gyrus, triangular part (59.09%); Left Insula (40.91%); 88 -5.07 

64, -

48, 16 

Right Middle temporal gyrus (59.30%); Right Superior temporal gyrus 

(40.70%); 
86 -4.92 

4, -54, 

68 
Right Precuneus (80.25%); Left Precuneus (16.05%); 81 -5.18 

4, -32, 

-4 
Right Lingual gyrus (13.92%) 79 -4.38 

-52, 

18, -6 

Left Temporal pole: superior temporal gyrus (38.36%); Left Inferior frontal 

gyrus, orbital part (19.18%); Left Inferior frontal gyrus, triangular part 

(16.44%) 

73 -5.15 

-16, -

10, 56 

Left Superior frontal gyrus, dorsolateral (45.21%); Left Supplementary 

motor area (8.22%) 
73 -3.26 

-30, -

54, -18 

Left Cerebelum 6 (50.00%); Left Fusiform gyrus (41.67%); Left Cerebelum 

4 (8.33%); 
72 -4.70 
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44, 32, 

42 

Right Middle frontal gyrus (81.94%); Right Superior frontal gyrus, 

dorsolateral (8.33%); 
72 -4.64 

0, -26, 

24 
Left Posterior cingulate gyrus (1.47%); 68 -3.97 

42, -

12, -34 
Right Inferior temporal gyrus (62.50%); Right Fusiform gyrus (37.50%); 56 -4.24 

-2, 10, 

-6 

Left Caudate nucleus (31.25%); Left Olfactory cortex (12.50%); Left 

Lenticular nucleus, pallidum (10.42%); Left Lenticular nucleus, putamen 

(6.25%); 

48 -4.18 
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Table S3. Model parameter space in the simulations. 

 
Models Parameter Value Meaning 

Declarative ε 0 - 0.5 activation noise 

d 0.2 - 0.85 memory decay 

Procedural s 0 - 0.5  utility noise 

α 0.05 - 0.5  learning rate 

 

 

  5 
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Table S4. Results of logistic regression analysis of the effects of noise parameters on group assignment.  

 

Factor Estimate Standard Error T-value p value 

Intercept 3.34 1.21 2.75 0.006 

Declarative noise 12.86 2.76 4.66 <0.001 

Procedural noise -10.56 1.78 -5.94 <0.001 
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