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Leucocytes have tremendous health-check importance related to the individual antiviral capacity of pigs and other mammals.
However, the molecular mechanism of the immune response of blood leucocytes in pigs is not completely known. This study
investigated the leucocyte-count variation before and after poly I:C stimulation in a Duroc–Erhualian F2 population. Pigs with
increased and decreased differences in leucocyte counts were coded as increased responder (IR) and decreased responder (DR),
respectively. Then, we used microarray technology to compare the gene-expression profiles of both groups of pigs. Transcriptomic
analysis identified 129 differentially expressed genes (DEGs) in IR pigs and 136DEGs inDR pigs. Forty-one commonDEGs showed
that both groups had similar expression patterns of immune responses. These results illustrated a differential expression in both
groups. Furthermore, qPCR experiment was performed to verify the differential-expression profile. Functional annotation of the
DEGs indicated that both IR and DR pigs were similar in several biological processes, including innate immune response, and also
exhibited distinct differences in biological processes, molecular function, and pathways. These results provided insights into the
mechanism underlying the antiviral capacity of pigs. Trial registration number is CAS Registry Number 24939-03-5.

1. Introduction

Leucocytes are nucleated blood cells whose rapid translation
of mRNA is regulated by signaling events transduced to
the cell surface antigen so as to interact with proteins,
other cells, and extracellular matrices. Leucocytes are critical
in normal pathophysiological processes and acute phase
conditions, such as physiologic and metabolic changes that
occur in response to generalized acute infections, trauma,
severe inflammatory processes, tissue injury, and autoim-
mune diseases [1]. Leucocytes generated from multipotent,
self-renewing progenitor cells develop from mesodermal
hemangioblast cells [2]. Immunologists have recognized
leucocyte count and leucocyte differential count as key
diagnostic measurements because of their sharp increase

during acute infections [3]. Therefore, a complete blood cell
test often includes a measurement of the level of leucocytes or
white blood cells. Peripheral blood contains polymorphonu-
clear leucocytes that penetrate blood vessel endothelium to
enter the area of inflammation where they are essential in
destroying the action and increasing the power of resistance
against any infection, repair, and regeneration of tissues [2, 4].
Alteration in several immune functions assessed in vitro has
been monitored with blood leucocytes obtained from pig
and human as key diagnostic measurements during acute
infections [3, 5–7]. The characterization of leucocyte surface
antigens by monoclonal antibodies and other molecular
studies has determined the cell lineages and blood leucocyte
subsets implicated in the immune response [8]. Increasingly,
investigators have explored the possibility of characterizing
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the mechanism of diseases by using the subpopulations of
leucocytes in vivo, thereby enabling enhanced investigations
of the immune response to various porcine infections such
as Actinobacillus pleuropneumoniae, African swine fever
virus (ASFV), classical swine fever virus (CSFV), porcine
reproductive and respiratory syndrome virus (PRRSv), and
Aujeszky disease virus [9–16]. Strikingly, leucocyte differen-
tial count in domestic pig has been associated with multiple
chromosomal regions, but specific loci/genes that can par-
tially explain the variation between individuals have not been
identified [17–19].

Increased leucocytes are typically found in pigs with
conditions associated with viral respiratory tract infection
after parainfluenza-3 (PI3) virus [20]. ASFV infection leads
to serious changes in the concentration of leucocytes detected
2–3 d after infection [21]. PRRSv infection caused a huge,
acute drop in total leucocyte counts that affect all PBMC
populations by 2 d after infection in pregnant gilts [22].
To these infectious diseases, the resistance of an individual
resulted from both innate and acquired immunity. The
capacity of innate immunity or acquired immunity is more
or less controlled by genes [23–25]. In pigs, genetic studies
have revealed several genes that participate in the resistance
to diseases [26] including single-gene porcine ryanodine
receptor (ryr1) regulating malignant hyperthermia [27] and
porcine factor H [28]. Nevertheless, the identities of the most
regulators of leucocytes related traits and their direct targets
are largely unknown despite their biological functions.

To define the molecular mechanisms of general gene-
expression profiles or changes during rapid leucocytes turn-
overs in pig genome, we adapted techniques ofmicroarray for
genetic profiling of pigs with the increased and decreased leu-
cocyte counts before and after polyinosinic:polycytidylic acid
(poly I:C) stimulation. Poly I:C is a synthetic double-stranded
RNA that is used experimentally to model viral infections in
vivo [29], together with the microarray technology that rep-
resents a profiling strategy that allows the detection andmea-
sure of various responses by a multitude of gene probes sets.
We have identified a number of previously uncharacterized
genes that appear to be expressed in swine blood leucocytes,
while simultaneously establishing the dominantly expressed
genes of the increased and decreased leucocyte phenotypes,
as well as immune components involved such as influenza
A pathway, cytosolic DNA-sensing pathway, chemokine sig-
naling pathway, and cytokine-cytokine receptor interaction,
which are important in the molecular pathways that regulate
white cells and/or hematopoietic stem cell function in normal
and pathologic conditions.

2. Materials and Methods

2.1. Ethics Approval. All experimental procedures and ani-
mal care activities were strictly conducted in accordance
with the guidelines established for the care and use of
laboratory animals of the Standing Committee of Hubei
People’s Congress (No. 5) approved by The Scientific Ethics
Committee ofHuazhongAgriculturalUniversity (HZAUSW-
2013-014). Therefore, all efforts were made to minimize
suffering.

2.2. Animals. Experimental design, details of the infection,
and blood collection procedures are described in [30]. The
pigs used in the study were from a Duroc–Erhualian F2
population and comprised 392 F2 offspring derived from
51 F1 and 26 F0 parents. In short, 8 Duroc boars were
mated to 18 Erhualian sows. Then, 13 F1 boars and 38 F1
sows were chosen and mated to produce 392 F2 animals.
The six animals used in the present study were selected
based on the two-tailed value of leucocyte counts before
and after poly I:C stimulation. All animals are fed in the
same conditions and free of virus infections such as PRRSv,
Mycoplasma hyopneumoniae, and swine influenza virus. At
35 d, pigs were intramuscularly infected with poly I:C (CAS
Registry Number 24939-03-5, Hangzhou Meiya Pharmacy)
at a dose of 0.5mg/kg. Blood samples were taken at 33 and
35 d after poly (I:C) infection. Leucocytes levels on these dpi
were measured using a Japanese photoelectric MEK-8222K
automatic 5 classification blood analyzer (Nihon kohden,
Tokyo, Japan).

2.3. Phenotypic Data. The statistical significance of the phe-
notypic differences between the treatment and control groups
was first examined by assuming unequal variances Student’s
t-test. The residuals obtained from the linear model were
further used as a target variable for analysis using t-test and
lm functions in the R environment.

2.4. Microarray Design and Hybridization. Based on leuco-
cyte count recorded at 33 and 35 d after poly (I:C) infection,
a total of six pigs were divided into two groups and coded
as increased responders (IR) and decreased responders (DR).
Whole blood samples were collected from each of the six pigs
4 h after poly I:C treatment on day 35 and at day 33 as an
unstimulated control. The whole blood samples were used
for the microarray experiments. GeneChip Porcine Genome
Arrays (Affymetrix) were used to determine gene expression
levels in the whole blood samples before and after poly I:C
treatment of the six pigs. RNA labeling and hybridization
were performed by a commercial Affymetrix array ser-
vice (GeneTech Biotechnology Limited Company, Shanghai,
China). This methodology was described in our previous
study [31]. All raw probe-microarray data were normalized
by the Robust Multichip Average method from packages of
Bioconductor (http://www.bioconductor.org) implemented
in the R environment [32–34]. The model matrix for differ-
entially expressed genes (DEGs) identification was defined in
a linear format, and the model scenario included the same
factors in the linear model for leucocyte count phenotype
analysis. The linear models for microarray data (LIMMA)
[35] were used to identify the DEGs. To determine the
statistical significance of the DEGs, the cutoff for P values was
set to (0.01), adjusted P values (0.1), and fold change ≥ (2.0).
Furthermore, a two-way hierarchical clustering analysis was
performed to identify the DEGs patterns according to [35].

2.5. Gene Annotation and Pathway Analysis. The Affymetrix
porcine genome microarray annotation was initially per-
formed using the annotation file given by Affymetrix, Inc.
(https://www.affymetrix.com/index.affx). Each probe set was
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Table 1: Known immune regulatory DEGs of IR and DR.

DEGs Category Probe-sets ID Gene Symbol Log2 FC Reference

IR-Upregulated

Ssc.16234.1.S1 at TCN1 3.1 [43]
Ssc.18927.1.S1 at MS4A8B 2.6 [31]
Ssc.9117.1.S1 at S100A12 2.3 [44]
Ssc.6369.1.A1 at CSF1 2.2 [45]

IR-Downregulated Ssc.26709.1.S1 at GPR183 -2.0 [46]

DR-Upregulated
Ssc.12829.1.A1 at TNFSF10 3.5 [47]
Ssc.26005.1.S1 at ZBP1 3.3 [48]
Ssc.8261.1.A1 at CYP2C9 3.2 [49]

DR-Downregulated Ssc.16671.1.S1 at TGFBI -3.9 [50]

annotated using themethod previously described by [36].The
differentially expressed transcripts were further compared
with the official homologous human gene symbols. Using
bioinformatics resource tools in the DAVID website v6.8
[37, 38], differentially expressed genes (DEGs) were uploaded
to determine the regulated pathways, and biological function
significantly associated with the gene lists. Therefore, this
statistical test assesses the proportion of genes that map
to a particular function or pathway in the IR and DR
phenotypes. We focused on the most affected pathways,
biological, molecular, and cellular functions that belonged
to the two phenotypes gene symbols were used in the
subsequent functional analysis.

2.6. Validation of DEGs by qPCR. Quantitative real time-PCR
(qPCR) was performed to quantify the expression levels of
14 DEGs (ISG20, RSAD2, TLR4, S100A12, S100A9, S100A8,
SH2DIA, TNK2, MX1, MX2, OAS1, PLSCR1, tripartite motif
(TRIM) 26, and STAT1). One microgram of total RNA
obtained from all biological replicates (3 by 3 replicates of IR
and DR, before and after poly I:C stimulation) was reverse-
transcribed using EasyScript� one-step gDNA Removal
and cDNA Synthesis SuperMix (TansGen Biotech, Beijing,
China) following manufacturer’s protocols for the two-step
qPCR assays. Quantitative PCR was then performed by using
SYBRqPCRMix (Aid labBiotechnologiesCo., Ltd., China) in
Bio-Rad thermal cycler, CFX-384, real-time system. Details
of genes, annotations, and primer set validated by qPCR are
included in Supplementary File 1. Following amplification,
the differences in the Ct values of the control and experimen-
tal samples were used to determine the relative expression of
the gene in each sample. All Ct values were normalized using
𝛽-actin gene [39, 40].The relative gene expression levels were
calculated using 2−(ΔΔCT) method [41, 42]. The correlation
between themicroarray and qPCR results for the gene set was
then performed for each replicate and the statistical signif-
icance of the correlations determined. The log2 fold-change
of microarray versus qPCR log2 fold-change was graphed to
determine the quality of correlation; a slope of one would
define perfect correlation. The strength of the relationship
was quantified by Pearson’s coefficient computation.

3. Results

3.1. Poly I:C-Stimulated Leucocyte-Count Variation. Potent
immune stimulator led to significant pronounced differences

in leucocyte counts. Overall mean leucocyte counts were
found to have a huge variation before and after poly I:C
stimulation (p < 0.05) (Figure 1(a)). Before stimulation, the
overall mean leucocyte-count values (Mean ± SEM) were
21.15 ± 1.27; after stimulation, overall mean leucocyte-count
values were 19.10 ± 1.15 (n = 277) (Figure 1(a)). However, the
mean leucocyte-count values of IR and of DR were calculated
from the two-tailed critical value of leucocyte counts after
4 h poly I:C treatment. The mean leucocyte-count values
for IR group were 18.90 ± 10.91 before treatment and after
treatment were increased to 42.20 ± 24.36 (Figure 1(b)). By
contrast, the DR leucocyte-count values were 14.23 ± 8.22
before treatment and after treatment were reduced to 6.30 ±
3.64 (Figure 1(c)). Increased leucocyte countmay also explain
their ability to fight back and persist in response to viral infec-
tion (Figure 1(b)), whereas a significant decrease in leucocyte
count suggested that poly I:C temporarily disrupts bone
marrow function where leucocytes are made (Figure 1(c)).
The differences between the two groups were statistically
significant (p < 0.01) in the IR and DR groups, respectively.

3.2. Transcriptome Clustering and Altered DEGs between IR
and DR. To understand further the patterns of differential
gene expression and also to know whether the poly I:C
stimulation effected transcriptionally in the selected pigs,
two-way hierarchical clustering was conducted with DEGs
for the construction of heat-map. The heat-map illustrates
gene expression values between the IR (Figure 2(a)) and DR
(Figure 2(b)). The patterns of gene expression indicate that
all the samples clustered into two types indicating pre- and
post-poly I:C stimulation. Thus, to compare temporarily the
transcriptome altering between the IR and DR pigs post-
poly I:C treatment, we further analyzed the DEGs in both
groups and asked how many of the DEGs overlapped and/or
were differentially expressed specifically in each phenotype
(Figure 2(c)). 129 DEGs were found in the IR group and 136
DEGs in theDR group (Supplementary File 2). Notably,many
DEGs have been reported to be involved in the immune
regulatory processes (Table 1). A total of 35 upregulated and 6
downregulated overlappingDEGswere found in both groups.
The IR has 14 and 74 unique upregulated and downregulated
DEGs, respectively, and the DR has 78 and 17 unique upreg-
ulated and downregulated DEGs, respectively (Figure 2(c),
Supplementary File 2). Following those findings, more DEGs
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Figure 1: Changes in (a) poly I:C-induced peripheral blood leucocyte. (b)The leucocyte count changes in IR (IR1, IR2, and IR3); IRBS/IRAS
represent IR before and after poly I:C stimulation. (c) Leucocyte count changes in DR (DR1, DR2, and DR3); DRBS/DRAS represent DR
before and after poly I:C stimulation. Error bars indicate standard error of mean (SEM).

were downregulated in the IR pigs than in the DR pigs,
thereby indicating that IR pigs showed less responsiveness at
the transcription level than did the DR pigs.

3.3. Gene Expression Verification of DEGs with qPCR. A
total of 14 genes of biological interest identified by the
microarray were verified by qPCR.The tested genes encoded
enzymes involved in interferon-stimulation, transcription
factors, transmembrane and receptor binding, regulation of
ubiquitin-protein ligase, cellular activity, and lymphocyte-
activating from different gene families and molecules playing
a role in the immune response of IR and DR. Relative expres-
sion of 6 upregulated genes (ISG20, RSAD2, TLR4, S100A12,
S100A9, and S100A8) was significantly reduced after poly
I:C stimulation in the IR. Downregulated gene (SH2DIA)
expression was reduced after poly I:C stimulation and also

downregulated (TNK2) gene expression increased after poly
I:C stimulation in the IR (Figure 3(a)). Eight upregulated
genes, namely, MX1, MX2, RSAD2, ISG20, OAS1, PLSCR1,
STAT1, and TLR4, were significantly reduced before poly I:C
stimulation and increased after poly I:C stimulation in the
DR.Upregulated gene (TRIM26) expression was significantly
increased before poly I:C stimulation and reduced after
poly I:C stimulation in DR (Figure 3(b)). Additionally, we
found strong agreement between qPCR and microarray for
the fourteen genes verified. The results were presented in
fitted line plot and correlation output suggests a positive
linear relationship between qPCR and microarray log2 fold-
change. The value of R2, the coefficient of determination,
was 0.86; and the linear regression model Y = (1.2505x –
0.3326) and the Pearson correlation was 0.92, close to one.
All genes expression profiling experiments were consistent
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Figure 2: Two-way hierarchical clustering and Venn diagram of overlapped DEGs by poly I:C stimulation. Gene expression values in (a) IR
pigs and (b) DR pigs. The columns within the heat-map represent samples (pigs ID) while the rows represent genes. The color scheme red
(high) expression and green (low) expression. The color legend at the top-left of the figure indicates the fold change in gene expression. (c)
The Venn diagram of DEGs in the two groups.

with the expression profiles determined frommicroarray data
(Figure 3(c)).

3.4. Comparative Functional Annotation of Poly I:C Induced
DEGs between IR and DR. Consider a total of 265 DEGs
in the IR and DR phenotypes (Log2 FC ≥ 2 and ≤-2.0)
and 201 orthologues of human genes were annotated in
the DAVID (Database for Annotation, Visualization, and
Integrated Discovery) database, which revealed 20 significant
functional annotation clusters between the IR and DR (p
< 0.05). The most significant clusters were presented in
Table 2. The functional annotation clusters in the IR and DR
were related to innate immunity, innate immune response,
antiviral defense, immunity, and defense response to the
virus but differ in the negative regulation of viral genome

replication (Table 2). Furthermore, the DEGs of IR and
DR in biological processes (BP), molecular functions (MF),
and cellular components (CC) were revealed based on the
GO categories in DAVID. When considering the commonly
shared biological processes between IR and DR phenotypes,
these include innate immune response, immune response,
defense response, response to external stimulus, immune
effector process, and viral life cycle (p < 0.05 and count ≥
4) (Figure 4(a), Supplementary File 3). For the GOmolecular
function, only four terms were common between the IR and
DR, includingmetal ion binding, ion binding, cation binding,
and zinc ion binding, whereas the majority of the MF terms
were related to the DR background (Figure 4(b), Supple-
mentary File 3). In the cellular component category, DR
was distributed mostly in extracellular exosome, extracellular
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Table 2: Major functional annotation clusters in poly I:C-induced leucocyte responders based on fold change (FC) and (p < 0.01).

GO name Gene count Fold change Genes
Expressed in increased leucocyte
responders

Expressed in decreased leucocyte
responders

Innate immunity 10 18.20 DDX58, SH2D1A, CFB, RSAD2, TLR4,
S100A12, ISG20

DDX58, CFB, RSAD2, TLR4, OAS1,
MX1, MX2, ISG20

Innate immune response 14 7.18 DDX58, SH2D1A, S100A8, S100A9,
RSAD2, TLR4, TNK2, S100A12, ISG20

DDX58, PTK2B, TRIM26, RSAD2,
TLR4, OAS1, MX2, ISG20, TEC

Immunity 10 10.76 DDX58, SH2D1A, CFB, RSAD2, TLR4,
S100A12, ISG20

DDX58, CFB, RSAD2, TLR4, OAS1,
MX1, MX2, ISG20

Negative regulation of viral
genome replication 6 22.47 - PLSCR1, ISG15, RSAD2, OAS1,

MX1, ISG20

Defense response to virus 9 6.68 IFIT3, PLSCR1, IFIT2, ISG15, RSAD2,
OAS1, MX1, MX2, ISG20

PLSCR1, ISG15, RSAD2, OAS1,
MX1, ISG20

Antiviral defense 6 9.10 DDX58, RSAD2, ISG20 DDX58, RSAD2, OAS1, MX1, MX2,
ISG20
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Figure 3: Microarray fold change verification with qPCR. (a, b) Fold change of 14 genes of IR and DR, before and after stimulation coded
as IRBS/IRAS and DRBS/DRAS, respectively. Data are reported for three technical replicates in all biological samples. Error bars indicate
standard error of the mean (SEM). Each histogram represents the level of the target gene relative expression level. Asterisks symbolized P
value significance (p ≤ 0.05 (∗), p ≤ 0.01 (∗∗), p ≤ 0.001 (∗ ∗ ∗), and p ≤ 0.0001 (∗ ∗ ∗∗) based on assuming unequal variances Student’s
t-test. (c) qPCR validated 14 genes. A line plot of qPCR log2 (FC) and microarray log2 (FC) data of 14 genes. The linear relationship between
the qPCR and microarray log2 (FC) data based on the R2 value, and the line linear regression (Y).
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Figure 4: Commonly enriched gene ontology (functional classification) of the DEGs by poly I:C stimulation in IR and DR. (a) Comparative
GO biological process distribution of the DEGs by poly I:C stimulation in the IR and DR pigs. (b) Comparative GO molecular function
distribution of DEGs by poly I:C stimulation in the IR and DR pigs.

Table 3: Pathway regulated by DEGs of IR and DR.

GO accession KEGG pathway Gene count Genes

ssc05164 Influenza A 9 DDX58, RNASEL, TNFSF10, IRF7,
RSAD2, TLR4, OAS1, STAT1, MX1

ssc05162 Measles 7 DDX58, TNFSF10, IRF7, TLR4, OAS1,
STAT1, MX1

ssc05168 Herpes simplex infection 6 DDX58, RNASEL, IRF7, OAS1, STAT1,
DAXX

ssc04623 Cytosolic DNA-sensing pathway 4 DDX58, IRF7, TREX1, ZBP1
ssc05160 Hepatitis C 5 DDX58, RNASEL, IRF7, OAS1, STAT1
ssc05161 Hepatitis B 5 DDX58, PTK2B, IRF7, TLR4, STAT1
ssc04062 Chemokine signaling pathway 5 PTK2B, CCL8, GNB4, PAK1, STAT1

ssc04060 Cytokine-cytokine receptor
interaction 5 ACVR1B, TNFSF10, IL1RAP, CCL8,

IL13RA1

ssc04622 RIG-I-like receptor signaling
pathway 3 DDX58, ISG15, IRF7

vesicle, extracellular organelle, and extracellular region,
whereas no annotation information was found for the IR
(Supplementary File 3).

Based on conserved orthologues defined by the Kyoto
Encyclopedia of Genes and Genomes (KEGG), the DEGs of
IR and DRwere assigned to one ormore conserved biological
pathways. The pathways in KEGG and related genes found
in DR were listed in Table 3, whereas no pathway annotation
record was found for the IR. The analysis identified nine
pathways in DR including influenza A, measles, herpes
simplex infection, cytosolic DNA-sensing pathway, hepatitis
C, hepatitis B, chemokine signaling pathway, and cytokine-
cytokine receptor interaction pathway (Table 3, Supplemen-
tary File 4). The pathway of influenza A was the most
enriched pathway related to the upregulated genes of DR.
Up- and downregulated genes of DR including RNASEL,
TNFSF10, OAS1, ZBP1, MX1, CCL8, GNB4, PAK1, STAT1,
and IL13RA1 were also enriched in the chemokine signaling
and cytokine-cytokine receptor interaction pathways except
for upregulated ISG15 in the RIG-I-like receptor signaling

pathway. The DR had more DEGs related to the affected
pathways when compared with IR. Table 4 shows the DEGs
between IR and DR in the affected pathways.

4. Discussion

4.1. DEGs Specific to the IR and DR Pigs. In the DEGs specific
to the IR pigs, 88 genes were detected; many of these genes
were significantly enriched, and some of them had a putative
functional role relevant to innate immune response and
leucocyte migration involved in inflammatory response. We
selected four genes that play roles in the cellular process and
signaling. Among cellular process genes, a set of calcium-
binding proteins were identified in the IR, including S100A12,
S100A9, and S100A8. These genes encode S100 proteins. In
the IR group, S100A12, S100A9, and S100A8 were highly
expressed before poly I:C stimulation and significantly lower
expression was observed after stimulation. These calcium-
binding protein genes, considered markers at the site of
inflammation as previously reported in humans [51] and pigs
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Table 4: Differentially expressed genes in the affected pathways.
Negative fold change values indicate downregulation in response to
poly I:C stimulation.

Fold change
IR vs. DR

Gene IR DR
DDX58 2.63 3.99
RNASEL - 2.11
TNFSF10 - 3.45
IRF7 1.92 2.99
RSAD2 2.04 5.30
TLR4 2.18 3.56
OAS1 - 3.02
STAT1 - 2.38
DAXX 2.10 2.66
MX1 - 2.85
TREX1 1.86 2.34
ZBP1 - 3.29
ACVR1B 2.95 3.09
IL1RAP 2.28 2.95
CCL8 - -2.69
PTK2B 1.93 2.16
GNB4 - 2.50
PAK1 - 2.20
IL13RA1 - 2.17
ISG15 - 2.33

[31, 52], play a major role during infection. Among signaling
genes, SH2D1A encodes SH2 domain-containing protein 1A
of 128 amino acid (aa) residues (Genbank NC 010461.5.).
Reference [53] found that SH2D1A interacts with signaling
lymphocytic activation molecule (SLAM), thereby demon-
strating its contribution to the regulation of a transmembrane
protein that is expressed on the surface of activated T and
B cells. The expression of SH2D1A reduced after stimulation
compared with control in IR; we speculate that it may
participate in activating the host immune response during
infection.

Considering the 95 DEGs specific to the DR pigs, all the
genes that fell within this category had defined functions.
Nevertheless, we noticed six genes, including TRIM26, OAS1,
STAT1, PLSCR1, MX1, and MX2, whose functional roles can
regulate host immune responses. TRIM26, which encoded
a member of the TRIM family implicated in innate and
adaptive immunity [54, 55], was significantly lower after poly
I:C stimulation compared with control in the DR pigs. OAS1
belongs to the OAS family of proteins known to be active
synthetases that synthesize 2󸀠-5󸀠-linked oligoadenylates in
response to viral infections, thereby affecting an early step of
the viral replication cycle [56, 57]. The expression of OAS1
was significantly higher after poly I:C stimulation in DR pigs
when compared with control. For STAT1, a critical regulator
of the interferon signaling pathway [58, 59], its expressionwas
significantly higher after poly I:C stimulation in the DR com-
paredwith control. Phospholipid scramblase 1 gene (PLSCR1)

was highly significant after poly I:C stimulation compared
with control. Studies in human reported PLSCR1 gene in the
regulation of phosphatidylserine distribution of erythrocytes
[60].Moreover,MX1 andMX2 geneswere highly expressed in
DR pigs after poly I:C stimulation. MX dynamin-like GTPase
1 (MX1) was implicated in some viral replications, including
CSFV [61] and pig-original bovine viral diarrhea virus 2
(BVDV-2) [62]. Additionally, myxovirus (influenza virus)
resistance 2 gene (MX2), which encodes interferon (IFN)-
inducible proteins, plays a critical role in the antivirus state
[63, 64]. Similarly, [6] reported the expression of MX1 and
STAT1 geneswere highly expressed shortly after experimental
influenza A virus (IAV) infection in circulating leucocytes.

4.2. Biological Processes Found in the IR and DR Phenotypes.
For the common biological processes involved in the IR and
DR phenotypes, innate immune response, immune response,
defense response, response to external stimulus, and immune
effector process were the most enriched biological functions
found in the IR and DR phenotypes. Among these biological
processes, upregulated genes (radical S-adenosyl methionine
domain containing 2, interferon stimulated exonuclease gene
20, andDExD/H-box helicase 58)were significantly enriched.
Chemokine (C-Cmotif) ligand 8, SH2 domain contained 1A,
tyrosine kinase non-receptor 2, and interleukin 7 receptor
were overrepresented downregulated genes regulating the
biological function of the IR and DR phenotypes. Addi-
tionally, DR phenotype had more transcriptional genes than
did the IR in most of the common biological pathways,
thereby suggesting that the former created more effective
host immune responses than did the latter. Moreover, IR and
DR phenotypes differ in several biological defenses, such as
cell motility and cellular protein modification process being
found in IR phenotype, whereas the regulation of molecular
function, positive regulation of cellular metabolic process,
and response to cytokine are event-activated for the host
immune responses in DR phenotype.

4.3. Pathway Regulated by the DEGs in the DR Pigs. In
the IR pigs, no pathways were detected. However, several
pathways related to antiviral responses were found in the
DR pigs, such as influenza A, chemokine signaling path-
way, cytokine–cytokine receptor interaction, and RIG-I-like
receptor signaling pathway.

Research reports indicate that the influenza A pathway
was known to activate cellular signal transduction pathways
such as NF-𝜅B signaling, PI3K/Akt pathway, MAPKpathway,
PKC/PKR signaling, and TLR/RIG-I signaling cascades [65].
These pathways are important for viral entry, viral replication,
viral propagation, and apoptosis; these pathways are involved
in antagonizing the host antiviral response. Previous studies
have suggested the involvement of various DExD/H-box
RNA helicase such as DDX58 (also known as RIG-I) in the
initiation of innate immune responses [66, 67]. In this study,
DDX58 (DExD/H-box helicase 58) was the upregulated gene
of IR and DR pigs and are often seen in the affected pathways,
thereby suggesting that DDX58 plays an essential role in
initiating an antiviral response [68]. Another important gene
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that corresponds to this pathway was upregulated gene of DR
pigs (RNASEL), a principal mediator of the IFN-inducible
antiviral state that can determine the survival of animals
infected with highly pathogenic viruses [69, 70]. Based on
those findings, influenza A pathway is crucial for leucocyte-
related traits.

5. Conclusions

We investigated the transcriptome of leucocyte variation in
peripheral blood of pigs induced by poly I:C. The microarray
analysis identified many DEGs that were involved in the
immune defense responses of both the IR and DR pigs,
although the two groups showed different immune responses
after dsRNA stimulation. Overall, our study will enhance the
understanding of themolecular basis for the antiviral capacity
of pigs and potentially important genes for disease resistance
breeding.
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Willems, “Quantitative trait loci for white blood cell numbers
in swine,” Animal Genetics, vol. 39, no. 2, pp. 163–168, 2008.

[18] S. Yang, J. Ren, X. Yan et al., “Quantitative trait loci for porcine
white blood cells and platelet-related traits in a white duroc ×
Erhualian F2 resource population,”Animal Genetics, vol. 40, no.
3, pp. 273–278, 2009.

[19] Y.-F. Gong, X. Lu, Z.-P. Wang et al., “Detection of quantitative
trait loci affecting haematological traits in swine via genome
scanning,” BMC Genetics, vol. 11, article no. 56, 2010.

http://downloads.hindawi.com/journals/bmri/2018/1496536.f1.pdf


10 BioMed Research International

[20] A. Leusink-Muis, R. T. Broeke, G. Folkerts, F. De Clerck, and
F. P. Nijkamp, “Betamethasone prevents virus-induced airway
inflammation but not airway hyperresponsiveness in guinea
pigs,” Clinical & Experimental Allergy Reviews, vol. 29, no. 2, pp.
82–85, 1999.

[21] Z. Karalyan, H. Zakaryan, H. Arzumanyan et al., “Pathology
of porcine peripheral white blood cells during infection with
African swine fever virus,” BMC Veterinary Research, vol. 8,
article no. 18, 2012.

[22] A. Ladinig, W. Gerner, A. Saalmüller, J. K. Lunney, C. Ashley,
and J. C. S. Harding, “Changes in leukocyte subsets of pregnant
gilts experimentally infected with porcine reproductive and
respiratory syndrome virus and relationships with viral load
and fetal outcome,”Veterinary Research, vol. 45, no. 1, article no.
128, 2014.

[23] M. Clapperton, S. C. Bishop, and E. J. Glass, “Innate immune
traits differ betweenMeishan and Large White pigs,” Veterinary
Immunology and Immunopathology, vol. 104, no. 3-4, pp. 131–
144, 2005.

[24] A. L. Vincent, B. J.Thacker, P. G.Halbur,M. J. Rothschild, andE.
L. Thacker, “In vitro susceptibility of macrophages to porcine
reproductive and respiratory syndrome virus varies between
genetically diverse lines of pigs,” Viral Immunology, vol. 18, no.
3, pp. 506–512, 2005.

[25] K. Wimmers, K. G. Kumar, K. Schellander, and S. Ponsuksili,
“Porcine IL12A and IL12B gene mapping, variation and evi-
dence of associationwith lytic complement and blood leucocyte
proliferation traits,” International Journal of Immunogenetics,
vol. 35, no. 1, pp. 75–85, 2008.

[26] H. N. Kadarmideen, “Biochemical, ECF18R, and RYR1 gene
polymorphisms and their associations with osteochondral dis-
eases and production traits in pigs,” Biochemical Genetics, vol.
46, no. 1-2, pp. 41–53, 2008.

[27] J. Fujii, K. Otsu, F. Zorzato et al., “Identification of a mutation
in porcine ryanodine receptor associatedwithmalignant hyper-
thermia,” Science, vol. 253, no. 5018, pp. 448–451, 1991.
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