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Review

Move and countermove: the integrated stress response
in picorna- and coronavirus-infected cells
Chiara Aloise1, Jelle G Schipper*, Raoul J de Groot† and
Frank JM van Kuppeveld†

Viruses, when entering their host cells, are met by a fierce
intracellular immune defense. One prominent antiviral pathway
is the integrated stress response (ISR). Upon activation of the
ISR — typically though not exclusively upon detection of
dsRNA — translation-initiation factor eukaryotic initiation factor
2 (eIF2) becomes phosphorylated to act as an inhibitor of
guanine nucleotide-exchange factor eIF2B. Thus, with the
production of ternary complex blocked, a global translational
arrest ensues. Successful virus replication hinges on effective
countermeasures. Here, we review ISR antagonists and
antagonistic mechanisms employed by picorna- and
coronaviruses. Special attention will be given to a recently
discovered class of viral antagonists that inhibit the ISR by
targeting eIF2B, thereby allowing unabated translation initiation
even at exceedingly high levels of phosphorylated eIF2.
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Introduction
To ensure successful replication, viruses must evade the
intracellular innate immune system. A variety of host
cell cytoplasmic sensors and effectors lie in wait, poised
to mount a multilayered defense upon detection of viral
products or of virus-induced changes in cell homeostasis.

Sensor activation typically sets off signaling cascades,
culminating in the expression of beta-interferons, as in
the case of the retinoic acid-inducible gene-I-like re-
ceptors (RLRs), or in translational arrest in the case of
the 2′,5′-oligoadenylate synthetase (OAS)–RNase L
pathway and the integrated stress response (ISR) (re-
viewed in [1,2]). One major common denominator for
activation of these antiviral pathways is the presence of
cytosolic double-stranded RNA (dsRNA), although the
ISR may also be triggered by virus-induced endoplasmic
reticulum (ER) stress resulting from overproduction of
viral proteins and/or extensive virus-induced remodeling
of host cell membranes. In turn, viruses evolved to en-
code a plethora of proteins to avert immune activation or
its consequences. Here, we will focus primarily on the
ISR and the ISR antagonists of corona- and picorna-
viruses, both of which positive-stranded RNA viruses
but widely different in their genetic complexity and
sophistication of their replication strategy.

Integrated stress response
The ISR is an ancient salvaging pathway allowing cells
to cope with physiological changes brought about by
extrinsic and intrinsic stress factors such as hypoxia,
amino acid deprivation, glucose deprivation, or accu-
mulation of unfolded proteins in the ER (reviewed in
[1,3]). These stressors are sensed by a family of protein
kinases, that is, heme-regulated eIF2α kinase (HRI),
general control nonderepressible 2 (GCN2), and PKR-
like ER kinase (PERK). Vertebrates acquired another
eIF2α kinase, the dsRNA-dependent protein kinase-R
(PKR), which plays a key role in antiviral defense [3].
Upon detection of their specific stimuli, these protein
kinases homodimerize, activate through autopho-
sphorylation to then converge on phosphorylation of the
alpha-subunit of eukaryotic translation-initiation factor 2
(eIF2α). This has significant implications for translation
initiation, which critically relies on the availability of
ternary complexes (TCs) comprised of eukaryotic in-
itiation factor 2 (eIF2), guanosine-5'-triphosphate
(GTP), and initiator methionyl-tRNA (Met–tRNAi).
Upon delivery by TC of Met–tRNAi to initiating ribo-
somes, GTP is hydrolyzed, necessitating continuous
replenishing of eIF2–GDP into its active form via nu-
cleotide exchange. This process is catalyzed by guanine
nucleotide-exchange factor (GEF) eIF2B, a twofold
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symmetric heterodecameric complex comprised of two
copies each of subunits designated α through ε (see [4],
and references therein). Phosphorylated eIF2, eIF2(p),
acts as a competitive inhibitor and, because cellular
concentrations of eIF2B are limiting, increasing levels of
eIF2(p) decrease TC levels and thereby canonical
translation initiation [5]. Recent structural studies re-
vealed eIF2α and eIF2α(p) bind eIF2B at distinct,
nonoverlapping sites and that eIF2b–eIF2 complexes
occur in two widely different conformations, an en-
zymatically active A-state and a GEF-inactive I-state
(Figure 3) [6–9]. Phosphorylation of eIF2α proposedly
shifts the equilibrium to the I-state to the effect that
binding of eIF2 is reduced and nucleotide-exchange
activity diminished.

The ISR-induced drop in TC levels results in transla-
tional reprogramming. While global translation is
strongly reduced, leaky-scanning-dependent translation
of select mRNAs is favored, including that of activating
transcription factor 4 (ATF4), a key regulator of stress-
responsive genes. ATF4 drives expression of growth
arrest and DNA damage-inducible protein 34
(GADD34), which together with the catalytic subunit of
protein phosphatase 1 (PP1c), assembles into the eIF2α
phosphatase complex. This complex initiates a feedback
loop to terminate the ISR, thus allowing cells to resume
normal protein synthesis and to return to homeostasis
once stress is alleviated. Upon persistent stress and/or
failure to restore homeostasis, ATF4 signaling promotes
apoptosis [1].

Polysome dissociation, ensuing activation of the stress
response, results in an excess of stalled 48S preinitiation
complexes, which are stored in cytoplasmic membrane-
less organelles called stress granules (SGs) [10]. The SGs
serve as deposits from which mRNAs can be rapidly
retrieved, poised for translation through their remaining
association with critical components of the translation
machinery. SGs, however, are also considered a co-
ordinating platform for antiviral signaling since many
antiviral sensors such as OAS and the RLRs retinoic
acid-inducible gene-I (RIG-I) and melanoma differ-
entiation-associated protein 5 (MDA5) are recruited to
ISR-induced SGs [11].

The different classes of viral integrated stress
response antagonist proteins and strategies
Attesting to the importance of the PKR branch of the
ISR as an antiviral defense mechanism, DNA and RNA
viruses encode proteins that specifically counteract this
pathway to avert translational arrest. These can be di-
vided into distinct categories based on their mode of
action (Figure 1) [12••]. Class-I antagonists act at the
level of the stressor, sequestering or degrading dsRNA
to prevent PKR activation. Class-II antagonists rather

affect the sensor, in some cases by inhibiting PKR
phosphorylation, in other cases by inactivating PKR,
either through cleavage by viral proteases or by trig-
gering its degradation. Class-III antagonists leave PKR
unaffected but instead induce eIF2(p) depho-
sphorylation to prevent inhibition of eIF2B GEF ac-
tivity. Finally, the newly discovered class-IV antagonists
act at the level of eIF2B, allowing continued TC for-
mation and canonical translation initiation even at ex-
ceedingly high concentrations of eIF2(p). Of note, the
class-III and -IV antagonists counter the ISR, irrespec-
tive of the initiating kinase. Some viral proteins act even
further downstream, countering ISR-induced SG for-
mation directly, possibly to block SG-promoted activa-
tion of other antiviral pathways. For a recent review on
PKR antagonists see [13].

In addition to these protein-based strategies, viruses may
employ mechanisms in which specific RNA structures
promote noncanonical, TC-independent translation in-
itiation. For example, alphaviruses rely on an RNA
hairpin loop structure located downstream the start
codon. This structure stalls the ribosomes on the correct
site for initiation of translation, which bypasses the re-
quirement for a functional eIF2, and therefore renders
alphavirus translation unconstrained by the ISR [14,15].

Picornavirus integrated stress response
antagonists
Picornaviruses are small, naked +RNA viruses (> 150
species grouped in 68 genera) that can infect a wide
variety of hosts and that have important clinical and
socioeconomic impact. Their genome contains an in-
ternal ribosome entry site (IRES) in the 5’UTR and
encodes a single polyprotein that is processed by viral
proteases to yield capsid proteins and several non-
structural proteins (NSPs) (Figure 2a). Among the NSPs,
the Leader (L), which is present in many but not all
picornaviruses, and the 2A proteins play important roles
in antagonizing host innate antiviral responses [16]. Al-
though these ‘security proteins’ share common names
based on their position in the polyprotein, they are often
structurally and biochemically unrelated, likely acquired
via independent evolutionary acquisition [16]. Below,
we will discuss how members of three different genera
of picornaviruses (Enterovirus, Aphthovirus, and Cardio-
virus) antagonize or circumvent the ISR and/or SG for-
mation.

Enteroviruses (e.g. poliovirus, coxsackievirus, echovirus,
numbered enteroviruses such as EV-A71 and EV-D68,
and rhinovirus) are important pathogens for humans.
The 2A protein, which is a protease in enteroviruses,
plays an important role in controlling translation and
stress responses in infected cells. 2Apro rapidly shuts off
host mRNA translation, proposedly to prevent

2 Innate immunity

www.sciencedirect.comCurrent Opinion in Immunology 79 (2022) 102254



expression of antiviral proteins, by cleaving eIF4G, an
initiation factor that is important for cap-dependent host
mRNA translation but not viral IRES-mediated transla-
tion [17–19]. Additionally, enteroviruses, such as other
picornaviruses, can activate PKR and PERK, by produ-
cing significant amounts of dsRNA and by modifying ER
and Golgi functions to build viral replication organelles,
respectively, resulting in eIF2a phosphorylation and
further repression of host translation [20–22]. Im-
portantly, eIF2a phosphorylation does not affect viral
translation because 2Apro, through an unknown me-
chanism but dependent on its proteolytic activity, con-
fers eIF2 independence to IRES-driven translation
[23,24]. 2Apro also suppresses the formation of SGs. Early
in infection, SGs appear as a result of the 2Apro-mediated
cleavage of eIF4G [25]. During the mid-phase of in-
fection, however, these SGs gradually disappear and no
SGs are observed later in infection. Recent evidence
points to a critical and conserved role of 2Apro in per-
turbing SG formation [25,26]. Among them is the ob-
servation that in cells infected with a mutant EV-A71
containing an inactivated 2Apro, no early SGs were
formed but that massive SG accumulation was observed

in the mid and late phases of infection [25]. Whether
and, if so, how these different activities of 2Apro are in-
tertwined is under debate. For instance, it has been
described that eIF4G binds to G3BP in an RNA-de-
pendent manner and that this interaction is important for
SG formation [27•]. 2Apro, through its proteolytic activity
but remarkably not by cleaving eIF4G itself, has been
shown to abrogate this interaction, possibly explaining
how it interferes with SG formation [27•]. Apart from
2Apro, 3Cpro may also play roles in evading stress re-
sponses. 3Cpro has been suggested to play a role in
conferring eIF2 independence by removing the N-
terminal regulatory domain of eIF5B, which is the eu-
karyotic homolog of archeal and prokaryotic eIF2,
thereby possibly serving a role as noncanonical carrier of
Met–tRNAi [28]. Additionally, 3Cpro cleaves PKR
[29,30], but it is unknown whether this activity is im-
portant for suppressing the ISR or, alternatively, for
countering a direct antiviral activity of PKR, which was
recently shown to inhibit viral translation and activate
innate antiviral signaling by binding to the IRES [31].
3Cpro also cleaves G3BP1 [32], a SG nucleation factor,
but it is unclear whether this contributes to SG

Figure 1

Current Opinion in Immunology

Schematic representation of integrated stress response and different classes of viral antagonists. Canonical translation initiation critically requires
eIF2–GTP–Met–tRNAi TCs. The formation of TCs requires the activity of the guanine nucleotide-exchange factor eIF2B, which catalyzes the nucleotide
exchange of eIF2–GDP into its active form eIF2–GTP. The integrated stress response is constituted by a set of four kinases, which, in response to a
range of stimuli, phosphorylates eIF2α. Phosphorylated eIF2 is as a competitive inhibitor of eIF2B, thereby downregulating TC formation resulting in
translational inhibition. The buildup of inactive mRNA-ribosome complexes finally culminates in the formation of SGs. Viruses have evolved a wide
range of antagonists and antagonistic mechanisms to counteract the ISR at different levels. These can be assigned to specific classes based on their
mechanism of action.
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disruption or serves to counter the recently discovered
direct antiviral function of G3BP1 to bind to the viral
genome and inhibit viral RNA replication [33].

Aphthoviruses (e.g. foot-and-mouth disease virus,
FMDV) encode for an L protein with proteolytic ac-
tivity. Through its proteolytic activity, Lpro, such as
enterovirus 2Apro, shuts off host translation by cleaving
eIF4G [34], confers eIF2 independence to IRES-driven
translation [35], and interferes with the formation of
SGs, the latter exemplified by the formation of SGs
during infection with Lpro-defective FMDV but not wt
FMDV [36]. Lpro can cleave SG scaffold proteins G3BP1
and G3BP2 [36], but evidence that this cleavage is es-
sential for the inhibition of SG formation is lacking.
Hence, it cannot be excluded that the inhibition of SG
formation by Lpro is due to cleavage of other cellular
factors and/or disruption of the interaction between
eIF4G and G3BP, as described above. The viral protease
3Cpro may also play a role in suppressing the ISR by
triggering the lysosomal degradation of PKR, although
the importance hereof is unknown as it occurs relatively
late in infection [37]. Moreover, like enterovirus 3Cpro,
FMDV 3Cpro also cleaves G3BP1, but it is unknown
whether this activity contributes to inhibit SG formation

or to counter the direct antiviral activity of G3BP1 to
suppress genome replication by binding to the
IRES [38,39].

Cardioviruses (e.g. Encephalomyocarditis virus (EMCV)
and Theiler’s encephalomyelitis virus) are equipped
with L and 2A proteins but these lack protease activity,
and infection with these viruses does not lead to eIF4G
cleavage and host-translation shutoff. These viruses ac-
tively suppress the ISR via their L protein [36,40,41•],
which, as a class-II antagonist, interferes with PKR ac-
tivation, eIF2α phosphorylation, and SG formation. L
inhibits PKR activation via a novel and indirect me-
chanism. Unlike other viral class-II ISR antagonists, L
does not interact with PKR. Instead, it interferes with
dsRNA association to PKR by binding and hijacking
host kinases, RSKs [41•,42••]. How this suppresses
PKR activation is unknown, but this observation adds to
the notion that regulation of PKR activation is more
complex than generally assumed, as also recently pro-
posed by others [43,44]. Additionally, it has been sug-
gested that L interferes with the interaction between
eIF4G and G3BP to suppress SG formation [27•]. Like
in cells infected with enteroviruses and aphthoviruses,
cardiovirus translation becomes eIF2-independent

Figure 2

Current Opinion in Immunology

Genome organization of picornaviruses and coronaviruses. Schematic overview of genome structure and organization of picornaviruses (a), where we
took EMCV as an example, and coronaviruses (b), where we took the SARS-CoV-2 genome as an example. (*) represents the C-terminal N peptide
generated from an internal TRS.
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during infection [45]. Both the identity of the viral
protein responsible for this effect and the underlying
mechanism are unknown.

Coronavirus integrated stress response
antagonists
Coronaviruses (subfamily Orthocoronavirinae with
genera alpha-, beta-, delta-, and gammacoronavirus) are
enveloped positive-strand RNA viruses of mammals
and birds. Compared with picornaviruses, cor-
onaviruses not only have a much larger genome
(∼30Kb, roughly four times larger than that of polio-
virus), but also a far more elaborate replication. Upon
entry, the genome is translated into two large poly-
proteins, pp1a and pp1ab, which are autocatalytically
cleaved to yield 15–16 NSPs and an unknown number
of functional intermediates (Figure 2b). NSP-induced
remodeling of host cell membranes results in the for-
mation of replication neo-organelles (ROs) comprised
of double-membrane vesicles (DMVs). These ROs
harbor the macromolecular NSP complexes required
for genome multiplication and, later during infection,
the synthesis of a 3’ coterminal nested set of sub-
genomic mRNAs (sgmRNAs) [46,47]. The latter en-
code subfamily-wide conserved structural proteins and
various accessory proteins (AcPs) that are (sub)genus
and occasionally even virus-species and which func-
tion mainly to counteract cellular defenses [47].
Genome replication and sgmRNA synthesis from
dedicated minus-strand templates occurs within the
confines of the DMVs, such that dsRNA would be
largely secluded from cytoplasmic sensors, with pores
allowing ssRNA export into the cytosol [48–50].

To prevent activation of the PKR branch of the ISR, the
OAS–RNase-L system, and type-1 IFN responses, cor-
onaviruses encode a range of specific antagonists. One of
these, NSP15, a universally conserved endoU-ribonu-
clease, counteracts activation of all three pathways. It
cleaves both ssRNA and dsRNA species 3’ of uridine
bases to antagonize antiviral signaling [51••–56]. Loca-
lizing to ROs, apparently in transient association with
replication-transcription complexes (RTCs), NSP15 may
act as a gatekeeper to prevent escape of dsRNA from the
protective surroundings of the ROs [51••,52,57,58].
Upon catalytic inactivation of NSP15, an increase in
dsRNA levels was observed during infection [51••].
Moreover, the dsRNA appeared to be more dispersed
throughout the cytosol [52]. NSP15-defective viruses are
severely attenuated due to activation of the ISR, the
OAS–RNase-L system, and IFN signaling
[51••–53,59,60•]. Consequently, NSP15-defective
murine hepatitis virus (MHV) (genus Betacoronavirus
subgenus Embecovirus) was rapidly cleared and avirulent
in a murine model, in stark contrast to the wild type (wt)
virus [52].

Still, NSP15 alone does not seem to be entirely suffi-
cient to prevent innate immune signaling. The nucleo-
capsid protein (N), shared by all CoVs and expressed in
large amounts from sgmRNAs later during infection, has
also been implicated in antagonizing dsRNA-dependent
signaling. Like NSP15, N is a class-I ISR antagonist and
aside from its main function in genome packaging, pre-
vents PKR activation, ISR-induced translational arrest,
SG formation, as well as induction of beta-interferon by
sequestering dsRNA. Recent findings in our laboratory
showed that this activity can be assigned to the dsRNA-
binding domain N2b (Aloise et al., BioRxiv
DOI = 10.1101/2022.09.02.506332). Interestingly, the
continued evolution of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2, genus
Betacoronavirus, subgenus Sarbecovirus) has given rise to
variants that express a truncated C-terminal portion of
N, designated N-iORF3, from a novel sgmRNA species.
N-iORF3, encompassing the C-terminal N2b domain
and surrounding linker regions, inhibits the dsRNA-de-
pendent IFN response (Mears et al., BioRxiv
DOI = 10.1101/2022.04.20.488895), and overexpression
experiments in our laboratory showed that it also blocks
the ISR (Aloise et al., BioRxiv DOI = 10.1101/
2022.09.02.506332). In interactome studies, SARS-CoV-
2 N was found to bind to SG assembly factors G3BP1
and G3BP2 via its N-terminal domain N1a, suggesting
that it may also directly suppress SG formation [61–67•],
although this may depend on the cell type [82].

Aside from the conserved structural and NSPs, cor-
onaviruses also encode a wide range of highly divergent
AcPs, some of which have been found to inhibit the ISR.
For example, the AcP 4a of Middle East respiratory
syndrome coronavirus (MERS-CoV; genus
Betacoronavirus, subgenus Merbecovirus) sequesters
dsRNA through its RNA-binding domain to antagonize
dsRNA-dependent signaling [68–70]. The observation
that both NSP15 and 4a act as class-I antagonists raises
questions about their individual contribution in coun-
teracting antiviral responses. Infection with MERS-CoV
lacking a functional 4a protein resulted in the formation
of SGs in Hela cells, but not in Vero cells [68,69]. Thus,
redundancy might have evolved to effectively coun-
teract antiviral responses in the context of certain hosts
and cell types. Moreover, different antagonists may
function at distinct times and subcellular locations over
the course of the viral life cycle. A recent study showed
that MERS-CoV NSP15, 4a, and AcP 4b — an antago-
nist of the OAS–RNase L pathway [71] — jointly act to
suppress dsRNA-mediated innate immunity during in-
fection of primary lung and nasal epithelial cultures
[60•], demonstrating the necessity of redundancy to
oppose the host defense in these tissues.

A class-III ISR inhibitor was identified in members of
the alphacoronavirus subgenus Tegacovirus. The AcP 7, a
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functional homolog of GADD34, acts as a scaffold to
recruit PP1c and eIF2α(p) to promote eIF2α(p) depho-
sphorylation [72]. Finally, our laboratory recently iden-
tified an AcP, AcP10, of a cetacean gammacoronavirus as
the first example of a class-IV ISR inhibitor [12••]. The
mode of action of AcP10 and other class-IV inhibitors
will be discussed in more detail below. Coronavirus
class-III and -IV inhibitors may also contribute to
counter translational arrest due to activation of other ISR
kinases, such as PERK, which may be activated in re-
sponse to ER stress as caused by virus-induced mem-
brane reorganization or high levels of envelope
glycoproteins in the secretory pathway of infected cells.

Class IV: a novel class of integrated stress
response antagonists
Class I through III ISR inhibitors, preventing or rever-
sing eIF2α phosphorylation, have been described for
many different RNA and DNA viruses (recently re-
viewed in [13]). Studies in our laboratory provided first
evidence for the existence of yet another class of ISR

antagonists acting at a more downstream level [12••].
While studying the AcP10 of Beluga Whale coronavirus-
SW1 (BW-CoV SW1; genus Gammacoronavirus, sub-
genus Cegacovirus), we observed that its transient ex-
pression averted ISR-associated translational arrest.
Remarkably, AcP10 inhibited the activation of the ISR
by both PKR and HRI. Moreover, excluding a class-III
mechanism, AcP10 prevented translational arrest even at
very high cellular levels of eIF2(p). In mass spectro-
metry-based immunoprecipitation proteomics experi-
ments with AcP10 as bait, all five eIF2B subunits were
identified. Reciprocal pulldowns confirmed Ac-
P10–eIF2B association. Interestingly, AcP10–eIF2B
complexes also contained eIF2 but not eIF2(p). The
data pointed to a novel mechanism in which AcP10
competes with eIF2(p), but not with eIF2, for binding to
the eIF2B complex. Thus, continued eIF2B GEF ac-
tivity and TC formation is ensured even under stress
conditions in which the majority of the cellular eIF2 pool
is phosphorylated. The selective inhibition of eIF2(-
p)–eIF2B association also led us to conclude eIF2 and

Figure 3

Current Opinion in Immunology

Complex of eIF2B with eIF2, eIF2(p), and SFSV NSs. (a) Cryo-EM structure of eIF2B in active conformation complexed with eIF2 (N-terminal domain of
eIF2α shown exclusively) and NSs (PDB: 7F67). eIF2B subunits shown in surface representation (α, pale green; β, light blue; γ, blue white; δ, light pink;
ε, wheat) and with NSs (yellow) and eIF2α (res. 3–185, red) in cartoon presentation. (b) eIF2B in inactive conformation complexed with the eIF2α(P) N-
terminal domain as in (a) (PDB: 6O9Z). (c) Close-up of the eIF2(p)-binding site (PDB: 6O9Z). eIF2α(P) (res. 5–180) in red, eIF2B α- and δ-subunits,
shown in pale green and light pink, respectively. Cartoon representation. (d) Close-up of the NS-binding site as above. NSs in yellow (PDB: 7RLO).
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eIF2(p) must differ in their interaction with eIF2B, as
since confirmed by structural analysis [4,6–9].

In parallel, we discovered a class-IV ISR inhibitor in
picornaviruses. We showed that the L protein of
Aichivirus (AiV, genus Kobuvirus), such as AcP10, pre-
vents translation arrest during conditions of strong eIF2α
phosphorylation by binding to eIF2B [12••]. Replication
of L-defective AiV was severely hampered and resulted
in formation of SGs, which were absent in wild-type
AiV-infected cells. Upon knockout of PKR, no SGs were
formed and replication was rescued, underscoring the
importance to the virus of blocking the PKR-activated
ISR pathway. Recently, another class-IV ISR inhibitor,
was identified in a negative-stranded RNA virus, the
NSP NSs of Sandfly Fever Sicilian virus (SFSV), a
member of the arthropod-transmitted genus Phlebovirus
(family Phenuiviridae, order Bunyavirales) [73]. Notably,
this function is not conserved in NSs from Rift Valley
fever virus, another phlebovirus [74]. The SFSV NSs,
BW-CoV AcP10 and AiV L proteins, do not share any
similarity in sequence or predicted structure
[12••,75••,76••], indicating that they arose in-
dependently via convergent evolution. Although they all
prevent eIF2B inactivation by eIF2(p), it is unknown
whether they do so via the same molecular mechanism.
Structural analysis of a NS–eIF2B complex showed that
NSs block the eIF2(p)-binding site (Figure 3). However,
whereas binding of eIF2(p) forces the eIF2B hetero-
decamer into an GEF-inactive conformation,
NS binding preserves GEF activity by maintaining
eIF2B's conformation in its active state, thus allowing
binding of eIF2 and continued GDP/GTP exchange
(Figure 3a) [75••,76••]. Currently, no structures are
available of AiV L or AcP10-bound eIF2B. Cross-linking
mass spectrometry experiments suggest that AcP10
binds as a multimer that would cover a large area en-
compassing the eIF2(p)-binding site (i.e. cross-links
were found with both the eIF2Bδ and eIF2Bε subunits,
including the catalytic C-terminal domain of ε) [12••].
Future studies should determine whether AcP10 and
AiV L sterically inhibit eIF2(p) binding via an NS-like
mechanism or rather induce allosteric alterations to keep
eIF2B in the active conformation, as shown for the small
compound integrated stress response inhibitor (ISRIB)
[77–80]. Conceivably, additional class-IV ISR antago-
nists will be identified. One potential candidate is the
above-described L protein of cardiovirus, which, apart
from directly inhibiting PKR, also suppresses SG for-
mation induced by thapsigargin and arsenite (i.e. acti-
vators of PERK and HRI, respectively) without
preventing eIF2α phosphorylation [40,41•].

Concluding remarks
Compared with coronaviruses, picornaviruses have a
limited repertoire of classical ISR antagonists, which may

be related to their relatively small genome size and the
expression of their genes via a single polyprotein. They
largely rely on L and/or 2A security proteins, but these
differ widely in structure and function from one pi-
cornavirus to another. The large coronavirus genome size
and complex genome organization, with structural and
AcPs expressed from sgmRNAs, provides genetic flex-
ibility to readily accommodate new genes. This may ac-
count for the wide variety in CoV antagonists that target
one or more branches of the innate antiviral response, but
at the same time prompts the question of why individual
coronaviruses encode multiple antagonists with similar
activity as is the case for MERS-CoV, while others seem
to flourish with a more limited set of inhibitors.
Expression levels of antiviral effector and sensor mole-
cules are highly variable between different host species,
tissues, and cell types. Conceivably, the number and
nature of antagonists encoded by a given coronavirus may
reflect the conditions met during natural infection in its
current host species as well as those met in reservoir hosts
from which the virus emerged. Host and cell tropism may
drive selection for additional, sometimes even redundant,
capabilities to counteract these responses, as is evidenced
by the presence of multiple class-I ISR antagonists in
MERS-CoV. Interestingly, the MERS-CoV 4a protein,
conserved in isolates from dromedary camels, is not re-
quired for zoonotic infection and subsequent transmission
among humans, as demonstrated by a documented hos-
pital outbreak with a 4a-defective MERS-CoV variant
[81]. The redundancy in CoV ISR antagonists, with
NSP15 expressed from the genome and others from
sgmRNAs, may also reflect different requirements during
different stages of the viral replication cycle and a ne-
cessity to block the ISR once large amounts of sgmRNAs
are produced. Future studies should consider the dy-
namics of the interplay between viruses and their hosts.
Moreover, it would be interesting to elucidate functions
and antagonistic mechanisms employed by other pi-
cornavirus security proteins and coronavirus AcPs, many
of which have not yet been characterized. Given that
viruses also induce ER-, oxidative, and metabolic stress,
such studies may even identify yet poorly explored viral
antagonists of PERK-, HRI-, and/or GCN2-mediated ISR
activation. Hence, studying viral antagonistic mechanisms
may reveal many novel aspects of ISR regulation, which is
essential for understanding its role in health and disease.
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