
Introduction
The value of molecular methods for cancer medicine 
stems from the enormous breadth of information that 
can be obtained from a single tumor sample. Microarrays 
assess thousands of transcripts, or millions of single 
nucleotide polymorphisms (SNPs), and next-generation 
sequencing (NGS) can reveal copy number and genetic 
aberrations at base pair resolution. However, because 
most applications require bulk DNA or RNA from over 
100,000 cells, they are limited to providing global 
information on the average state of the population of 
cells. Solid tumors are complex mixtures of cells 
including non-cancerous fibroblasts, endothelial cells, 
lymphocytes, and macrophages that often contribute 
more than 50% of the total DNA or RNA extracted. This 
admixture can mask the signal from the cancer cells and 

thus complicate the inter- and intra-tumor comparisons, 
which are the basis of molecular classification methods.

In addition, solid tumors are often composed of 
multiple clonal subpopulations [1-3], and this 
heterogeneity further confounds the analysis of clinical 
samples. Single-cell genomic methods have the capacity 
to resolve complex mixtures of cells in tumors. When 
multiple clones are present in a tumor, molecular assays 
reflect an average signal of the population, or, 
alternatively, only the signal from the dominant clone, 
which may not be the most malignant clone present in 
the tumor. This becomes particularly important as 
molecular assays are employed for directing targeted 
therapy, as in the use of ERBB2 (Her2-neu) gene 
amplification to identify patients likely to respond to 
Herceptin (trastuzumab) treatment in breast cancer, 
where 5% to 30% of all patients have been reported to 
exhibit such genetic heterogeneity [4-7].

Aneuploidy is another hallmark of cancer [8], and the 
genetic lineage of a tumor is indelibly written in its 
genomic profile. While whole genomic sequencing of a 
single cell is not possible using current technology, copy 
number profiling of single cells using sparse sequencing 
or microarrays can provide a robust measure of this 
genomic complexity and insight into the character of the 
tumor. This is evident in the progress that has been made 
in many studies of single-cell genomic copy number [9-
14]. In principle, it should also be possible to obtain a 
partial representation of the transcriptome from a single 
cell by NGS and a few successes have been reported for 
whole transcriptome analysis in blastocyst cells [15,16]; 
however, as yet, this method has not been successfully 
applied to single cancer cells.

The clinical value of single-cell genomic methods will 
be in profiling scarce cancer cells in clinical samples, 
monitoring CTCs, and detecting rare clones that may be 
resistant to chemotherapy (Figure 1). These applications 
are likely to improve all three major themes of oncology: 
detection, progression, and prediction of therapeutic 
efficacy. In this review, we outline the current methods 
and those in development for isolating single cells and 
analyzing their genomic profile, with a particular focus 
on profiling genomic copy number.

Abstract
Advances in whole genome amplification and next-
generation sequencing methods have enabled genomic 
analyses of single cells, and these techniques are now 
beginning to be used to detect genomic lesions in 
individual cancer cells. Previous approaches have been 
unable to resolve genomic differences in complex 
mixtures of cells, such as heterogeneous tumors, despite 
the importance of characterizing such tumors for 
cancer treatment. Sequencing of single cells is likely to 
improve several aspects of medicine, including the early 
detection of rare tumor cells, monitoring of circulating 
tumor cells (CTCs), measuring intratumor heterogeneity, 
and guiding chemotherapy. In this review we discuss 
the challenges and technical aspects of single-cell 
sequencing, with a strong focus on genomic copy 
number, and discuss how this information can be used 
to diagnose and treat cancer patients.
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Background
Although genomic profiling by microarray comparative 
genomic hybridization (aCGH) has been in clinical use 
for constitutional genetic disorders for some time, its use 
in profiling cancers has been largely limited to basic 
research. Its potential for clinical utility is yet to be 
realized. Specific genomic events such as Her2-neu 
amplification as a target for Herceptin are accepted 
clinical markers, and genome-wide profiling for copy 
number has been used only in preclinical studies and 
only recently been incorporated into clinical trial 
protocols [17]. However, in cohort studies, classes of 
genomic copy number profiles of patients have shown 
strong correlation with patient survival [18,19]. Until the 
breakthrough of NGS, the highest resolution for 
identifying copy number variations was achieved through 
microarray-based methods, which could detect 
amplifications and deletions in cancer genomes, but 
could not discern copy neutral alterations such as 
translocations or inversions. NGS has changed the 
perspective on genome profiling, since DNA sequencing 
has the potential to identify structural changes, including 
gene fusions and even point mutations, in addition to 
copy number. However, the cost of profiling a cancer 
genome at base pair resolution remains out of range for 
routine clinical use, and calling mutations is subject to 
ambiguities as a result of tumor heterogeneity, when 
DNA is obtained from bulk tumor tissue. The application 
of NGS to genomic profiling of single cells developed by 
the Wigler group and Cold Spring Harbor Lab and 
described here has the potential to not only acquire an 
even greater level of information from tumors, such the 
variety of cells present, but further to obtain genetic 
information from the rare cells that may be the most 
malignant.

Isolating single cells
To study a single cell it must first be isolated from cell 
culture or a tissue sample in a manner that preserves 
biological integrity. Several methods are available to 
accomplish this, including micromanipulation, laser-
capture microdissection (LCM) and flow cytometry 
(Figure 2a-c). Micromanipulation of individual cells using 
a transfer pipette has been used for isolating single cells 
from culture or liquid samples such as sperm, saliva or 
blood. This method is readily accessible but labor 
intensive, and cells are subject to mechanical shearing. 
LCM allows single cells to be isolated directly from tissue 
sections, making it desirable for clinical applications. 
This approach requires that tissues be sectioned, 
mounted and stained so that they can be visualized to 
guide the isolation process. LCM has the advantage of 
allowing single cells to be isolated directly from morpho-
logical structures, such as ducts or lobules in the breast. 
Furthermore, tissue sections can be stained with fluor-
escent or chromogenic antibodies to identify specific cell 
types of interest. The disadvantage of LCM for genomic 
profiling is that some nuclei will inevitably be sliced in 
the course of tissue sectioning, causing loss of chromo-
some segments and generating artifacts in the data.

Flow cytometry using fluorescence-activated cell 
sorting (FACS) is by far the most efficient method for 
isolating large numbers of single cells or nuclei from 
liquid suspensions. Although it requires sophisticated 
and expensive instrumentation, FACS is readily available 
at most hospitals and research institutions, and is used 
routinely to sort cells from hematopoietic cancers. 
Several instruments such as the BD Aria II/III (BD 
Biosciences, San Jose, CA, USA) and the Beckman 
Coulter MO-FLO (Beckman Coulter, Brea, CA, USA) 
have been optimized for sorting single cells into 96-well 

Figure 1. Medical applications of single-cell sequencing. (a) Profiling of rare tumor cells in scarce clinical samples, such as fine-needle aspirates 
of breast lesions. (b) Isolation and profiling of circulating tumor cells in the blood. (c) Identification and profiling of rare chemoresistant cells before 
and after adjuvant therapy.
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plates for subcloning cell cultures. FACS has the added 
advantage that cells can be labeled with fluorescent 
antibodies or nuclear stains (4′,6-diamidino-2-phenyl 
indole dihydrochloride (DAPI)) and sorted into different 
fractions for downstream analysis.

Methods for single-cell genomic profiling
Several methods have been developed to measure 
genome-wide information of single cells, including 
cytological approaches, aCGH and single-cell sequencing 
(Figure 2d-f ). Some of the earliest methods to investigate 
the genetic information contained in single cells emerged 
in the 1970s in the fields of cytology and immunology. 

Cytological methods such as spectral karyotyping, 
fluorescence in situ hybridization (FISH) and Giemsa 
staining enabled the first qualitative analysis of genomic 
rearrangements in single tumor cells (illustrated in 
Figure  2d). In the 1980s, the advent of PCR enabled 
immunologists to investigate genomic rearrangements 
that occur in immunocytes, by directly amplifying and 
sequencing DNA from single cells [20-22]. Together, 
these tools provided the first insight into the remarkable 
genetic heterogeneity that characterizes solid tumors 
[23-28].

While PCR could amplify DNA from an individual 
locus in a single cell, it could not amplify the entire 

Figure 2. Isolating single cells and techniques for genomic profiling. (a-c) Single-cell isolation methods. (d-f) Single-cell genomic profiling 
techniques. (a) Micromanipulation, (b) laser-capture microdissection (LCM), (c) fluorescence-activated cell sorting (FACS), (d) cytological methods to 
visualize chromosomes in single cells, (e) whole genome amplification (WGA) and microarray comparative genomic hybridization (CGH), (f ) WGA 
and next-generation sequencing.
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human genome in a single reaction. Progress was made 
using PCR-based strategies such as primer extension pre-
amplification [29] to amplify the genome of a single cell; 
however, these strategies were limited in coverage when 
applied to human genomes. A major milestone occurred 
with the discovery of two DNA polymerases that 
displayed remarkable processivity for DNA synthesis: 
Phi29 (Φ29) isolated from the Bacillus subtilis 
bacteriophage, and Bst polymerase isolated from Bacillus 
stearothermophilus. Pioneering work in the early 2000s 
demonstrated that these enzymes could amplify the 
human genome over 1,000-fold through a mechanism 
called multiple displacement amplification [30,31]. This 
approach, called whole genome amplification (WGA), 
has since been made commercially available (New 
England Biolabs, Ipswich, MA, USA; QIAGEN, Valencia, 
CA, USA; Sigma-Aldrich, St Louis, MO, USA; Rubicon 
Genomics, Ann Arbor, MI, USA).

Coupling WGA with array CGH enabled several 
groups to begin measuring genomic copy number in 
small populations of cells, and even single cells 
(Figure  2e). These studies showed that it is possible to 
profile copy number in single cells in various cancer 
types, including CTCs [9,12,32], colon cancer cell lines 
[13] and renal cancer cell lines [14]. While pioneering, 
these studies were also challenged by limited resolution 
and reproducibility. However, in practice, probe-based 
approaches such as aCGH microarrays are problematic 
for measuring copy number using methods such as 
WGA, where amplification is not uniform across the 
genome. WGA fragments amplified from single cells are 
sparsely distributed across the genome, representing no 
more than 10% of the unique human sequence [10]. This 
results in zero coverage for up to 90% of probes, 
ultimately leading to decreased signal to noise ratios and 
high standard deviations in copy number signal.

An alternative approach is to use NGS. This method 
provides a major advantage over aCGH for measuring 
WGA fragments because it provides a non-targeted 
approach to sample the genome. Instead of differential 
hybridization to specific probes, sequence reads are 
integrated over contiguous and sequential lengths of the 
genome and all amplified sequences are used to calculate 
copy number. In a recently published study, we combined 
NGS with FACS and WGA in a method called single-
nucleus sequencing (SNS) to measure high-resolution 
(approximately 50 kb) copy number profiles of single cells 
[10]. Flow-sorting of DAPI-stained nuclei isolated from 
tumor or other tissue permits deposition of single nuclei 
into individual wells of a multiwell plate, but, moreover, 
permits sorting cells by total DNA content. This step 
purifies normal nuclei (2N) from aneuploid tumor nuclei 
(not 2N), and avoids collecting degraded nuclei. We then 
use WGA to amplify the DNA from each well by 

GenomePlex (Sigma-Genosys, The Woodlands, TX, 
USA) to yield a collection of short fragments, covering 
approximately 6% (mean 5.95%, SEM ± 0.229, n = 200) of 
the human genome uniquely [10], which are then 
processed for Illumina sequencing (Illumina, San Diego, 
CA, USA) (Figure 3a). For copy number profiling, deep 
sequencing is not required. Instead, the SNS method 
requires only sparse read depth (as few as 2 million 
uniquely mapped 76 bp single-end reads) evenly 
distributed along the genome. For this application, 
Illumina sequencing is preferred over other NGS 
platforms because it produces the highest number of 
short reads across the genome at the lowest cost.

To calculate the genomic copy number of a single cell, 
the sequence reads are grouped into intervals or ‘bins’ 
across the genome, providing a measure of copy number 
based on read density in each of 50,000 bins, resulting in 
a resolution of 50 kb across the genome. In contrast to 
previous studies that measure copy number from 
sequence read depth using fixed bin intervals across the 
human genome [33-37], we have developed an algorithm 
that uses variable length bins to correct for artifacts 
associates with WGA and mapping. The length of each 
bin is adjusted in size based on a mapping simulation 
using random DNA sequences, depending on the 
expected unique read density within each interval. This 
corrects regions of the genome with repetitive elements 
(where fewer reads map), and biases introduced, such as 
GC content. The variable bins are then segmented using 
the Kolmogorov-Smirnov (KS) statistical test [1,38]. 
Alternative methods for sequence data segmentation, 
such as hidden Markov models, have been developed 
[33], but have not yet been applied to sparse single-cell 
data. In practice, KS segmentation algorithms work well 
for complex aneuploid cancer genomes that contain 
many variable copy number states, whereas hidden 
Markov models are better suited for simple cancer 
genomes with fewer rearrangements, and normal 
individuals with fewer copy number states. To determine 
the copy number states in sparse single-cell data, we 
count the reads in variable bins and segments with KS, 
then use a Gaussian smoothed kernel density function to 
sample all of the copy number states and determine the 
ground state interval. This interval is used to linearly 
transform the data, and round to the nearest integer, 
resulting in the absolute copy number profile of each 
single cell [10]. This processing allows amplification 
artifacts associated with WGA to be mitigated 
informatically, reducing biases associated with GC 
content [9,14,39,40] and mapability of the human genome 
[41]. Other artifacts, such as over-replicated loci 
(‘pileups’), as previously reported in WGA [40,42,43], do 
occur, but they are not at recurrent locations in different 
cells, and are sufficiently randomly distributed and sparse 
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so as not to affect counting over the breadth of a bin, 
when the mean interval size is 50 kb. While some WGA 
methods have reported the generation of chimeric DNA 
molecules in bacteria [44], these artifacts would mainly 
affect paired-end mappings of structural rearrangements, 
not single-end read copy number measurements that rely 
on sequence read depth. In summary, NGS provides a 
powerful tool to mitigate artifacts previously associated 
with quantifying copy number in single cells amplified by 
WGA, and eliminates the need for a reference genome to 
normalize artifacts, making it possible to calculate 
absolute copy number from single cells.

Clinical application of single-cell sequencing
While single-cell genomic methods such as SNS are 
feasible in a research setting, they will not be useful in the 
clinic until advances are made in reducing the cost and 

time of sequencing. Fortunately, the cost of DNA 
sequencing is falling precipitously as a direct result of 
industry competition and technological innovation. 
Sequencing has an additional benefit over microarrays in 
the potential for massive multiplexing of samples using 
barcoding strategies. Barcoding involves adding a specific 
4 to 6 base oligonucleotide sequence to each library as it 
is amplified, so that samples can be pooled together in a 
single sequencing reaction [45,46]. After sequencing, the 
reads are deconvoluted by their unique barcodes for 
downstream analysis. With the current throughput of the 
Illumina HiSeq2000, it is possible to sequence up to 25 
single cells on a single-flow cell lane, thus allowing 200 
single cells to be profiled in a single run. Moreover, by 
decreasing the genomic resolution of each single-cell 
copy number profile (for example from 50 kb to 500 kb) it 
is possible to profile hundreds of cells in parallel on a 

Figure 3. Single-nucleus sequencing of breast tumors. (a) Single-nucleus sequencing involves isolating nuclei, staining with 4′,6-diamidino-2-
phenyl indole dihydrochloride (DAPI), flow-sorting by total DNA content, whole genome amplification (WGA), Illumina library construction, and 
quantifying genomic copy number using sequence read depth. (b) Phylogenetic tree constructed from single-cell copy number profiles of a 
monogenomic breast tumor. (c) Phylogenetic tree constructed using single-cell copy number profiles from a polygenomic breast tumor, showing 
three clonal subpopulations of tumor cells.
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single lane, or thousands on a run, making single-cell 
profiling economically feasible for clinical applications.

A major application of single-cell sequencing will be in 
the detection of rare tumor cells in clinical samples, 
where fewer than a hundred cells are typically available. 
These samples include body fluids such as lymph, blood, 
sputum, urine, or vaginal or prostate fluid, as well clinical 
biopsy samples such as fine-needle aspirates (Figure 1a) 
or core biopsy specimens. In breast cancer, patients often 
undergo fine-needle aspirates, nipple aspiration, ductal 
lavages or core biopsies; however, genomic analysis is 
rarely applied to these samples because of limited DNA 
or RNA. Early stage breast cancers, such as low-grade 
ductal carcinoma in situ (DCIS) or lobular carcinoma in 
situ, which are detected by these methods, present a 
formidable challenge to oncologists, because only 5% to 
10% of patients with DCIS typically progress to invasive 
carcinomas [47-51]. Thus, it is difficult for oncologists to 
determine how aggressively to treat each individual 
patient. Studies of DCIS using immunohistochemistry 
support the idea that many early stage breast cancers 
exhibit extensive heterogeneity [52]. Measuring tumor 
heterogeneity in these scarce clinical samples by genomic 
methods may provide important predictive information 
on whether these tumors will evolve and become invasive 
carcinomas, and they may lead to better treatment 
decisions by oncologists.

Early detection using circulating tumor cells
Another major clinical application of single-cell 
sequencing will be in the genomic profiling of copy 
number or sequence mutations in CTCs and 
disseminated tumor cells (DTCs) (Figure 1b). Although 
whole genome sequencing of single CTCs is not yet 
technically feasible, with future innovations, such data 
may provide important information for monitoring and 
diagnosing cancer patients. CTCs are cells that 
intravasate into the circulatory system from the primary 
tumor, while DTCs are cells that disseminate into tissues 
such the bone. Unlike other cells in the circulation, CTCs 
often contain epithelial surface markers (such as 
epithelial cell adhesion molecule (EpCAM)) that allow 
them to be distinguished from other blood cells. CTCs 
present an opportunity to obtain a non-invasive ‘fluid 
biopsy’ that would provide an indication of cancer 
activity in a patient, and also provide genetic information 
that could direct therapy over the course of treatment. In 
a recent phase II clinical study, the presence of epithelial 
cells (non-leukocytes) in the blood or other fluids 
correlated strongly with active metastasis and decreased 
survival in patients with breast cancer [53]. Similarly, in 
melanoma it was shown that counting more than two 
CTCs in the blood correlated strongly with a marked 
decrease in survival from 12 months to 2 months [54]. In 

breast cancer, DTCs in the bone marrow (micro-
metastases) have also correlated with poor overall patient 
survival [55]. While studies that count CTCs or DTCs 
clearly have prognostic value, more detailed characteriza-
tion of their genomic lesions are necessary to determine 
whether they can help guide adjuvant or chemotherapy.

Several new methods have been developed to count the 
number of CTCs in blood, and to perform limited marker 
analysis on isolated CTCs using immunohistochemistry 
and FISH. These methods generally depend on antibodies 
against EpCAM to physically isolate a few epithelial cells 
from the nearly ten million non-epithelial leukocytes in a 
typical blood draw. CellSearch (Veridex, LLC, Raritan, 
NJ, USA) uses a series of immunomagnetic beads with 
EpCAM markers to isolate tumor cells and stain them 
with DAPI to visualize the nucleus. This system also uses 
CD45 antibodies to negatively select immune cells from 
the blood samples. Although CellSearch is the only 
instrument that is currently approved for counting CTCs 
in the clinic, a number of other methods are in 
development, and these are based on microchips [56], 
FACS [57,58] or immunomagnetic beads [54] that allow 
CTCs to be physically isolated. However, a common 
drawback of all methods is that they depend on EpCAM 
markers that are not 100% specific (antibodies can bind 
to surface receptors on blood cells) and the methods for 
distinguishing actual tumor cells from contaminants are 
not dependable [56].

Investigating the diagnostic value of CTCs with single-
cell sequencing has two advantages: impure mixtures can 
be resolved, and limited amounts of input DNA can be 
analyzed. Even a single CTC in an average 7.5 ml blood 
draw (which is often the level found in patients) can be 
analyzed to provide a genomic profile of copy number 
aberrations. By profiling multiple samples from patients, 
such as the primary tumor, metastasis and CTCs, it 
would be possible to trace an evolutionary lineage and 
determine the pathways of progression and site of origin.

Monitoring or detecting CTCs or DTCs in normal 
patients may also provide a non-invasive approach for 
the early detection of cancer. Recent studies have shown 
that many patients with non-metastatic primary tumors 
show evidence of CTCs [53,59]. While the function of 
these cells is largely unknown, several studies have 
demonstrated prognostic value of CTCs using gene-
specific molecular assays such as reverse transcriptase 
(RT)-PCR [60-62]. Single-cell sequencing could greatly 
improve the prognostic value of such methods [63]. 
Moreover, if CTCs generally share the mutational profile 
of the primary tumors (from which they are shed), then 
they could provide a powerful non-invasive approach to 
detecting early signs of cancer. One day, a general 
physician may be able to draw a blood sample during a 
routine check-up and profile CTCs indicating the 
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presence of a primary tumor somewhere in the body. If 
these genomic profiles reveal mutations in cancer genes, 
then medical imaging (magnetic resonance imaging or 
computed tomography) could be pursued to identify the 
primary tumor site for biopsy and treatment. CTC 
monitoring would also have important applications in 
monitoring residual disease after adjuvant therapy to 
ensure that the patients remain in remission.

The analysis of scarce tumor cells may also improve the 
early detection of cancers. Smokers could have their 
sputum screened on regular basis to identify rare tumor 
cells with genomic aberrations that provide an early 
indication of lung cancer. Sperm ejaculates contain a 
significant amount of prostate fluid that may contain rare 
prostate cancer cells. Such cells could be purified from 
sperm using established biomarkers such as prostate-
specific antigen [64] and profiled by single-cell 
sequencing. Similarly, it may be possible to isolate 
ovarian cancer cells from vaginal fluid using established 
biomarkers, such as ERCC5 [65] or HE4 [66], for genomic 
profiling. The genomic profile of these cells may provide 
useful information on the lineage of the cell and from 
which organ it has been shed. Moreover, if the genomic 
copy number profiles of rare tumor cells accurately 
represent the genetic lesions in the primary tumor, then 
they may provide an opportunity for targeted therapy. 
Previous work has shown that classes of genomic copy 
number profiles correlate with survival [18], and thus the 
profiles of rare tumor cells may have predictive value in 
assessing the severity of the primary cancer from which 
they have been shed.

Investigating tumor heterogeneity with SNS
Tumor heterogeneity has long been reported in 
morphological [67-70] and genetic [26,28,71-76] studies 
of solid tumors, and more recently in genomic studies 
[1-3,10,77-81], transcriptional profiles [82,83] and 
protein levels [52,84] of cells within the same tumor 
(summarized in Table 1). Heterogeneous tumors present 
a formidable challenge to clinical diagnostics, because 
sampling single regions within a tumor may not represent 
the population as a whole. Tumor heterogeneity also 
confounds basic research studies that investigate the 
fundamental basis of tumor progression and evolution. 
Most current genomic methods require large quantities 
of input DNA, and thus their measurements represent an 
average signal across the population. In order to study 
tumor subpopulations, several studies have stratified cells 
using regional macrodissection [1,2,79,85], DNA ploidy 
[1,86], LCM [78,87] or surface receptors [3] prior to 
applying genomic methods. While these approaches do 
increase the purity of the subpopulations, they remain 
admixtures. To fully resolve such complex mixtures, it is 
necessary to isolate and study the genomes of single cells.

In the single-cell sequencing study described above, we 
applied SNS to profile hundreds of single cells from two 
primary breast carcinomas to investigate substructure 
and infer genomic evolution [10]. For each tumor we 
quantified the genomic copy number profile of each 
single cell and constructed phylogenetic trees (Figure 3). 
Our analysis showed that one tumor (T16) was 
monogenomic, consisting of cells with tightly conserved 
copy number profiles throughout the tumor mass, and 
was apparently the result of a single major clonal 
expansion (Figure 3b). In contrast, the second breast 
tumor (T10) was polygenomic (Figure 3c), displaying 
three major clonal subpopulations that shared a common 
genetic lineage. These subpopulations were organized 
into different regions of the tumor mass: the H 
subpopulation occupied the upper sectors of the tumor 
(S1 to S3), while the other two tumor subpopulations 
(AA and AB) occupied the lower regions (S4 to S6). The 
AB tumor subpopulation in the lower regions contained 
a massive amplification of the KRAS oncogene and 
homozygous deletions of the EFNA5 and COL4A5 tumor 
suppressors. When applied to clinical biopsy or tumor 
samples, such phylogenetic trees are likely to be useful 
for improving the clinical sampling of tumors for 
diagnostics, and may eventually aid in guiding targeted 
therapies for the patient.

Response to chemotherapy
Tumor heterogeneity is likely to play an important role in 
the response to chemotherapy [88]. From a Darwinian 
perspective, tumors with the most diverse allele 
frequencies will have the highest probability of surviving 
a catastrophic selection pressure such as a cytotoxic 
agent or targeted therapy [89,90]. A major question 
revolves around whether resistant clones are pre-existing 
in the primary tumor (prior to treatment) or whether 
they emerge in response to adjuvant therapy by acquiring 
de novo mutations. Another important question is 
whether heterogeneous tumors generally show a poorer 
response to adjuvant therapy. Using samples of millions 
of cells, recent studies in cervical cancer treated with cis-
platinum [79] and ovarian carcinomas treated with 
chemoradiotherapy [91] have begun to investigate these 
questions by profiling tumors for genomic copy number 
before and after treatment. Both studies reported 
detecting some heterogeneous tumors with pre-existing 
resistant subpopulations that expanded further after 
treatment. However, since these studies are based on 
signals derived from populations of cells, their results are 
likely to underestimate the total extent of genomic 
heterogeneity and frequency of resistant clones in the 
primary tumors. These questions are better addressed 
using single-cell sequencing methods, because they can 
provide a fuller picture of the extent of genomic 
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heterogeneity in the primary tumor. The degree of 
genomic heterogeneity may itself provide useful 
prognostic information, guiding patients who are 
deciding on whether to elect chemotherapy and the 
devastating side-effects that often accompany it. In 
theory, patients with monogenomic tumors will respond 
better and show better overall survival compared with 
patients with polygenomic tumors, which may have a 
higher probability of developing or having resistant 
clones, that is, more fuel for evolution. Single-cell 
sequencing can in principle also provide a higher 
sensitivity for detecting rare chemoresistant clones in 
primary tumors (Figure 1c). Such methods will enable the 

research community to investigate questions of whether 
resistant clones are pre-existing in primary tumors or 
arise in response to therapies. Furthermore, by 
multiplexing and profiling hundreds of single cells from a 
patient’s tumor, it will possible to develop a more 
comprehensive picture of the total genomic diversity in a 
tumor before and after adjuvant therapy.

Future directions
Single-cell sequencing methods such as SNS provide an 
unprecedented view of the genomic diversity within 
tumors and provide the means to detect and analyze the 
genomes of rare cancer cells. While cancer genome 

Table 1. Summary of tumor heterogeneity studies

Cancer Heterogeneity Method Details Reference

Lung Morphology H&E staining Microscopic examination [67]

Pancreas Morphology H&E staining Microscopic examination [68]

Prostate Morphology H&E staining Microscopic examination [69]

Bladder Morphology H&E staining Microscopic examination [70]

Glioma DNA G-banding G-banding and ploidy [23]

Breast DNA G-banding Karyotype G-banding  [25]

Breast DNA G-banding Karyotype G-banding  [27]

Breast DNA G-banding Karyotype G-banding  [94]

Bladder DNA FISH DNA copy number analysis  [26]

Breast DNA FISH DNA copy number analysis  [72]

Pancreas DNA FISH DNA copy number analysis  [74]

Neuroblastoma DNA FISH DNA copy number analysis  [73]

Breast DNA FISH DNA copy number analysis  [28]

Multiple myeloma DNA FISH DNA copy number analysis  [75]

Esophagus DNA FISH FISH, LOH, microsatellites, sequencing [76]

Breast DNA FISH DNA copy number analysis  [71]

Breast (DCIS) Protein IHC IHC using antibodies [52]

Breast Protein MS MS and LCM [84]

Prostate RNA Expression Transcriptional microarrays [82]

Cervix RNA Expression Transcriptional microarrays [83]

Breast DNA CGH LCM and BAC-CGH [78]

Breast DNA CGH Receptor-purification and SNP microarrays [3]

Breast DNA CGH Sectoring and aCGH [2]

Breast DNA CGH Sectoring, ploidy and aCGH [1]

Cervix DNA CGH Regional macrodissection and aCGH [79]

Breast DNA NGS NGS [80]

Breast DNA NGS NGS [81]

Pancreas DNA NGS Sectoring and NGS [77]

Breast DNA NGS Single-nucleus sequencing [10]

Summary of studies that have detected intratumor heterogeneity using various techniques, at the DNA, RNA and protein level. aCGH, microarray comparative 
genomic hybridization; BAC-CGH, bacterial artificial chromosome-comparative genomic hybridization; CGH, comparative genomic hybridization; DCIS, ductal 
carcinoma in situ; FISH, fluorescence in situ hybridization; H&E, hematoxylin and eosin; IHC, immunohistochemistry; LCM, laser-capture microdissection; LOH, loss of 
heterozygosity; MS, mass spectrometry; NGS, next-generation sequencing.
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studies on bulk tissue samples can provide a global 
spectrum of mutations that occur within a patient 
[81,92], they cannot determine whether all of the tumor 
cells contain the full set of mutations, or alternatively 
whether different subpopulations contain subsets of 
these mutations that in combination drive tumor 
progression. Moreover, single-cell sequencing has the 
potential to greatly improve our fundamental 
understanding of how tumors evolve and metastasize. 
While single-cell sequencing methods using WGA are 
currently limited to low coverage of the human genome 
(approximately 6%), emerging third-generation 
sequencing technologies such as that developed by 
Pacific Biosystems (Lacey, WA, USA) [93] may greatly 
improve coverage through single-molecule sequencing, 
by requiring lower amounts of input DNA.

In summary, the future medical applications of single-
cell sequencing will be in early detection, monitoring 
CTCs during treatment of metastatic patients, and 
measuring the genomic diversity of solid tumors. While 
pathologists can currently observe thousands of single 
cells from a cancer patient under the microscope, they 
are limited to evaluating copy number at a specific locus 
for which FISH probes are available. Genomic copy 
number profiling of single cells can provide a fuller 
picture of the genome, allowing thousands of potentially 
aberrant cancer genes to be identified, thereby providing 
the oncologist with more information on which to base 
treatment decisions. Another important medical 
application of single-cell sequencing will be in the 
profiling of CTCs for monitoring disease during the 
treatment of metastatic disease. While previous studies 
have shown value in the simple counting of epithelial 
cells in the blood [53,54], copy number profiling of single 
CTCs may provide a fuller picture, allowing clinicians to 
identify genomic amplifications of oncogenes and 
deletions of tumor suppressors. Such methods will also 
allow clinicians to monitor CTCs over time following 
adjuvant or chemotherapy, to determine if the tumor is 
likely to show recurrence.

The major challenge ahead for translating single-cell 
methods into the clinic will be the innovation of 
multiplexing strategies to profile hundreds of single cells 
quickly and at a reasonable cost. Another important 
aspect is to develop these methods for paraffin-
embedded tissues (rather than frozen), since many 
samples are routinely processed in this manner in the 
clinic. When future innovations allow whole genome 
sequencing of single tumor cells, oncologists will also be 
able to obtain the full spectrum of genomic sequence 
mutations in cancer genes from scarce clinical samples. 
However, this remains a major technical challenge, and is 
likely to be the intense focus of both academia and 
industry in the coming years. These methods are likely to 

improve all three major themes of medicine: prognostics, 
diagnostics and chemotherapy, ultimately improving the 
treatment and survival of cancer patients.
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