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Gliomas are the most common lethal primary brain tumors with variable survival outcomes for patients. The extracellular matrix
(ECM) is linked with clinical prognosis of glioma patients, but it is not commonly used as a clinical indicator. Herein, we
investigated changes in ECM-related genes (ECMRGs) via analyzing the transcriptional data of 938 gliomas from TCGA and
CGGA datasets. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, a 11-ECMRG
signature that is strongly linked with overall survival (OS) in glioma patients was identified. This signature was characterized
by high-risk and low-risk score patterns. We found that the patients in the high-risk group are significantly linked with
malignant molecular features and worse outcomes. Univariate and multivariate Cox regression analyses suggested that the
signature is an independent indicator for glioma prognosis. The prediction accuracy of the signature was verified through
time-dependent receiver operating characteristic (ROC) curves and calibration plots. Further bioinformatics analyses implied
that the ECMRG signature is strongly associated with the activation of multiple oncogenic and metabolic pathways and
immunosuppressive tumor microenvironment in gliomas. In addition, we confirmed that the high-risk score is an indicator for
a therapy-resistant phenotype. In addition to bioinformatics analyses, we functionally verified the oncogenic role of bone
morphogenetic protein 1 (BMP1) in gliomas in vitro.

1. Introduction

Gliomas are the most common and lethal primary tumors in
adults, accounting for more than 80% of malignant primary
brain tumors [1]. They have a highly infiltrative nature,
strong angiogenesis, high heterogeneity, therapeutic resis-
tance, and a rapid relapse [2–4]. Even with standard treat-
ments, including maximum surgical resection, irradiation
therapy, and chemotherapy, the prognosis for glioma
patients has been barely improved [5]. Previous studies
showed that the 5-year overall survival (OS) for glioma
patients is less than 20% [1], and patients with glioblastoma
(GBM) have a median survival time of 14.6 months [6].

Recent studies divided GBM into proneural, neural, clas-
sical, and mesenchymal types based on their transcriptional
profiles [7]. It has also been shown that the mesenchymal

subtype is an aggressive subtype that is strongly linked with
therapeutic resistance [8]. However, the predictive factors
for gliomas are still insufficient in evaluating patients’ clini-
cal outcome since glioma patients with the same signature
often have distinct clinical features [9]. Therefore, more
studies are warranted to identify comprehensive predictive
models.

The extracellular matrix (ECM) is the noncellular com-
ponent of tissues and organs, responsible for tissue homeo-
stasis, remodeling, and regeneration [10]. Accumulating
evidence showed that the ECM is involved in malignant pro-
gression of multiple cancers, including breast cancer [11],
urothelial bladder cancer [12], and liver cancer [13]. Inter-
estingly, a study reported that glioma patients with a stiff,
tenascin-rich ECM, have a mesenchymal-like phenotype
and poor survival [14]. Surprisingly, a study suggested that
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elevated ECM stiffness can independently contribute to the
aggressiveness and recurrence of GBM and predict a worse
outcome of glioma patients via bypassing the isocitrate
dehydrogenase 1 (IDH1) mutational protection [15]. In
addition, a study found that the ECM remodeling is tightly
correlated with various metabolic pathways such as glycoly-
sis, which provides sufficient energy and biosynthetic sub-
strates during tumorigenesis [16]. Moreover, a pan-cancer
analysis found that upregulated ECM genes are tightly
related to the transformation from immunoactive M1 to
immunosuppressive M2 macrophages [17]. A recent study
revealed that ECM modifications can enhance the therapeu-
tic effect of immunotherapy on GBM [18]. Thus, the ECM is
a potent candidate for outcome prediction in glioma
patients. However, studies focusing on the ECM characteris-
tics in gliomas are still lacking.

In this study, we focused on the expression profile of
ECM-related genes (ECMRGs) from The Cancer Genome
Atlas (TCGA) and the Chinese Glioma Genome Atlas
(CGGA) datasets. The results suggested that glioma patients
can be classified into 2 clusters with distinct molecular fea-
tures and clinical outcomes. In addition, an ECMRG signa-
ture was constructed to predict the OS of glioma patients.
Univariate and multivariate Cox regression analyses showed
that the risk signature is an independent prognostic model.
The receiver operating characteristic (ROC) curves and cal-
ibration curves indicated that this risk signature is a good
predictor of OS. Moreover, bioinformatics analyses indi-
cated that the risk signature is closely related to oncogenic
pathways in gliomas and that the signature ECMRGs have
significant impacts on the regulation of metabolic status
and tumor immune microenvironment (TIME). Addition-
ally, we found that the high-risk score is indicative of a
therapy-resistant phenotype. Lastly, we confirmed that bone
morphogenetic protein 1 (BMP1), which is part of the risk
signature, is strongly linked with malignant characteristics
of gliomas.

2. Materials and Methods

2.1. Included Patients and Datasets. A total of 938 glioma
samples have been investigated in this study. mRNA expres-
sion data of two public datasets were obtained, including
TCGA RNA sequencing (RNA-seq) dataset [19] and CGGA
RNA-seq dataset [20]. For TCGA RNA-seq data (629 sam-
ples), level 3 mRNA expression profiles integrated by the
Illumina HiSeq RNASeqV2 system were derived from
TCGA project (https://xenabrowser.net/datapages/). The
normalized count reads from the preprocessed data
(sequence alignment and transcript abundance estimation)
were log2 transformed. For the CGGA RNA-seq data (309
samples), the detailed pipeline has been reported before
(http://www.cgga.org.cn). The clean reads were aligned to
human genome reference (hg19), and sequencing read
counts for each RefSeq gene were calculated using RSEM.
The normalized expression levels of different samples were
log2 transformed and used in this study.

TCGA dataset was used as the discovery dataset. The
corresponding clinical data of 629 glioma samples were col-

lected from TCGA dataset (https://portal.gdc.cancer.gov/).
Similarly, the CGGA dataset was included as the external
validation dataset. The corresponding clinical information
of 309 glioma samples was obtained from the CGGA website
(http://www.cgga.org.cn). We have summarized the clinico-
pathological characteristics for all patients in (Table 1 and
Table S1). This study was approved by the Institutional
Review Boards (IRB) of the First Affiliated Hospital of
Xi’an Jiaotong University (XJTU).

2.2. Data Processing and Risk Score Construction. We per-
formed a comprehensive analysis with TCGA and CGGA
datasets to identify and construct a clinically translatable
gene signature that captured ECM alternations of tumor
cells, as shown in Figure 1, hereafter referred to as the
ECMRG signature.

Patients with complete survival information were ana-
lyzed in this process. To obtain the ECMRG signature, the
ECMRGs were used as criteria for screening (https://
maayanlab.cloud/Harmonizome/gene_set/Extracellular
+matrix+organization/Reactome+Pathways). In TCGA and
CGGA datasets, we analyzed the survival prediction value
of 266 ECM genes via univariate Cox regression analysis.
In total, 190 ECMRGs were found to be strongly associated
with a patient’s prognosis in both datasets.

Next, the 190 ECMRGs were subsequently analyzed
using LASSO regression [21], to select the most powerful
prognostic biomarkers. Using the “glmnet” package (4.0-2)
in R, the LASSO regression model was selected to minimize
the overfitting and identify the most significant survival-
associated ECMRGs in gliomas (10-fold cross-validation).
Of the 190 ECMRGs, 11 ECMRGs were identified and
selected. A formula that combined the relative expression
of the 11 ECMRGs and their respective coefficients was con-
structed. ECMRG signature = β1Exp1 + β2Exp2 +⋯+β11
Exp11 (βi and Expi represent the regression coefficient and
the gene expression level, respectively) (Table S2). Based
on the above formula, we calculated the risk score (RS) for
each sample in TCGA dataset, and the median value was
manually chosen as the threshold for high and low.
Similarly, the risk score was obtained from the CGGA
dataset using same formula. The predictive accuracy was
analyzed using a time-dependent ROC curve [22].

2.3. Consensus Clustering. Most variable genes were identi-
fied by median absolute deviation (MAD) and used for con-
sensus clustering. The R package “ConsensusClusterPlus”
(1.52.0) was used in R (4.0.0) for consensus clustering anal-
ysis and graphic generation.

2.4. Nomogram Construction. R package “rms” (6.0-1) was
used to establish the prediction model, incorporating the
risk score and clinicopathologic characteristics (age, grade,
and status of 1p19q codeletion). The Schoenfeld residual test
was performed to test the proportional hazards (PH)
assumption [23] for all variables included in the nomogram
model by using the survival (3.2-13) and survminer package
(0.4.8), and age was found to be nonproportional. Subse-
quent models were stratified by age into young (≤47 years)
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and old (>47 years) to satisfy the PH hypothesis [24]. The
calibration of the nomogram was assessed using calibration
curves. Harrell’s C-index was calculated to assess the
discrimination.

2.5. Pathway Activation Analyses. For principal component
analysis (PCA), R package “princomp” was used to explore
the difference within the high-risk and low-risk groups.

Gene set variation analysis (GSVA) is a nonparametric
and unsupervised gene set enrichment method that can esti-
mate the score of a certain pathway or signature based on
transcriptomic data [25]. Thus, we firstly achieved the hall-
mark gene sets (http://www.gsea-msigdb.org/) and 114
metabolism-relevant gene signatures [26] from previous
studies. By using “GSVA” package (1.36.2), each sample
received 164 scores corresponding to 50 hallmark pathways
and 114 metabolism signatures. The results were visualized
via the “pheatmap” package (1.0.12).

Gene set enrichment analysis (GSEA) was carried out
using a well-known online tool (http://software
.broadinstitute.org/gsea/index.jsp). Based on the median
level of risk score, glioma samples in each dataset were
divided into two groups. Normalized values for gene expres-
sion were used as input for GSEA software (4.0.3). P values
were calculated by permuting the genes 1,000 times. During

this process, the risk score was regarded as a phenotype. The
h.all.v7.2.symbols.gmt in the Molecular Signatures Database
(MSigDB) was selected as the reference gene set, and P
adjusted value < 0.05 was chosen as the cut-off criteria.

2.6. Analyses of Immune Signature. We employed a previ-
ously reported method to assess the immune infiltrations
in gliomas [27]. The 782 metagenes for 28 immune cell sub-
populations were obtained from Charoentong et al. [28].
The immune infiltration levels were quantified using enrich-
ment scores (metascore) calculated by single-sample gene set
enrichment analysis (ssGSEA) via the “GSVA” package
(1.36.2) in R. Unsupervised clustering was performed using
the calculated metascores in TCGA and CGGA datasets
and visualized via the “pheatmap” package (1.0.12) and
“corrplot” package (0.84) [29].

2.7. Association Analyses of the Risk Signature and Drug
Response. We obtained the transcriptional profiles of glioma
cell lines from the Genomics of Drug Sensitivity in Cancer
(GDSC, http://www.cancerrxgene.org/downloads). The cell
lines were subgrouped into the high- and low-risk groups.
Next, we analyzed the difference of the drug sensitivity to a
variety of drugs available in the GDSC between these two
groups. The results were visualized via heat map. Lastly,
the immune-checkpoint blockade (ICB) response was evalu-
ated by the Tumor Immune Dysfunction and Exclusion
(TIDE, http://tide.dfci.harvard.edu/) algorithm using mRNA
expression data of TCGA and CGGA datasets [30].

2.8. In Vitro Cell Cultures. U87 glioma cell lines were pro-
vided by the First Affiliated Hospital of Xi’an Jiaotong Uni-
versity. Tumor cells were cultivated in DMEM-F12
medium containing 10% vol FBS supplement and 1%
penicillin-streptomycin antibiotics. The culture medium
was changed every 3-4 days.

2.9. Lentivirus Production and Transduction. Plasmid DNA
was collected by using a mini plasmid purification kit
(TIANGEN). HEK293T cells were transfected with the
pLKO.1-TRC cloning vectors (Addgene) and two packaging
plasmids psPAX2 and pMGD2 using the Calcium Phosphate
Cell Transfection Kit (Beyotime). Medium containing lenti-
virus was collected at 24 hours and 48 hours. PEG-8000
(Beyotime) was used to precipitate the lentivirus. U87 gli-
oma cells were incubated with medium containing lentivirus
for 14 hours in the presence of 8μg/ml polybrene. Then,
change to medium described above and continue to cultivate
for 72 hours. The target sequence for shRNA used in this
study was shBMP1#1: CACCTCCCAGTACAACAACAT
and shBMP1#2: GCGCTACTGTGGCTATGAGAA.

2.10. RNA Isolation and Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR). RNA was isolated by using the
RNeasy mini kit (QIAGEN) according to the manufacturer’s
protocol. The qRT-PCR analysis was performed based on
methods as previously described [31]. The primer sequences
applied in the study include the following: BMP1 (forward
GGGTCATCCCCTTTGTCATTG; reverse GCAAGGTCG
ATAGGTGAACACA) and GAPDH (forward: GGAGCG

Table 1: Characteristics of patients in cluster 1 and cluster 2 in
TCGA dataset.

Characteristics N Cluster 1 Cluster 2 P value

Total cases 629 246 383

Gender 0.182

Male 329 142 187

Female 242 91 151

Age (years) <0.001
≤47 289 56 233

>47 282 177 105

Grade <0.001
II 210 21 189

III 228 67 161

IV 144 142 2

Subtype <0.001
Classical 81 81 0

Mesenchymal 90 85 5

Proneural 223 26 197

Neural 104 21 83

IDH status <0.001
Mutation 404 33 371

Wild-type 218 209 9

MGMT promoter <0.001
Methylation 450 99 351

Unmethylation 149 117 32

1p19q <0.001
Codel 157 3 154

Non-codel 466 237 229
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AGATCCCTCCAAAAT; reverse: GGCTGTTGTCATAC
TTCTCATGG).

2.11. Cell Viability Assay. Viability of U87 cells was deter-
mined using the AlamarBlue reagent (Thermo Scientific).
Tumor cells were seeded into a 96-well plate at the density
of 1000 cells per well. After the indicated period of time,
each well was added with the AlamarBlue reagent, and fluo-
rescence was measured (excitation 515-565nm, emission
570-610 nm) after 6 hours using the Synergy HTX Multi-
Mode Reader (BioTek).

2.12. Colony Formation Assay. Colony formation assays were
carried out to detect self-renewal ability of U87 cells. Tumor
cells were seeded at 1000 cells per well in a 6-well plate in the
medium described above. After about 10 days of cultivation,
the cells were fixed with methanol and stained with methy-
lene blue. The number of clones was counted to assess the
self-renewal ability of U87 cells.

2.13. Wound Healing Assay. The wound healing assays were
applied to determine the migratory ability of U87 cells.
Tumor cells were seeded at 1 ∗ 105 cells per well in 6-well
plates and were cultured in the medium. After 24 hours, a
sterile pipette tip was used to produce wound lines. Images
were taken using an inverted microscope after 0 and 36

hours. The leading edges were marked by black lines, and
the relative distance of the borders was measured by ImageJ
software.

2.14. Transwell Migration Assay. Transwell migration assays
were performed to assess the migration ability of U87 cells.
Tumor cells were seeded in the upper chamber containing
serum-free medium at a density of 2 ∗ 104 per well. The
lower chamber was added with medium containing 10%
vol FBS supplement. After 16 hours, the cells in the lower
chamber were removed, and images were taken under an
inverted microscope.

2.15. Statistics. The statistical analyses were carried out using
the R software (version 4.0.0, “pheatmap” package (1.0.12)
for expression heat map visualization, “survivalROC”
(1.0.3) and “pROC” package (1.16.2) for ROC analysis,
“clusterProfiler” package (3.16.1) for KEGG analysis,
“glmnet” package (4.0-2) for LASSO analysis, “GSVA” pack-
age (1.36.2) for immune infiltration analysis, “corrplot”
package (0.84) for correlation heat map visualization, and
“circlize” package (0.4.10) for circle plot), SPSS (version
22.0, univariate and multivariate Cox regression analyses),
and Prism 6 (GraphPad Software, K-M plot and dot plot).
The Chi-squared test was carried out to explore the differ-
ences in the clinicopathologic characteristics between the 2

TCGA dataset
N=629

CGGA dataset
N=309

LASSO Cox regression analysis

11 ECM-related gene
signature 

266 ECM-related genes 

190 survival-related
genes

K-M survival analyses

Univariate and
multivariate Cox

regression analyses 

Nomogram
construction 

Hallmark signature

Metabolic pathways

Immune signature

Irradiation, TMZ

GDSC

ICB

Prognosis related 
analyses 

Pathway activation
analyses 

Therapeutic response

Univariate Cox regression analyses 

Figure 1: The flow chart showing the process of the study design.
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clusters of patients. The two-tailed t-test was applied to eval-
uate statistical significance between two groups. To evaluate
the independent prognostic value of each factor, univariate
and multivariate Cox regression analyses were carried out.
The Kaplan-Meier (K-M) analysis was performed to investi-
gate the glioma patients’ OS. Patients were classified into two
groups according to the median of each gene expression or
risk score for OS analysis. Pearson’s correlation coefficient
was calculated in correlation analysis. P < 0:05 was regarded
as statistically significant.

3. Results

3.1. Exploration of the ECMRG Signature in Gliomas. To
investigate the potential oncogenic roles of the ECM in
patients with gliomas, we analyzed TCGA dataset using the
consensus clustering method. Cumulative distribution func-
tion (CDF) and consensus matrices were constructed to
determine the optimal number of subgroups. The results
indicated that glioma patients can be classified into two
robust clusters (Figures 2(a)–2(c)), in which distinct
ECMRG expression features were represented using a heat
map (Figure 2(d)). The Chi-squared test indicated that
patients in cluster 1 are characterized by the malignant fea-
tures, including older age (>47 years), higher grade, classical
or mesenchymal subtypes, wild-type IDH, 1p/19q non-code-
letion, and nonmethylation of O6-methylguanine-DNA
methyltransferase promoter (MGMTp). Meanwhile, patients
in cluster 2 demonstrated opposite clinical features
(Table 1). In addition, K-M survival analysis showed that
OS is shorter in cluster 1 compared with that in cluster 2
(Figure 2(e)). To confirm these findings, we performed the
same analyses using the CGGA dataset and obtained similar
results (Figure S1 and Table S1). These results suggest that
the ECM is closely linked with the molecular features and
clinical prognosis of glioma patients.

Therefore, a risk signature was constructed to evaluate
the predictive role of the ECMRGs in the prognosis of gli-
oma patients. The most powerful predictive genes with non-
zero regression coefficients were identified by the LASSO
Cox regression model. In total, 11 genes were selected,
including BMP1, BMP2, CASP3, CD151, COL8A1, LOX,
PLOD3, SDC1, SERPINH1, SPP1, and TIMP1 (Figure 3(a)
and Figure S2A). Consequently, the risk score of the 11-
gene signature was calculated (formula mentioned in
Materials and Methods) based on the genes’ relative
expressions and corresponding coefficients. For further
verification, the risk score was also calculated using the
same signature genes and regression coefficients in the
CGGA dataset. Based on the median value of risk scores,
the glioma patients were subgrouped into the low-risk and
high-risk groups. The correlation between the ECMRG
expression and clinical features in TCGA and CGGA
datasets was represented by heat maps (Figure 3(b) and
Figure S2B).

3.2. High-Risk Score Is Tightly Associated with Malignant
Clinical Features in Gliomas. The above results demon-
strated a potential link between the risk signature and clini-

cal characteristics of glioma patients. To validate our
observations, we performed further analyses using TCGA
and CGGA datasets. The results suggested that the risk score
is positively associated with the glioma grade (Figure 3(c)
and Figure S2C). In addition, the risk score was
significantly elevated in patients with wild-type IDH,
1p19q non-codeletion, and unmethylated MGMTp
(Figures 3(d)–3(f) and Figure S2D-F). Moreover, the risk
score was higher in older patients (Figure 3(g) and
Figure S2G), and no significant difference was observed
between male and female (Figure 3(h) and Figure S2H).
Additionally, the mesenchymal subtype, which is
recognized as the aggressive type of gliomas [8], had the
highest risk score (Figure 3(i)). ROC curve analysis was
conducted to evaluate the predictive role of the risk
signature for mesenchymal subtype. Interestingly, the area
under the curve (AUC) for the risk signature in predicting
the mesenchymal subtype was 0.908 in TCGA dataset,
highlighting the potential oncogenic role of the risk
signature ECMRGs (Figure 3(j)). Lastly, we tested if the
risk signature matched the previously identified cluster
groups. The results showed that cluster 1 samples have a
significantly higher risk score (Figure 3(k) and Figure S2I).
Accordingly, the AUC for the risk signature in predicting
the cluster was 0.996 (TCGA) and 0.983 (CGGA),
respectively (Figure 3(l) and Figure S2J). These findings
imply that the ECM may play a crucial role in the
malignant progression of gliomas.

3.3. Prognostic Value of the ECMRG Signature. For a more
comprehensive understanding of the risk signature, the asso-
ciation between the mRNA expression level of each gene and
patients’ OS was evaluated. The results suggested that glioma
patients with a high-risk score in TCGA dataset suffer worse
prognosis. The patients also had significantly higher expres-
sion levels of BMP1, CASP3, CD151, COL8A1, LOX,
PLOD3, SDC1, SERPINH1, SPP1, and TIMP1. Conversely,
patients with a low-risk score had a better prognosis and
higher expression of BMP2 (Figure 4(a)). K-M curve analy-
ses suggested that the 11 genes can effectively distinguish the
outcome of glioma patients (Figure S3). Moreover, these
results were confirmed using the CGGA dataset
(Figures S4 and S5A).

Next, K-M curve analyses were performed to further
explore the prognostic value of risk signature in TCGA data-
set. The result suggested that glioma patients in the high-risk
group have worse OS (Figure 4(b)). Moreover, we classified
the patients based on the histological signature and observed
similar results in lower grade gliomas (LGGs) (Figure 4(c)).
Because all GBM samples in TCGA dataset were assigned
to the high-risk group, we could not compare their progno-
sis accordingly. Interestingly, we also found that there were
only two patients with wild-type IDH in the low-risk group
(Figure 4(d)). K-M analyses stratified glioma patients by
IDH mutation, 1p/19q codeletion status, or MGMTp meth-
ylated status and showed that a high-risk score is tightly
linked with worse OS (Figures 4(e)–4(g) and Figure S6A).
These results were further validated in the CGGA dataset
(Figures S5B-H and S6B). Meanwhile, we also found that
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the risk signature has a high value in predicting prognosis of
patients stratified by age or gender in both datasets
(Figure S6C-D). Next, we performed univariate and

multivariate Cox regression analyses with risk score and
other well-known clinical factors. The results showed that
the risk signature is an independent prognostic factor for
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glioma patients (Table 2 and Table S3). Finally, ROC curve
analyses were performed to evaluate the predictive ability
of the risk signature in predicting the survival rate. The
results indicated that the risk score produces satisfactory
AUC values for TCGA dataset (1-year: 89.7%, 2-year:
90.9%, 3-year: 91.1%, 4-year: 85.8%, and 5-year: 83.7%)
(Figure 4(h)). Meanwhile, there were also high AUC values
for the CGGA dataset (1-year: 78.2%, 2-year: 85.9%, 3-
year: 86.9%, 4-year: 88.3%, and 5-year: 88.5%)
(Figure 4(i)). Collectively, our risk signature harbors a
robust prognostic value for glioma patients.

3.4. An Independent Prediction Model Based on the Risk
Score, Age, Grade, and Status of 1p19q Codeletion. To
explore the possibility to clinically apply our findings, we
integrated the risk score and individualized clinicopathologi-
cal parameters of glioma patients using the nomogram
model. The C-indexes were 0.792 and 0.764 in TCGA and
CGGA datasets, respectively, highlighting the satisfactory
performance of this model (Figure 5(a)). Additionally, the
calibration plots were constructed, and the results further
validated the consistency of the model with patients’ OS
and in both datasets (Figures 5(b) and 5(c)). Next, we calcu-
lated the score of the nomogram model and further per-
formed ROC curve analyses based on this score. The

results showed that the integrated clinical model has signifi-
cantly improved AUC values for TCGA dataset (1-year:
88.7%, 2-year: 91.2%, 3-year: 91.3%, 4-year: 87.1%, and 5-
year: 85.7%) (Figure 5(d)) and the CGGA dataset (1-year:
79.5%, 2-year: 88.5%, 3-year: 88.6%, 4-year: 90.5%, and 5-
year: 90.9%) (Figure 5(e)). These results indicate that our
risk signature has high clinical application value.

3.5. Functional Annotation of the Risk Model. In TCGA and
CGGA datasets, a principal component analysis (PCA) was
constructed, and the results showed distinct transcriptional
signatures between the high-risk and low-risk groups
(Figure 6(a) and Figure S7A). Gene set variation analysis
(GSVA) was performed to explore pathway activations in
the high- and low-risk groups. The obtained metascore
from GSVA was presented using a heat map (Figure 6(b)).
The results showed that the high-risk score is positively
associated with multiple oncogenic pathways such as
epithelial-mesenchymal transition (EMT), E2F target, G2/
M checkpoint, TNF-NFκB signaling, and angiogenesis.
Interestingly, we also found that metabolism pathways
(glycolysis, cholesterol homeostasis) and immune
regulation (inflammation, interferon alpha, and interferon
gamma responses) were enriched in the high-risk group.
These findings were confirmed by GSEA (Figure 6(c)).
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Figure 3: Identification of the ECMRG signature in TCGA dataset. (a) Cross-validation for tuning parameter selection in the LASSO
regression model. (b) Heat map showing the expression profiles of 266 ECMRGs and corresponding clinical characteristics in TCGA
dataset. (c–i) Dot plots comparing the risk score for glioma patients stratified by WHO grade, IDH mutation status, 1p/19q codeletion
status, MGMTp methylation status, age, gender, or molecular subtypes of gliomas. (j) ROC curve analyzing the predictive role of the risk
signature for the mesenchymal subtype. (k) Dot plot comparing the risk score for glioma patients between cluster 1 and cluster 2.
(l) ROC curve analyzing the predictive role of the risk signature for cluster groups. ∗∗P < 0:01, ∗∗∗P < 0:001; ns: not significant.
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Furthermore, the same analyses were performed using the
CGGA dataset, and the results were consistent with the
above findings (Figure S7B-C). These results show that the
ECMRG signature is tightly correlated with oncogenic
pathways and that its ECMRGs have a significant impact
on the metabolic regulation and modification of TIME in
gliomas.

3.6. The Risk Signature ECMRGs Play Critical Roles in the
Regulation of Metabolic Changes in Gliomas. Given the
above findings, the role of the risk signature ECMRGs in

the regulation of glioma metabolic pathways was further
explored in TCGA and CGGA datasets. The list of 114 met-
abolic pathways was obtained from a previous study [26],
and we calculated the metascore of each sample in different
metabolic pathways using GSVA. Next, differential analyses
identified 55 metabolic pathways that were enriched in the
high-risk group and in both datasets (Figure 6(d) and
Figure S7D). We found that multiple glioma-related
metabolic pathways were enriched in the high-risk group,
including glycolysis [32], nicotinate and nicotinamide
metabolism [33], purine metabolism [34], pyrimidine
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Figure 4: The prognostic value of the risk signature in TCGA dataset. (a) Distribution of the risk score, survival status, and mRNA
expression level of 11 genes in the risk signature. (b–g) K-M survival analyses comparing OS for glioma patients in the high-risk and
low-risk groups stratified by WHO grade, IDH mutation status, or 1p/19q codeletion status. (h, i) Time-dependent ROC curve analyses
showing the predictive value of the risk score for 1-year, 2-year, 3-year, 4-year, and 5-year OS in TCGA and CGGA datasets.

Table 2: Univariate and multivariate analyses of risk score and clinical features in TCGA dataset.

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Risk score 5.697 (4.562-7.114) <0.001 2.551 (1.574-4.135) <0.001
Age 1.071 (1.059-1.083) <0.001 1.042 (1.028-1.056) <0.001
Gender 0.887 (0.660-1.192) 0.427

WHO grade

III 3.055 (1.987-4.697) <0.001 1.677 (1.058-2.657) 0.028

IV 21.520 (13.491-34.329) <0.001 2.326 (1.238-4.368) 0.009

IDH status 0.095 (0.069-0.131) <0.001 0.911 (0.455-1.822) 0.791

MGMT status 0.317 (0.234-0.427) <0.001 0.827 (0.582-1.176) 0.291

1p19q status 0.237 (0.147-0.382) <0.001 0.600 (0.342-1.053) 0.075
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Figure 5: An independent prediction model for OS of glioma patients. (a) The nomogram predicting 1-year, 3-year, and 5-year OS for
glioma patients in TCGA dataset. (b, c) Calibration plots predicting robustness of the nomogram at 1 year, 3 years, and 5 years in
TCGA and CGGA datasets. (d, e) Time-dependent ROC curve analyses showing the predictive value of the score calculated by
nomogram model for 1-year, 2-year, 3-year, 4-year, and 5-year OS in TCGA and CGGA datasets.
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metabolism [35], glutathione metabolism [36], and drug
metabolism [37] (Figure 6(e) and Figure S7E). In
conclusion, these findings show that the signature
ECMRGs play crucial roles in the regulation of glioma
metabolic pathways.

3.7. High-Risk Score Is Strongly Associated with Immune
Suppression in Gliomas. Due to the close relationship
between ECM and multiple immune pathways in gliomas,
we investigated immune infiltration in the high- and low-
risk groups to characterize the immunologic landscapes.
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Figure 6: Functional analyses of the ECMRG signature in TCGA dataset. (a) PCA of differential gene expression profiles between the high-
risk and low-risk groups. (b) Heat map plotting the metascore from GSVA analysis. GSVA analysis was performed to assess the pathway
enrichment scores in each glioma sample in TCGA dataset. (c) GSEA showing the enriched oncogenic pathways, metabolic alternations,
and immune infiltration in the high-risk group. (d) Heat map showing the elevated metabolic pathways for gliomas in the high-risk
group. (e) Dot plots comparing the metascore of metabolic pathways for glioma patients between the high-risk and low-risk groups.
∗∗∗P < 0:001.
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The abundance of 28 immune-related cell types was calcu-
lated using the ssGSEA algorithm and visualized in a heat
map. The results suggested that among the 28 cell subpopu-
lations, a high-risk score is positively correlated with regula-
tory T cells (Tregs), activated dendritic cells, myeloid-
derived suppressor cells (MDSCs), and natural killer T cells
(Figure 7(a)); however, the infiltration of activated CD8 T

cells was negatively associated with the risk score. To con-
firm these findings, correlation analyses were performed
which showed similar results (Figures 7(b) and 7(c)). Previ-
ous studies have well documented the immunosuppressive
role of MDSCs and Tregs [31]. Thus, the higher infiltration
of MDSCs and Tregs suggested that a high-risk score is
potentially linked with immune suppression in gliomas. To
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Figure 7: High-risk score is strongly associated with immune suppression in gliomas. (a) Heat map showing the infiltration of different
immune cells in gliomas. ssGSEA was performed to assess the infiltration of each immune cell population in TCGA dataset. ssGSEA
score was used for the heat map. (b) The correlation analysis between the immune infiltration and the risk signature in TCGA dataset.
(c, d) CIRCOS plots showing the correlation between the infiltration of different immune cell populations (c)/immune checkpoint
markers (d) and the risk signature. (e) Violin plot comparing the expression of immunosuppressive biomarkers between the high-risk
and low-risk groups.
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test our hypothesis, we compared the transcriptional expres-
sion of immune suppressive biomarkers between the high-
risk group and the low-risk group, including immune check-
point markers and secreted immune inhibitory factors. The
results of correlation analysis indicated that the immune
checkpoint markers, CD274 (PD-L1), PDCD1 (PD-1),
CTLA-4, LAG3, HAVCR2 (TIM3), and IDO1, are positively
associated with a high-risk score (Figure 7(d)). Consistently,
a differential expression analysis showed that the selected
inhibitory biomarkers have higher expression levels in the
high-risk group (Figure 7(e)). The same analyses were con-
ducted in the CGGA dataset, which yielded similar results
(Figure S8). These results indicate that the signature
ECMRGs play crucial roles in the regulation of tumors’
immune status.

3.8. High-Risk Score Is Closely Linked with a Therapy-
Resistant Phenotype in Gliomas. To further explore the clin-
ical impact of the risk signature, we explored whether the
ECMRG signature was linked with therapeutic response.
Currently, irradiation and chemotherapy are the two first-
line treatments after surgical resection. Thus, glioma patients
were subgrouped based on their risk score, and K-M curve
analyses were preformed to compare the OS of irradiation
or temozolomide- (TMZ-) treated and untreated patients.
The results showed that there is no statistical difference
between irradiation-treated and untreated groups in patients
with a high-risk score. However, the treated group had sig-
nificantly longer OS compared with that in the untreated
group in patients with a low-risk score (Figures 8(a) and
8(b)). For TMZ chemotherapy, the treatment improved the
prognosis of both high-risk and low-risk score patients
(Figures 8(c) and 8(d)). The results of survival analyses
showed that a high-risk score is a strong indicator for radio-
resistance. However, these results were inconclusive for the
TMZ treatment. Thus, we further analyzed the Genomics
of Drug Sensitivity in Cancer (GDSC) dataset and explored
the association between the risk signature and drug sensitiv-
ity. The LGG and GBM cell lines (52 in total) in the GDSC
dataset were divided into the high-risk or low-risk groups
based on the online available transcriptional data. The dot
plot indicated that cell lines with a high-risk score have
higher TMZ IC50 (Figure 8(e)), indicating the existence of
a TMZ-resistant phenotype. To obtain a general understand-
ing of the link between the risk signature and drug response,
we analyzed the available drugs that were tested in the
GDSC dataset. We found that the high-risk signature is
strongly associated with resistance to multiple drugs, involv-
ing DNA repair, metabolic pathways, and cell cycle onco-
genic kinases (Figure 8(f)). For example, dot plots showed
that the IC50 of the ataxia telangiectasia and Rad3-related
(ATR) kinase inhibitor (AZD6738) [38] and nicotinamide
phosphoribosyltransferase (NAMPT) inhibitor (daporinad)
[39] were significantly higher in the high-risk group
(Figure 8(g)). We next sought to identify effective drugs that
target the high-risk group. To our surprise, we found that
among the screening inhibitors, the high-risk cell lines are
only sensitive to phenformin, an inhibitor of glycolysis and
oxidative phosphorylation (OXPHOS) [32] (Figure 8(h)).

In addition, we further explored the response of our risk sig-
nature to ICB therapy using the TIDE algorithm. Similarly,
the results showed that the high-risk group is an ICB
therapy-resistant phenotype in both TCGA and CGGA
datasets (Figures 8(i) and 8(j)). Together, these results indi-
cate that the ECMRG signature may be a potential model
for developing novel treatment strategies.

3.9. Functional Verification of BMP1 Oncogenic Role in
Gliomas. The above results showed that BMP1 is elevated
in gliomas. However, the expression and oncogenic role of
BMP1 in gliomas have been rarely studied. Thus, we deter-
mined the protein expression level of BMP1 in the Human
Protein Atlas (THPA) (https://www.proteinatlas.org/). As
expected, the result showed that BMP1 is highly expressed
in glioma samples. Moreover, there was a positive correla-
tion between BMP1 protein expression and higher patholog-
ical grades (Figure 9(a)). For further verification, shRNAs
targeting BMP1 (shBMP1 #1 and shBMP1 #2) were intro-
duced into U87 glioma cells. qRT-PCR analysis was used
to assess the efficacy of the BMP1 silencing. The results
showed that the BMP1 mRNA expression is reduced in the
shBMP1 group (Figure 9(b)). To further explore the onco-
genic role of BMP1, cell viability assays were performed,
and we observed that BMP1 silencing markedly decreased
the growth of U87 cells (Figure 9(c)). In addition, colony
formation assays were carried out, and the results indicated
that the self-renewal ability of U87 cells that were trans-
duced with shBMP1 is significantly attenuated
(Figure 9(d)). Furthermore, wound healing assays and trans-
well migration assays were used to assess the oncogenic role
of BMP1. The results showed that both the closure time and
the number of invasive cells are significantly reduced in
BMP1-knockdown U87 cells (Figures 9(e) and 9(f)). Taken
together, these results suggest that BMP1 is functionally
required for multiple malignant characteristics in gliomas.

4. Discussion

Several studies identified significant correlations between
distinct molecular subtypes and clinical outcomes in glioma
patients [4, 7, 8, 40, 41]. However, the targeted therapies for
specific subtypes largely failed because of intratumoral het-
erogeneity [9]. Accumulating evidence indicated that the
ECM has a critical impact on the invasive phenotype of mul-
tiple cancers, including gliomas [42]. Therefore, we aimed to
construct an ECMRG signature that provides a better assess-
ment model for clinical applications.

After comprehensive analyses, we constructed a risk
model that contained 11 prognosis-related ECMRGs.
Among the 11 genes, 10 biomarkers were highly expressed
in the high-risk group and strongly associated with poor
prognosis, including BMP1, CASP3, CD151, COL8A1,
LOX, PLOD3, SDC1, SERPINH1, SPP1, and TIMP. Previ-
ous studies have reported the oncogenic role of these bio-
markers in gliomas. For instance, recent evidence showed
that elevated PLOD3 promotes gliomas’ malignant charac-
teristics and poor prognosis [43]. In addition, a study
showed that LOX expression strongly correlates with the
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Figure 9: Functional verification of oncogenic role of BMP1 in gliomas. (a) The representative staining images for BMP1 in the Human Protein
Atlas dataset. (b) qRT-PCR analysis detecting mRNA expression of BMP1 in U87 cells treated with lentiviral shBMP1#1, shBMP1#2, and shNT.
(c) Cell viability assay detecting proliferative ability of U87 cells treated with lentiviral shBMP1#1, shBMP1#2, and shNT. (d) Colony formation
assay detecting self-renewal ability of U87 cells treated with lentiviral shBMP1#1, shBMP1#2, and shNT. (e) The wound healing assay
determining the migratory ability of U87 cells treated with lentiviral shBMP1#1, shBMP1#2, and shNT. (f) Transwell migration assay
assessing the invasion ability of U87 cells treated with lentiviral shBMP1#1, shBMP1#2, and shNT. ∗∗∗P < 0:001.
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invasive features of malignant astrocytes [44]. Although sev-
eral studies have reported the oncogenic role of BMP1 in
other cancers, including non-small-cell lung cancer [45]
and gastric cancer [46], the role of BMP1 in gliomas is
unknown. Thus, we functionally verified the effects of
BMP1 on gliomas and showed that BMP1 is strongly associ-
ated with gliomas’ invasive behaviors in vitro.

Accumulating evidence demonstrated a strong relation-
ship between a high-risk score and multiple metabolic pro-
cesses, including glycolysis [32], purine synthesis [34],
pyrimidine synthesis [35], glutathione [36], nicotinate and
nicotinamide metabolism [33], and drug metabolism by
Cytochrome P450 [37]. The involvement of these processes
in oncogenic progression has been well documented by pre-
vious studies. For instance, GBM cells have been shown to
utilize glycolysis to maintain invasive growth [32]. In addi-
tion, a study demonstrated that purine synthesis can induce
GBM radioresistance [34]. A recent study showed that glio-
blastoma stem cells (GSCs) utilize pyrimidine synthesis to
maintain self-renewal, proliferation, and tumorigenesis
[35]. Additionally, a study indicated that IDH1-mutated gli-
oma has elevated demands for glutathione to sustain malig-
nancies [36]. Collectively, the enrichment of these metabolic
processes further highlights the clinical applicability of our
risk model.

The immune-associated pathway enrichment in the
high-risk group suggests a potential correlation between
our risk model and the TIME in gliomas. To validate our
hypothesis, we further explored the link between the risk sig-
nature and immune infiltration. The results uncovered pos-
itive correlations between the high-risk score and MDSCs
and Tregs high infiltrations. MDSCs and Tregs have been
shown to play critical roles in immunosuppression [47].
Moreover, the link between the risk model and the transcrip-
tional expression of immunosuppressive biomarkers was
also investigated. The high-risk score was found to be closely
associated with elevated mRNA expression of immunosup-
pressive biomarkers, such as CD274 (PD-L1), LAG3,
CTLA-4, and IDO1. Interestingly, previous studies reported
that the engagement of PD-L1 with PD-1 can result in
exhaustion of activated T cells [48, 49]. Indeed, a relatively
lower level of CD8+ T cells was observed in the high-risk
group. Clinically, a recent study demonstrated that the
coblockade of TIM3 and PD1 improves anticancer T cell
responses [50]. In addition, recent studies showed that
anti-CTLA-4 and anti-PD1/PD-L1 combination therapy
activates T cells during cancer treatment [51–54]. Collec-
tively, a higher infiltration of immunosuppressive cells and
elevated immunosuppressive biomarkers contribute to the
immune escape in gliomas, by inactivating tumor killing
cells such as CD8+ T cells. However, the detailed mechanism
of the correlation between the risk model and key immune
checkpoint markers is still unclear. A recent review demon-
strated that PD-L1 regulatory mechanisms are affected by
multiple levels, including its regulation at the DNA, RNA,
and protein levels, and through extracellular secretion, indi-
rect regulation by biomarkers, and potential drug interven-
tion, while the regulation of CTLA-4 mainly depends on
its cellular localization [55]. Thus, further functional studies

are warranted to deepen our understanding of the underly-
ing mechanisms.

Our study found that the risk signature is predictive of
therapeutic response in clinical practice. The survival analy-
sis demonstrated that patients with a high-risk score are
more likely to benefit less from irradiation treatment. Con-
sistently, a positive correlation between the risk signature
and TMZ IC50 value was observed in the GDSC dataset,
indicating that the high-risk group has an unsatisfactory
response to TMZ. In addition, according to the GDSC data-
set, we found that high-risk score glioma cell lines are resis-
tant to multiple antitumoral inhibitors. Moreover, our study
indicated that a high-risk score reflects a resistant phenotype
to ICB therapy. Therefore, these findings suggest that our
risk signature has practicability in evaluating therapeutic
responses. However, detailed functional assays are necessary
to verify our findings.

Recently, numerous glioma prognostic models have been
reported. Thus, it is critical to assess the quality of the pre-
diction models. A recent study performed a comprehensive
analysis of the prediction models for gliomas. According to
the study finding, the vital factors for assessing the model
include performance estimation, validation, and event per
variable (EPV) [56]. In our study, we explored the risk
model from multiple perspectives and observed a much
higher AUC value compared with that reported by previous
studies [57–59]. Furthermore, we verified our risk model
through external datasets, and EPV in our model was more
than 10, highlighting the good quality of the ECMRG risk
model. Nevertheless, our study has some limitations. Firstly,
due to the unavailability of our own validation cohort, the
study relied on data derived from a publicly available data-
base. Secondly, immune infiltration was indirectly assessed
via bioinformatics analyses. Thus, a functional verification
using mouse models or single-cell RNA sequencing from gli-
oma samples is necessary for further validation. Lastly, our
study preliminarily explored the oncogenic role of BMP1
in vitro, and more in-depth studies are needed.

In conclusion, we identified and characterized a novel
risk model that can be used as a valuable prediction tool in
clinical assessment.

Data Availability

All data used in the present study can be downloaded from
TCGA dataset (https://xenabrowser.net/datapages/) and the
CGGA dataset (http://www.cgga.org.cn).

Ethical Approval

All data of this study were public and required no ethical
approval.

Conflicts of Interest

The authors declare no conflict of interest.

17Journal of Oncology

https://xenabrowser.net/datapages/
http://www.cgga.org.cn


Authors’ Contributions

Hai Yu and Maode Wang designed the study and revised the
manuscript. Xiaodong Li performed the analyses and wrote
the manuscript. Yichang Wang, Wei Wu, and Jianyang
Xiang collected the data and conducted literature search.
Xiaodong Li, Lei Qi, and Ning Wang performed the experi-
ments. All authors read and approved the final manuscript.

Acknowledgments

We thank all the members that contribute to this work. This
work was supported by the Natural Science Basic Research
Project of Shaanxi Province, #2017JC2-09.

Supplementary Materials

Table S1: characteristics of patients in cluster 1 and cluster 2
in the CGGA dataset. Table S2: LASSO regression coeffi-
cients of 11 survival-associated ECMRGs in gliomas. Table
S3: univariate and multivariate analyses of risk score and
clinical features in the CGGA dataset. Figure S1: consensus
clustering for the ECMRGs in glioma patients in the CGGA
dataset. (A) Consensus clustering CDF for k = 2 to k = 10.
(B) Relative change in area under CDF curve for k = 2 to k
= 10. (C) Consensus clustering matrix of 309 samples from
the CGGA dataset for k = 2. (D) Heat map of 2 clusters con-
structed by the top 50 differential expression genes. (E) K-M
survival analysis of patients from 2 clusters classified by con-
sensus clustering. Figure S2: identification of the ECMRG
signature in the CGGA dataset. (A) LASSO coefficient pro-
files of the most powerful prognostic genes. (B) Heat map
showing the expression profiles of 266 ECMRGs and corre-
sponding clinical characteristics in the CGGA dataset. (C-I)
Dot plots comparing the risk score for glioma patients strat-
ified by WHO grade, IDH mutation status, 1p/19q codele-
tion status, MGMTp methylation status, age, gender, or
cluster groups of gliomas. (J) ROC curve analyzing the pre-
dictive role of the risk signature for cluster groups. ∗∗∗P <
0:001; ns: not significant. Figure S3: the prognostic value of
11 ECMRGs in TCGA dataset. K-M survival analyses com-
paring OS based on the median expression of 11 genes
between the high-expression and low-expression groups in
TCGA dataset. Figure S4: the prognostic value of 11
ECMRGs in the CGGA dataset. K-M survival analyses com-
paring OS based on the median expression of 11 genes
between the high-expression and low-expression groups in
the CGGA dataset. Figure S5: the prognostic value of the risk
signature in the CGGA dataset. (A) Distribution of the risk
score, survival status, and mRNA expression level of 11
genes in the risk signature. (B-H) K-M survival analyses com-
paring OS for glioma patients stratified by WHO grade, IDH
mutation status, and 1p/19q codeletion status in the high-
risk and low-risk groups. Figure S6: the prognostic value of
the risk model for the patients stratified by MGMTp methyla-
tion status, age, and gender; K-M survival analyses comparing
OS for glioma patients with high-risk and low-risk scores
stratified by MGMTp methylation status, age, or gender in
TCGA dataset (A, C) and CGGA dataset (B, D), respectively.
Figure S7: functional analyses of the ECMRG signature in

the CGGA dataset. (A) PCA of differential gene expression
profiles between the high-risk and low-risk groups. (B) Heat
map plotting the metascore from GSVA analysis. GSVA anal-
ysis was performed to assess the pathway enrichment scores in
each glioma sample in the CGGA dataset. (C) GSEA showing
the enriched oncogenic pathways, metabolic regulations, and
immune infiltration in the high-risk group. (D) Heat map
showing the critical metabolic pathways for gliomas in TCGA
dataset. (E) Dot plot comparing the metascore of metabolic
pathways for glioma patients between the high-risk and low-
risk groups. ∗∗∗P < 0:001. Figure S8: high-risk score is strongly
associated with immune suppression in gliomas. (A) Heat
map showing the infiltration of different immune cells in glio-
mas. ssGSEA was performed to assess the infiltration of each
immune cell population in the CGGA dataset. ssGSEA score
was used for the heat map. (B) The correlation analysis
between the immune infiltration and the risk signature in
the CGGA dataset. (C, D) CIRCOS plots showing the correla-
tion between the infiltration of different immune cell popula-
tions (C)/immune checkpoint markers (D) and the risk
signature. (E) Violin plot comparing the expression of immu-
nosuppressive biomarkers between the high-expression and
low-risk groups. (Supplementary Materials)

References

[1] Q. T. Ostrom, N. Patil, G. Cioffi, K. Waite, C. Kruchko, and
J. S. Barnholtz-Sloan, “CBTRUS statistical report: primary
brain and other central nervous system tumors diagnosed in
the United States in 2013-2017,”Neuro-Oncology, vol. 22, Sup-
plement 1, pp. iv1–iv96, 2020.

[2] A. S. Haider, M. van den Bent, P. Y. Wen et al., “Toward a stan-
dard pathological and molecular characterization of recurrent
glioma in adults: a response assessment in neuro-oncology
effort,” Neuro-Oncology, vol. 22, no. 4, pp. 450–456, 2020.

[3] S. Lapointe, A. Perry, and N. A. Butowski, “Primary brain
tumours in adults,” The Lancet, vol. 392, no. 10145, pp. 432–
446, 2018.

[4] D. N. Louis, A. Perry, G. Reifenberger et al., “The 2016 World
Health Organization classification of tumors of the central
nervous system: a summary,” Acta Neuropathologica,
vol. 131, no. 6, pp. 803–820, 2016.

[5] S. Xu, L. Tang, X. Li, F. Fan, and Z. Liu, “Immunotherapy for
glioma: current management and future application,” Cancer
Letters, vol. 476, pp. 1–12, 2020.

[6] R. Stupp,W. P. Mason, M. J. van den Bent et al., “Radiotherapy
plus concomitant and adjuvant temozolomide for glioblas-
toma,” The New England Journal of Medicine, vol. 352,
no. 10, pp. 987–996, 2005.

[7] R. G. Verhaak, K. A. Hoadley, E. Purdom et al., “Integrated
genomic analysis identifies clinically relevant subtypes of glio-
blastoma characterized by abnormalities in PDGFRA, IDH1,
EGFR, and NF1,” Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010.

[8] K. P. L. Bhat, V. Balasubramaniyan, B. Vaillant et al., “Mesen-
chymal differentiation mediated by NF-κB promotes radiation
resistance in glioblastoma,” Cancer Cell, vol. 24, no. 3, pp. 331–
346, 2013.

[9] E. Lee, R. L. Yong, P. Paddison, and J. Zhu, “Comparison of
glioblastoma (GBM) molecular classification methods,” Semi-
nars in Cancer Biology, vol. 53, pp. 201–211, 2018.

18 Journal of Oncology

https://downloads.hindawi.com/journals/jo/2022/4966820.f1.pdf


[10] C. Bonnans, J. Chou, and Z. Werb, “Remodelling the extra-
cellular matrix in development and disease,” Nature Reviews
Molecular Cell Biology, vol. 15, no. 12, pp. 786–801, 2014.

[11] J. Insua-Rodríguez and T. Oskarsson, “The extracellular
matrix in breast cancer,” Advanced Drug Delivery Reviews,
vol. 97, pp. 41–55, 2016.

[12] M. Alfano, F. Canducci, M. Nebuloni, M. Clementi,
F. Montorsi, and A. Salonia, “The interplay of extracellular
matrix and microbiome in urothelial bladder cancer,” Nature
Reviews. Urology, vol. 13, no. 2, pp. 77–90, 2016.

[13] S. Affo, L. X. Yu, and R. F. Schwabe, “The role of cancer-
associated fibroblasts and fibrosis in liver cancer,” Annual
Review of Pathology, vol. 12, no. 1, pp. 153–186, 2017.

[14] J. M. Barnes, S. Kaushik, R. O. Bainer et al., “A tension-
mediated glycocalyx-integrin feedback loop promotes mesen-
chymal- like glioblastoma,” Nature Cell Biology, vol. 20,
no. 10, pp. 1203–1214, 2018.

[15] Y. A. Miroshnikova, J. K. Mouw, J. M. Barnes et al., “Tissue
mechanics promote IDH1-dependent HIF1α-tenascin C feed-
back to regulate glioblastoma aggression,” Nature Cell Biology,
vol. 18, no. 12, pp. 1336–1345, 2016.

[16] W. J. Sullivan, P. J. Mullen, E. W. Schmid et al., “Extracellular
matrix remodeling regulates glucose metabolism through
TXNIP destabilization,” Cell, vol. 175, no. 1, pp. 117–
132.e21, 2018.

[17] A. Chakravarthy, L. Khan, N. P. Bensler, P. Bose, and D. D. De
Carvalho, “TGF-β-associated extracellular matrix genes link
cancer-associated fibroblasts to immune evasion and immu-
notherapy failure,” Nature Communications, vol. 9, no. 1,
p. 4692, 2018.

[18] J. Kiyokawa, Y. Kawamura, S. M. Ghouse et al., “Modification
of extracellular matrix enhances oncolytic adenovirus immu-
notherapy in glioblastoma,” Clinical Cancer Research, vol. 27,
no. 3, pp. 889–902, 2021.

[19] M. Ceccarelli, F. P. Barthel, T. M. Malta et al., “Molecular pro-
filing reveals biologically discrete subsets and pathways of pro-
gression in diffuse glioma,” Cell, vol. 164, no. 3, pp. 550–563,
2016.

[20] Z. Zhao, F. Meng, W. Wang, Z. Wang, C. Zhang, and T. Jiang,
“Comprehensive RNA-seq transcriptomic profiling in the
malignant progression of gliomas,” Scientific Data, vol. 4,
no. 1, article 170024, 2017.

[21] R. Tibshirani, “The lasso method for variable selection in the
Cox model,” Statistics in medicine., vol. 16, no. 4, pp. 385–
395, 1997.

[22] P. J. Heagerty, T. Lumley, and M. S. Pepe, “Time-dependent
ROC curves for censored survival data and a diagnostic
marker,” Biometrics, vol. 56, no. 2, pp. 337–344, 2000.

[23] D. Schoenfeld, “Partial residuals for the proportional hazards
regressionmodel,” Biometrika, vol. 69, no. 1, pp. 239–241, 1982.

[24] Z. Zhang, J. Reinikainen, K. A. Adeleke, M. E. Pieterse, and
C. G. M. Groothuis-Oudshoorn, “Time-varying covariates
and coefficients in Cox regression models,” Annals of Transla-
tional Medicine, vol. 6, no. 7, p. 121, 2018.

[25] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[26] S. R. Rosario, M. D. Long, H. C. Affronti, A. M. Rowsam, K. H.
Eng, and D. J. Smiraglia, “Pan-cancer analysis of transcrip-
tional metabolic dysregulation using The Cancer Genome
Atlas,” Nature Communications, vol. 9, no. 1, p. 5330, 2018.

[27] L. Zhang, Y. Zhao, Y. Dai et al., “Immune landscape of colorec-
tal cancer tumor microenvironment from different primary
tumor location,” Frontiers in Immunology, vol. 9, p. 1578,
2018.

[28] P. Charoentong, F. Finotello, M. Angelova et al., “Pan-cancer
immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of response
to checkpoint blockade,” Cell Reports, vol. 18, no. 1, pp. 248–
262, 2017.

[29] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for compre-
hensive analysis of tumor-infiltrating immune cells,” Cancer
Research, vol. 77, no. 21, pp. e108–e110, 2017.

[30] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, no. 10, pp. 1550–1558, 2018.

[31] H. Yu, D. Zhang, Z. Li, and M. Wang, “E2F transcription fac-
tor 8 promotes proliferation and radioresistance in glioblas-
toma,” Pathology, Research and Practice, vol. 216, no. 8,
article 153030, 2020.

[32] J. Bi, S. Chowdhry, S. Wu, W. Zhang, K. Masui, and P. S. Mis-
chel, “Altered cellular metabolism in gliomas – an emerging
landscape of actionable co-dependency targets,” Nature
Reviews Cancer, vol. 20, no. 1, pp. 57–70, 2020.

[33] K. Tateishi, H. Wakimoto, A. J. Iafrate et al., “Extreme vulner-
ability of _IDH1_mutant cancers to NAD+ depletion,” Cancer
Cell, vol. 28, no. 6, pp. 773–784, 2015.

[34] W. Zhou, Y. Yao, A. J. Scott et al., “Purine metabolism regu-
lates DNA repair and therapy resistance in glioblastoma,”
Nature Communications, vol. 11, no. 1, p. 3811, 2020.

[35] X. Wang, K. Yang, Q. Wu et al., “Targeting pyrimidine synthe-
sis accentuates molecular therapy response in glioblastoma
stem cells,” Science Translational Medicine, vol. 11, no. 504,
2019.

[36] X. Tang, X. Fu, Y. Liu, D. Yu, S. J. Cai, and C. Yang, “Blockade
of glutathione metabolism inIDH1-mutated glioma,” Molecu-
lar Cancer Therapeutics, vol. 19, no. 1, pp. 221–230, 2020.

[37] J. A. Barnett, D. L. Urbauer, G. I. Murray, G. N. Fuller, and
A. B. Heimberger, “Cytochrome P450 1B1 expression in glial
cell tumors: an immunotherapeutic target,” Clinical Cancer
Research, vol. 13, no. 12, pp. 3559–3567, 2007.

[38] E. Lecona and O. Fernandez-Capetillo, “Targeting ATR in
cancer,” Nature Reviews Cancer, vol. 18, no. 9, pp. 586–595,
2018.

[39] M. Hasmann and I. Schemainda, “FK866, a highly specific
noncompetitive inhibitor of nicotinamide phosphoribosyl-
transferase, represents a novel mechanism for induction of
tumor cell apoptosis,” Cancer Research, vol. 63, no. 21,
pp. 7436–7442, 2003.

[40] M. Weller, W. Wick, K. Aldape et al., “Glioma,” Nature
Reviews Disease Primers, vol. 1, no. 1, article 15017, 2015.

[41] M. E. Hegi, E. Genbrugge, T. Gorlia et al., “MGMTpromoter
methylation cutoff with safety margin for selecting glioblas-
toma patients into trials omitting temozolomide: a pooled
analysis of four clinical trials,” Clinical Cancer Research,
vol. 25, no. 6, pp. 1809–1816, 2019.

[42] C. T. Mierke, “The matrix environmental and cell mechanical
properties regulate cell migration and contribute to the inva-
sive phenotype of cancer cells,” Reports on Progress in Physics,
vol. 82, no. 6, article 064602, 2019.

[43] C. K. Tsai, L. C. Huang, W. C. Tsai, S. M. Huang, J. T. Lee, and
D. Y. Hueng, “Overexpression of PLOD3 promotes tumor

19Journal of Oncology



progression and poor prognosis in gliomas,”Oncotarget, vol. 9,
no. 21, pp. 15705–15720, 2018.

[44] R. Laczko, K. M. Szauter, M. K. Jansen et al., “Active lysyl oxi-
dase (LOX) correlates with focal adhesion kinase (FAK)/paxil-
lin activation and migration in invasive astrocytes,”
Neuropathology and Applied Neurobiology, vol. 33, no. 6,
pp. 631–643, 2007.

[45] X. Wu, T. Liu, O. Fang, L. J. Leach, X. Hu, and Z. Luo, “miR-
194 suppresses metastasis of non-small cell lung cancer
through regulating expression of BMP1 and p27kip1,” Onco-
gene, vol. 33, no. 12, pp. 1506–1514, 2014.

[46] J. H. Rafi, T. Jafar, M. T. Pathan et al., “High expression of
bone morphogenetic protein 1 (BMP1) is associated with a
poor survival rate in human gastric cancer, a dataset
approaches,” Genomics, vol. 113, no. 1, pp. 1141–1154, 2021.

[47] D. Bruni, H. K. Angell, and J. Galon, “The immune contexture
and Immunoscore in cancer prognosis and therapeutic effi-
cacy,” Nature Reviews Cancer, vol. 20, no. 11, pp. 662–680,
2020.

[48] G. J. Freeman, A. J. Long, Y. Iwai et al., “Engagement of the
PD-1 immunoinhibitory receptor by a novel B7 family mem-
ber leads to negative regulation of lymphocyte activation,”
The Journal of Experimental Medicine, vol. 192, no. 7,
pp. 1027–1034, 2000.

[49] W. Zou, J. D.Wolchok, and L. Chen, “PD-L1 (B7-H1) and PD-
1 pathway blockade for cancer therapy: mechanisms, response
biomarkers, and combinations,” Science Translational Medi-
cine, vol. 8, no. 328, article 328rv4, 2016.

[50] Y. Wolf, A. C. Anderson, and V. K. Kuchroo, “TIM3 comes of
age as an inhibitory receptor,” Nature Reviews Immunology,
vol. 20, no. 3, pp. 173–185, 2020.

[51] J. D. Wolchok, H. Kluger, M. K. Callahan et al., “Nivolumab
plus ipilimumab in advanced melanoma,” The New England
Journal of Medicine, vol. 369, no. 2, pp. 122–133, 2013.

[52] M. D. Hellmann, L. Paz-Ares, R. Bernabe Caro et al., “Nivolu-
mab plus ipilimumab in advanced non-small-cell lung cancer,”
The New England Journal of Medicine, vol. 381, no. 21,
pp. 2020–2031, 2019.

[53] Y. Y. Janjigian, J. Bendell, E. Calvo et al., “CheckMate-032
study: efficacy and safety of nivolumab and nivolumab plus
ipilimumab in patients with metastatic esophagogastric can-
cer,” Journal of Clinical Oncology, vol. 36, no. 28, pp. 2836–
2844, 2018.

[54] M. A. Curran,W.Montalvo, H. Yagita, and J. P. Allison, “PD-1
and CTLA-4 combination blockade expands infiltrating T cells
and reduces regulatory T and myeloid cells within B16 mela-
noma tumors,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 107, no. 9,
pp. 4275–4280, 2010.

[55] H. Zhang, Z. Dai, W. Wu et al., “Regulatory mechanisms of
immune checkpoints PD-L1 and CTLA-4 in cancer,” Journal
of Experimental & Clinical Cancer Research, vol. 40, no. 1,
p. 184, 2021.

[56] X. Liang, Z. Wang, Z. Dai, H. Zhang, Q. Cheng, and Z. Liu,
“Promoting prognostic model application: a review based on
gliomas,” Journal of Oncology, vol. 2021, Article ID 7840007,
14 pages, 2021.

[57] S. Lin, H. Xu, A. Zhang et al., “Prognosis analysis and valida-
tion of m6A signature and tumor immune microenvironment
in glioma,” Frontiers in Oncology, vol. 10, article 541401, 2020.

[58] W. Lin, S. Wu, X. Chen et al., “Characterization of hypoxia sig-
nature to evaluate the tumor immune microenvironment and
predict prognosis in glioma groups,” Frontiers in Oncology,
vol. 10, p. 796, 2020.

[59] Z. Wang, W. Tang, J. Yuan, B. Qiang, W. Han, and X. Peng,
“Integrated analysis of RNA-binding proteins in glioma,” Can-
cers, vol. 12, no. 4, p. 892, 2020.

20 Journal of Oncology


	A Novel Risk Score Model Based on Eleven Extracellular Matrix-Related Genes for Predicting Overall Survival of Glioma Patients
	1. Introduction
	2. Materials and Methods
	2.1. Included Patients and Datasets
	2.2. Data Processing and Risk Score Construction
	2.3. Consensus Clustering
	2.4. Nomogram Construction
	2.5. Pathway Activation Analyses
	2.6. Analyses of Immune Signature
	2.7. Association Analyses of the Risk Signature and Drug Response
	2.8. In Vitro Cell Cultures
	2.9. Lentivirus Production and Transduction
	2.10. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
	2.11. Cell Viability Assay
	2.12. Colony Formation Assay
	2.13. Wound Healing Assay
	2.14. Transwell Migration Assay
	2.15. Statistics

	3. Results
	3.1. Exploration of the ECMRG Signature in Gliomas
	3.2. High-Risk Score Is Tightly Associated with Malignant Clinical Features in Gliomas
	3.3. Prognostic Value of the ECMRG Signature
	3.4. An Independent Prediction Model Based on the Risk Score, Age, Grade, and Status of 1p19q Codeletion
	3.5. Functional Annotation of the Risk Model
	3.6. The Risk Signature ECMRGs Play Critical Roles in the Regulation of Metabolic Changes in Gliomas
	3.7. High-Risk Score Is Strongly Associated with Immune Suppression in Gliomas
	3.8. High-Risk Score Is Closely Linked with a Therapy-Resistant Phenotype in Gliomas
	3.9. Functional Verification of BMP1 Oncogenic Role in Gliomas

	4. Discussion
	Data Availability
	Ethical Approval
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

