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A B S T R A C T   

SARS-CoV2 (COVID-19) is the virus that causes the pandemic that has severely impacted human society with a 
massive death toll worldwide. Hence, there is a persistent need for fast and reliable automatic tools to help health 
teams in making clinical decisions. Predictive models could potentially ease the strain on healthcare systems by 
early and reliable screening of COVID-19 patients which helps to combat the spread of the disease. Recent studies 
have reported some key advantages of employing routine blood tests for initial screening of COVID-19 patients. 
Thus, in this paper, we propose a novel COVID-19 prediction model based on routine blood tests. In this model, 
we depend on exploiting the real dependency among the employed feature pool by a sparsification procedure. In 
this sparse domain, a hybrid feature selection mechanism is proposed. This mechanism fuses the selected features 
from two perspectives, the first is Pearson correlation and the second is a new Minkowski-based equilibrium 
optimizer (MEO). Then, the selected features are fed into a new 1D Convolutional Neural Network (1DCNN) for a 
final diagnosis decision. The proposed prediction model is tested with a new public dataset from San Raphael 
Hospital, Milan, Italy, i.e., OSR dataset which has two sub-datasets. According to the experimental results, the 
proposed model outperforms the state-of-the-art techniques with an average testing accuracy of 98.5% while we 
employ only less than half the size of the feature pool, i.e., we need only less than half the given blood tests in the 
employed dataset to get a final diagnosis decision.   

1. Introduction 

COVID-19 pandemic is the contemporary element of worriment 
across the world. This pandemic is caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) which is found to have a high 
degree of spread causing a massive death toll. The COVID-19 infection 
caused clusters of fatal pneumonia with clinical presentation greatly 
resembling SARS-CoV. In fact, patients experience flu-like symptoms, 
such as, fever, dry cough, tiredness, and difficulty breathing. However, 
sometimes, in more severe cases, pneumonia and renal failure develop 
to death (Huang et al., 2020). By, now, June 2022, more than 500 
million confirmed patients have been reported in 222 countries with 
more than 6 million deaths due to this pandemic (Worldometer, 2020). 
Fig. 1 indicates the logarithmic modeling of death rate all over the 
world. Hence, A timely detection and diagnosis of the virus plays a 
leading role in infection control and accordingly in the death rate 
reduction. Therefore, developing efficient testing methods to identify 

COVID-19 infection is a must, in order to start early treatment, and to 
isolate the infected individuals from the rest. 

Polymer chain reaction (PCR) (Zimmermann & Mannhalter, 1996; 
Corman et al., 2020), and Antibody testing (Serological testing) are the 
two main testing methods adopted by the global healthcare systems for 
COVID-19 diagnosis, however, both methods have their own limitations. 
Despite being the current gold standard for infection diagnosis, PCR has 
limitations in terms of resources and specimen collection (Ai et al., 
2020), besides high cost. In addition, PCR, generally, has high speci-
ficity, but low sensitivity with about 20 % false-negative rate (Ferrari 
et al., 2020; Li D. et al., 2020). Thus, PCR negative test does not negate 
the possibility of COVID-19, hence, those patients will not receive the 
appropriate treatment on time. Moreover, there is a global shortage of 
the availability of PCR test kits. On the other side, tests based on IgM/ 
IgG antibodies have shown a very low sensitivity (18.8 %) and speci-
ficity (77.8 %) in diagnosing COVID-19 during its early phase (Burog 
et al., 2020; Sethuraman et al., 2020). Accordingly, imaging-based 
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diagnosis methods, such as Chest Radiograph images (CXRs)/ X-rays, 
computerized tomography (CT) scan, MRI and Ultrasound, besides other 
laboratory methods, such as routine blood test, can be employed to 
define the severity of the illness caused by COVID-19. 

Till now, COVID-19 pandemic continues challenging the world with 
the increase demands of hospital beds and medical equipments, espe-
cially with the everyday variations of the virus and with the exhausted 
healthcare workers. This has prompted researchers to investigate 
alternative automated methods with accurate and fast detection, less 
expensive, more accessible, and with minimal human interference. Over 
the years, machine learning (ML) field has gained much popularity for 
solving numerous real-world problems by producing systems that are 
capable of learning from examples and improving without being 
explicitly programmed (Brink et al., 2016). Hence, ML-based ap-
proaches have been used in the screening of patients suspected of being 
contaminated by SARS-CoV2, supporting the medical decision (Alballa 
& Al-Turaiki, 2021). Lately, several outbreak prediction models for 
COVID-19 have been developed to make informed-decisions and enforce 
relevant control measures (Albahri et al., 2020; Bullock et al, 2020; Latif 
et al., 2020; Alafif et al., 2021). However, due to a high level of uncer-
tainty and lack of essential data, diagnosing COVID-19 by machine 
learning and soft computing models is still challenging research area. 

In this work, we introduce a new COVID-19 detection model based 
on routine blood tests, see Fig. 1. The main contributions can be sum-
marized as  

1. Seeking an optimum dimensionality reduction, besides exploiting 
the real dependency among features in the adopted feature pool, a 
sparsification procedure is adopted. Hence, the introduced feature 
selection techniques can perform better in the discovered sparse 
domain. This sparsification procedure is performed by a sparse and 
low-rank decomposition process. The resultant sparse composite of 
the feature pool is expected to provide features with few pairwise 
interactions. 

2. For more effective feature selection performance, the adopted se-
lection mechanism fuses the selection decisions from a statistical 
perspective on a side, i.e., Pearson correlation, and from a wrapper 
perspective, on the other side, i.e., Equilibrium Optimizer (EO) 
(Faramarzi et al., 2020). 

3. Instead of applying the traditional EO in the adopted feature selec-
tion procedure, the introduced diagnosis algorithm adopts a new 
Minkowski-based equilibrium optimizer (MEO) which employs a 
Minkowski-based scheme for local minimum avoidance, besides a 
recycling strategy for the worst solutions in order to find the most 
proper features, i.e., blood tests. 

4. For the classification phase, the proposed COVID-19 diagnosis al-
gorithm adopts a 1DCNN model which shows superior performance 
compared to multiple traditional ML algorithms.  

5. The introduced COVID-19 diagnosis algorithm outperforms the state- 
of-the-art prediction model on all metrics, that are based on routine 
blood tests, while employing only less than half the size of the feature 
pool which means less blood tests and less cost which suits the 
conditions in the developing countries. 

The rest of the paper is organized as following: Section 2 indicates 
related work. In Section 3, details about the employed routine blood test 
dataset are indicated. In Section 4, the whole proposed methodology is 
introduced and detailed in some subsections. Section 5 indicates the 
experimental results with proper discussions. In Section 6, the conclu-
sion is demonstrated. 

2. Related work 

Machine learning (ML) is a key branch of computational algorithms 
that are designed to imitate human intelligence by an automatic 
learning from the surrounding environment. Hence, the machine takes 
decisions and does predictions / forecasting based on data ML is one of 
today’s most rapidly growing technical topics, lying at the intersection 
of computer science and statistics, and at the core of artificial intelli-
gence and data science. ML is considered the working horse in the new 
era of the so-called big data. Different machine learning techniques have 
been applied successfully in diverse fields, such as, from wireless com-
munications (Tan et al., 2014), computer vision (Khan et al., 2021; 
Altantawy et al., 2020), finance (Kumbure et al., 2022), entertainment 
(Porcino et al., 2022), control system (Hedrea and Petriu, 2021) and 
computational biology to biomedical and medical applications (Chiang 
et al., 2014; Albu et al., 2019; Upadhyay & Nagpal, 2020). 

ML can be used to combat COVID-19 pandemic by improving diag-
nosis, prevention, monitoring, administration of treatments, disease 

Fig. 1. A logarithmic scale for COVID-19 Monthly total deaths (Worldometer, 2020).  
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surveillance and antiviral drug discovery to enhance patients’ health 
outcomes (Bullock et al, 2020; Latif et al., 2020; Alafif et al., 2021). 
Since the beginning of COVID-19 outbreak, there has been a growing 
interest in studying the diagnosis of COVID-19, either through the 
analysis of medical images (Albahri et al, 2020) or routine blood tests 
(Cabitza et al., 2021) by different ML techniques. These alternative 
diagnosing methods are less expensive and more accessible. In this 
section, we review some of these ML-based studies. The diagnosis of 
COVID-19 in ML terms can be formulated as Binary classification 
problem, hence, with the trained model, patients can be classified pos-
itive or negative COVID-19 or sometimes patients can be checked for the 
severity of illness (Albahri et al, 2020). 

Medical imaging, such as computed tomography (CT) scans and 
chest X-rays images, are the main two types of datasets that have been 
employed by different ML techniques and have demonstrated promising 
results to support the traditional diagnostic techniques of COVID-19, 
such as molecular biology (RT-PCR) and immune (IgM/IgG) assays. 
There have been several recent reviews with exclusive focus on X-rays or 
CT scans (Albahri et al., 2020; Latif et al., 2020; Alafif et al., 2021). 
Several studies observed that the sensitivity of CT in diagnosing COVID- 
19 is significantly higher than that of RT-PCR (Ai et al., 2020; fang et al., 
2020; Ye et al., 2020). However, CT scans have screening limitations 
because of the radiation doses, the relative low number of devices 
available, and the related high costs. In addition, by employing X-rays or 
CT scans only, COVID-19 can be mistakenly diagnosed as pneumonia or 
lung cancer (Ibrahim et al., 2021; Mohammad-Rahimi et al., 2021). 
Recently, in (Dong et al., 2020), some researchers have employed ul-
trasound imaging as a radiation-free and non-invasive tool for COVID-19 
detection, especially for children and pregnant women. Other research 

groups have explored the opportunities of employing speech and sound 
analysis for a ML-based COVID-19 detection (Imran et al., 2020; Schuller 
et al., 2021). In (Zoabi et al., 2021), the authors tried a ML-based pre-
diction of COVID-19 diagnosis based on symptoms. 

Recently, different studies have revealed that a routine blood test can 
play an important role in COVID-19 initial screening (Bao et al., 2020; 
Gao et al., 2020; Ferrari et al., 2020). Hence, a routine blood test can 
provide faster and cheaper diagnostic alternative to PCR test with 
comparable performance via different ML techniques (Brinati et al., 
2020; Cabitza et al., 2021). In (Wu, J. et al., 2020), the authors are the 
pioneers of employing blood results in COVID-19 detection. They uti-
lized a ML algorithm of three stages based on a random forest classifi-
cation algorithm with several different validation methods to ensure the 
reliability and reproducibility of their COVID-19 identification algo-
rithm. They achieved high accuracy ~98 %, but the model considered 
few features, and the dataset is very small to be applicable in real set-
tings. In (Wu et al., 2020; Yan et al., 2020), they employed datasets with 
different sizes from Tongji Hospital of Wuhan, China. Wu et al. (2020) 
achieved higher accuracy with smaller-size dataset with larger number 
of selected features. They build their model based on the maximum 
relevance minimum redundancy algorithm (mRMR), the least absolute 
shrinkage (LA) and LASSO logistic regression model. On the other side, 
(Yan et al., 2020) employed larger-size dataset with larger number of 
features. However, they selected small group of these features and 
achieved lower accuracy using a trained model based on XGBoost al-
gorithm. In Feng et al. (2021), the authors continued employing small 
dataset from single source, i.e., First Medical Center, Beijing, China. 
However, they developed an innovative predictive model for an early 
identification of COVID-19 based on candidate features included clinical 

Table 1 
Comparison of different COVID-19 detection based on routine blood tests.  

Authors/ref. Dataset 
source 

ND/N+

NF/NSF

*1 Adopted methodology Accuracy Sensitivity Specificity ROC-AUC 

Soares, 2020 Hospital Israelita Albert Einstein, São 
Paulo, Brazil 

599/81
108/16 

SMOTEBoost, Ensemble of 10 
SVM models 

– 70.25 % 85.98 % 86.78 % 

Banerjee et al., 
2020 

598 /81
108 /14 

RF, LR, GLMNET, ANN 81 %–87 % 43 %–65 % 81 %–91 % 80 %-84 
% 

de Moraes et al., 
2020 

253 /102
108 /15 

NN, RF, GBT, LR, SVM – 67.7 %–80.6 
% 

80 %–85 % 84.2 %– 
84.7 % 

Alves et al., 2021 524/48
108/23 

DTX, RF, Ensemble of LR, RF, 
XGBoost, SVM, MLP 

88 % 66 % 91 % 86 % 

Alakus & Turkoglu, 
2020 

520/80
108/18 

Ensemble of ANN, CNN LSTM, 
RNN CNNLSTM CNNRNN 

86.66 % – – 62.50 % 

de Freitas Barbosa 
et al., 2021 

5644/559
108/24 

XMLP, SVM, RT, RF, BN, NB 95.159 % 96.8 % 93.6 % —— 

AlJame et al., 2020 5644/559
108/18 

KNNimputer, iForest, SMOTE, 
Ensemble of RF, LR, and ET 

95 % 95 % 95 % 95 % 

Wu et al., 2020 Tongji Hospital of Wuhan, China 110
47/7 

LASSO-LR —— 98 % 91 % 0⋅997 

Yan et al., 2020 375/201
300/3 

XGBoost – 83 % – ——— 

Cabitza et al., 2021 San Raphael Hospital, Milan, Italy 1, 624/845
72 

RF, NB, LR, SVM, and KNN 83 %–91 % 76 %–92 % 92 %–96 % 83 % −
94 % 

Brinati et al., 2020 279/177
13 

DT, ET, KNN, LR, NB, RF, SVM, 
TWRF 

82 % − 86 
% 

92 % − 95 % – – 

Shaban et al., 2021 279/177
13 

FI, DNN 97.658 % 96.55 % – – 

Yang et al., 2020 New York Presbyterian Hospital/Weill 
Cornell Medicine (NYPH/WCM) 

1, 822/496
685/33 

LR, DT, RF, XGBoost 68.9 %– 
79.1 % 

61.8 % 
− 76.1 % 

73.2 %– 
80.8 % 

70.4 %– 
85.4 % 

Joshi et al., 2020 Stanford Health Care, CA, USA 390/33
4 

LR – 86–93 % 35–55 % – 

Sun et al., 2020 Hospitals in Zhejiang, China 912/361
31/10 

LR, DT, RF, SVM. DNN 91 % 87 % 95 % 86.4 % 

Langer et al., 2020 Hospital in Milan Italy 199/127
74 /42 

ANN, LR, RF, DT 91.4 % 94.1 % 88.7 % – 

Kukar et al., 2021 University Medical Center, Ljubljana, 
Slovenia 

5333 /160
117 /35 

XGBoost, RF, DNN – 81.9 % 97.9 % 97 % 

*1 ND is the dataset size, N+ is the number of COVID-19 positive cases in the employed dataset, NF is the total number of features in the targeted dataset, and NSF is the 
number of the selected features in the diagnosis process. Using “–”, means not mentioned in the original study.  
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symptoms, routine laboratory tests, and other clinical information on 
admission. They employed LA and LASSO in their prediction model. 
They produce their own website for COVID-19 diagnosis (Suspected 
COVID-19 pneumonia Diagnosis Aid System, 2021). In addition, there 
exist different studies that employed their own dataset from single 
source, i.e., medical Centre or hospital, with different ML techniques 
(Joshi et al., 2020; Kukar et al., 2021; Li et al., 2020; Yang et al., 2020; 
Langer et al., 2020; Sun et al., 2020). 

Hospital Israelita Albert Einstein, São Paulo, Brazil has provided a 
common blood test dataset that has been utilized by different studies, 
such as (Alakus & Turkoglu, 2020; AlJame et al., 2020; Banerjee et al., 
2020; de Moraes et al., 2020; Soares, 2020; Alves et al., 2021; de Freitas 
Barbosa et al., 2021). In (Alakus & Turkoglu, 2020; Banerjee et al., 2020; 
de Moraes et al., 2020; Soares, 2020; Alves et al., 2021), the authors 
employed small version of the original whole dataset. They achieved a 
medium accuracy, however, with very small number of selected fea-
tures, based on applying multiple ML algorithms. de Freitas Barbosa 
et al., 2021 and AlJame et al., 2020 employed the original full dataset. 
Both achieved high accuracy via multiple ML algorithms employing 
large number of selected features. Lately, AlJame et al. (2020) revealed 
better performance via three well-known classifiers, Extremely Ran-
domized Trees, Random Forest and Logistic regression. Their model 
combines the predictions of three classifiers, as a first level classifica-
tion, then, they used an extreme gradient boosting (XGBoost), as a 
second classifier, to achieve a better performance. San Raphael Hospital, 
Milan, Italy has provided the most recent dataset (OSR dataset), which 
adopted by different studies under different sizes with different feature 
mechanisms and variety of ML algorithms (Brinati et al., 2020; Cabitza 

et al., 2021; Shaban et al., 2021). Table 1 summarizes a comparison 
between the state-of the-art techniques, while Table 2 summarizes the 
list of abbreviations employed in this article. 

3. The employed routine blood test dataset 

Here, the employed dataset for COVID-19 prediction is routine 
blood-test results performed on group of patients on admission to the ED 
department at the San Raffaele Hospital, ospedale San Raffaele, (OSR), 
from February 19, 2020, to May 31, 2020. The OSR dataset consists of 
two subgroups (Brinati et al., 2020; Cabitza et al., 2021) with different 
sample size and different blood features. (1) A larger sub-dataset con-
sisting of 1736 sample with 35 features, named as “COVID-specific 
dataset”.3 (2) A smaller one consisting of 279 sample with 15 features, 
denoted as “CBC dataset”.4 The features set existed in OSR dataset is 
detailed in Table 3. These features represent the numerical ones besides 
additional ones, like gender, age, and ID number. We always exclude ID 
number before processing. In Fig. 3, the label distribution, i.e., swab 
result, of both employed sub-datasets are indicated. In addition, Fig. 4 
indicates the distribution of COVID-19 examination results over the age 
and the gender of the samples. 

4. The proposed methodology 

In this section, the proposed COVID-19 detection algorithm, as a 
binary classification problem, is detailed in some subsections, see Fig. 2 
where an illustration of the proposed COVID-19 detection algorithm is 
indicated. In the first and the second subsections, the dataset prepara-
tion and feature pool sparsification are demonstrated. In the third one, 
the proposed feature selection scheme is indicated and finally, in the last 
subsection, the deep classification model is proposed. 

4.1. Dataset preparation 

The process of data preparation includes four stages: handling cat-
egorical features, handling missing values, outliers detection and elim-
ination, and data balancing. 

Handling categorical features: The only categorical features in the 
OSR datasets are the gender and the covid exam result. Hence, both are 
mapped to 0 and 1. 

Handling missing values: firstly, the samples that have more than 75 
% of its features missed are excluded. Secondly, to address data 
incompleteness, we performed missing data imputation by k-nearest 
neighbors using the mean value from nearest neighbors. KNN algorithm 
is useful for matching a data-point with its closest k neighbors in a multi- 
dimensional space. 

Outliers detection and elimination: outliers elimination helps to 
increase the accuracy of the classification model. Clustering-based ap-
proaches (Borlea et al., 2021) can be used for outlier detection (Zhang 
et al., 2021). However, for detecting anomalies in the adopted OSR 
dataset, we employed a tree-based approach, i.e., Isolation Forests al-
gorithm (Liu et al., 2008). Isolation Forests (IF or iForest), like Random 
Forests, are build based on decision trees. It has no pre-defined labels. 
Hence, it is an unsupervised model like most of outlier detection algo-
rithms. iForest is based on the fact that anomalies are “few and 
different”. In iForest, randomly sub-sampled data is processed in a tree 
structure based on randomly selected features. The samples that travel 
deeper into the tree are less likely to be anomalies as they required more 
cuts to isolate them. Similarly, the samples which end up in shorter 
branches indicate anomalies as it was easier for the tree to separate them 
from other observations. We chose iForest as an outlier detection 

Table 2 
List of abbreviations.  

Abbreviation Explanation Abbreviation Explanation 

ML Machine learning PCR Polymer chain reaction 
mRMR maximum relevance 

minimum redundancy 
algorithm 

SMOTEBoost an oversampling 
method based on the 
SMOTE algorithm 
(Synthetic Minority 
Oversampling 
Technique) 

SVM Support vector 
machine 

RF Random Forest 

LR Logistic regression GLMNET Lasso and Elastic-Net 
Regularized 
Generalized Linear 
Models 

ANN/NN Artificial neural 
network 

DNN Deep neural network 

GBT Gradient boosting trees XGBoost is an optimized 
distributed gradient 
boosting library 

MLP Multi-layer perceptron CNN Convolutional neural 
network 

LSTM Long short-term 
memory (LSTM) is an 
artificial recurrent 
neural network (RNN) 

NB Naïve bayes 

BN Bayesian network iForest Isolation forest 
LASSO least absolute 

shrinkage and 
selection operator 

KNN k-nearest neighbors 
algorithm 

TWRF Trees Weighting 
Random Forest 

FI Fuzzy inference 

DT Decision Tree GNB Gaussian Naïve Bayes 
ET Extremely Randomized 

Trees 
RSVM Radial Support Vector 

Machine 
LSVM Linear Support Vector 

Machine 
QDA Quadratic Discriminant 

Analysis 
LDA Linear Discriminant 

Analysis 
EO Equilibrium optimizer 

AdaBoost Adaptive Boosting 
trees 

MEO Minkowski-based 
equilibrium optimizer  

3 https://zenodo.org/record/4081318/files/all_training.xlsx?download=1.  
4 https://zenodo.org/record/3886927/files/covid_study_v2.xlsx?download 

=1. 
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Table 3 
The numerical features in the OSR dataset with its mean value μ, standard deviation σ and missing rate..MR  

Feature (Abb.) Description COVID-specific dataset CBC dataset 

Exist. MR % μ σ Exist. MR % μ σ 

Calcium (CA) A test checks the calcium level in the body that is not 
stored in the bones 

✓ 5.35 2.21 0.48 ✕    

Creatine kinase (CK) This test measures the amount of an enzyme called 
creatine kinase (CK) in your blood. CK is a type of 
protein. The muscle cells in your body need CK to 
function. 

✓ 59.44 181.64 405.71 ✕    

Creatinine (CREA) A test measures how well your kidneys are performing 
their job of filtering waste from your blood 

✓ 4.26 1.16 0.98 ✕    

Alkaline phosphatase 
(ALP) 

ALP is an enzyme found throughout the body, but it is 
mostly found in the liver, bones, kidneys, and digestive 
system. When the liver is damaged, ALP may leak into 
the bloodstream 

✓ 27.3 88.54 71.44 ✓ 53  89.89  89.09 

Gamma glutamyl 
transferase (GGT) 

A test assess the body response to glucose ✓ 25.11 66.22 135.39 ✓ 51.25  82.48  132.70 

Glucose (GLU) A test measures the level of glucose (sugar) in a person’s 
blood 

✓ 5.65 119 57.91 ✕    

Aspartate aminotrans- 
ferase (AST) 

AST is an enzyme that is normally present in the liver, 
heart, brain, pancreas, kidneys, and many other muscles 
and tissues in the body. Enzymes like AST help facilitate 
fundamental biological processes in these organs and 
tissues 

✓ 5.65 45.85 50.67 ✓ 0.72  54.20  57.61 

Alanine aminotrans- 
ferase (ALT) 

A test measures the amount of ALT in the blood. High 
levels of ALT in the blood can indicate a liver problem, 
even before you have signs of liver disease, such as 
jaundice, a condition that causes your skin and eyes to 
turn yellow. An ALT blood test may be helpful in early 
detection of liver disease 

✓ 5.53 39.17 42.55 ✓ 4.66  44.92  45.50 

Lactate 
dehydrogenase 
(LDH) 

A test looks for signs of damage to the body’s tissues. 
LDH is an enzyme found in almost every cell of your 
body, including your blood, muscles, brain, kidneys, 
and pancreas. The enzyme turns sugar into energy 

✓ 17.45 327.64 211.62 ✓ 30.47  380.45  193.98 

polymerase chain 
reaction (CRP) 

A test measures the amount of CRP in the blood to detect 
inflammation due to acute conditions or to monitor the 
severity of disease in chronic conditions 

✓ 5.59 67 77.8 ✓ 2.15  90.88  94.4 

Potassium (K) A test checks how much potassium is in the blood ✓ 4.61 4.23 0.52 ✕    
Sodium (NA) checks how much sodium is in the blood ✓ 4.21 138.59 4.58 ✕    
UREA Urea is usually passed out in the urine. A high blood 

level of urea indicates that the kidneys may not be 
working properly, or that you have a low body water 
content (are dehydrated) 

✓ 38.94 48.96 42.47 ✕    

White blood cell 
(WBC) 

A test measures the count of White blood cells ✓ 3.63 8.72 4.64 ✓ 0.72  8.55  4.86 

Red blood cell (RBC) A test measures the count of Red blood cells ✓ 3.63 4.52 0.73 ✕    
Hemoglobin (HGB) a protein in your red blood cells that carries oxygen to 

your body’s organs and  
tissues and transports carbon dioxide from your organs 
and tissues back to your lungs 

✓ 3.63 13.14 2.04 ✕    

Hematocrit (HCT) A test measures the proportion of red blood cells in your 
blood. Red blood cells carry oxygen throughout your 
body. Having too few or too many red blood cells can be 
a  
sign of certain diseases 

✓ 3.63 39.21 5.61 ✕    

Mean corpuscular 
volume (MCV) 

There are three main types of corpuscles (blood cells) in 
your blood: red blood cells, white blood cells, and 

✓ 3.63 87.29 7.06 ✕    

(continued on next page) 
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Table 3 (continued ) 

Feature (Abb.) Description COVID-specific dataset CBC dataset 

Exist. MR % μ σ Exist. MR % μ σ 

platelets. An MCV blood test measures the average size 
of your red blood cells 

Mean corpuscular 
hemoglobin (MCH) 

It’s the average amount in each of your red blood cells of 
a protein called hemoglobin, which carries oxygen 
around your body 

✓ 3.63 29.21 2.72 ✕    

Mean corpuscular 
hemoglobin 
concentration 
(MCHC) 

A test checks the average amount of hemoglobin in a 
group of red blood cells 

✓ 3.63 33.45 1.34 ✕    

Platelets (PLT) A normal platelet count ranges from 150,000 to 
450,000 platelets per  
microliter of blood 

✓ 3.63 235.66 94.22 ✓ 0.72  226.53  101.17 

Neutrophils (NET, NE) a type of white blood cell that helps heal damaged 
tissues and resolve  
infections (109/L,%) 

(✓,✓) (20.85, 20.85) (6.45, 72.35) (4.47, 13.26) (✓,✕) (25.1, ———)  (6.2, ——)  (4.17, ——) 

Lymphocytes (LYT, 
LY) 

are a type of white blood cell. They play an important 
role in your immune system, helping your body fight off 
infection (109/L,%) 

(✓,✓) (20.85, 20.85) (1.37, 18.58) (0.95, 11) (✓,✕) (25.1, ———)  (1.18, ———)  (0.81, ——) 

Monocytes (MOT, 
MO) 

are a measurement of a particular type of white blood 
cell.  
Monocytes are helpful at fighting infections and 
diseases (109/L,%) 

(✓,✓) (20.85, 20.85) (0.62, 7.83) (0.54, 3.88) (✓,✕) (25.1, ———)  (0.61, ———)  (0.41, ———) 

Eosinophils (EOT, EO) are a type of disease-fighting white blood cell. This 
condition most often indicates a parasitic infection, an 
allergic reaction or cancer (109/L,%) 

(✓,✓) (20.85, 20.85) (0.07, 0.88) (0.14, 1.62) (✓,✕) (25.1, ——)  (0.06, ———)  (0.13, ——) 

Basophils (BAT, BA) are a type of white blood cell. Like most types of white 
blood cells, basophils are responsible for fighting fungal 
or bacterial infections and viruses (109/L,%) 

(✓,✓) (20.85, 20.85) (0.02,0.34) (0.04,0.27) (✓,✕) (25.45, ——)  (0.01, ———)  (0.04, ——)  
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method because it employs no distance or density measures to detect 
anomalies which eliminate most of the computational cost of distance 
calculation in all distance-based and density-based outlier detection 
algorithms. In addition, iForest has a linear time complexity with a low 
constant and a low memory requirement, hence it can handle extremely 
large data size. Fig. 5 indicates the visual results of the detected outliers 
in COVID-specific dataset via visualizing 3 PCA components. 

Data balancing: Having unbalanced data, where the number of 

samples belonging to one class is significantly lower than those 
belonging to the other classes, might bias the classification to the ma-
jority class. Hence, we performed a synthetic balancing by using Syn-
thetic Minority Oversampling TEchnique (SMOTE) (Chawla et al., 
2002). SMOTE is an oversampling technique for generating synthetic 
samples from the minority class. SMOTE uses linear combinations of two 
similar samples to construct new data. 

Fig. 2. An illustration of the proposed COVID-19 prediction model.  
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4.2. Feature pool sparsification 

In order to exploit the real dependency among features in the pre-
processed feature pool F to have a better prediction for the most 

important features (blood exams), we propose a novel idea of sparsifying 
the feature pool, i.e., representations which are sparse or of low 
redundancy. After the sparsification process, we now have two versions 
of the feature pool, i.e., the original preprocessed feature pool F and its 
corresponding sparse one F S, which are needed in the upcoming 
feature selection algorithm. 

The idea of features sparsification is about decomposing the feature 
pool to low-rank feature pool and sparse feature pool. Hence, consider 
having a feature pool F = [f1, f2,⋯, fk], where fi∊R n is the ith feature 
vector for n samples. This feature pool can be assumed neither sparse nor 
low rank. Hence, its low-rank and sparse structure can be explored by 
either approximation or decomposition. Robust Principal Component 
Analysis (RPCA) (Candès et al., 2011) offers a blind separation of low- 
rank data and sparse noises, i.e., F = F S + F L, where F L is the 
low-rank component of the feature pool F , while F S is the sparse one. 
Hence, RPCA deals with the targeted sparse component as noise or un-
wanted part. Hence, we seek for trilateral decomposition, i.e., F =

F S + F L + F N, where F N is the noise part contaminating the feature 
pool. This problem is intrinsically different from RPCA. Different studies 
introduce different styles for a trilateral decomposition of signals for 
different purposes, such as the work in (Zhou and Tao, 2011; Bouwmans 
et al., 2017; Altantawy et al., 2020). 

Seeking sparse features, the feature pool can be decomposed in terms 
of Low-rank and sparse components as 

F = F S +F L +F N , rank(F L) ≤ ζ, card(F S) ≤ Ψ (1) 

F L is a tight rank- ζ approximation to the feature pool F , and F S 

has a cardinality of no more than Ψ. The decomposition problem can be 
solved by minimizing the decomposition error as 

Fig. 3. COVID-19 examination results for COVID-specific dataset in (a) and for CBC dataset in (b).  

Fig. 4. COVID-19 swab result distribution according to age and gender for COVID-specific dataset in (a) and for CBC dataset in (b).  

Fig. 5. 3D Visualization of the predicted outliers/inliers in COVID-specific 
dataset via three PCA components. 
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min
F L ,F S

‖F − F L − F S‖
2
Fs.t.rank(F L) ≤ ζ, card(F S) ≤ Ψ (2) 

The optimization problem in Eq. (2) can be solved by alternatively 
solving two sub-problems until convergence. These two subproblems 
can be expressed at iteration i as 
⎧
⎪⎪⎨

⎪⎪⎩

F Li = argmin
rank(F L)≤ζ

‖F − F L − F Si− 1‖
2
F

F Si = argmin
card(F S)≤Ψ

‖F − F Li − F S‖
2
F

(3) 

The above two subproblems in Eq. (3), particularly, can be solved by 
updating F Li via singular value hard thresholding (Candès et al., 2011) 
of F − F Si− 1 and updating F Si via entry-wise hard thresholding of 
F − F Li, i.e., keeping Ψ entries of F − F Li that have the largest abso-
lute values, as 
{

F Li =
∑ζ

j=1
ƛjU jV j

T , SVD(F − F Si− 1) = U ΛV
T

F Si = Hγ(F − F Li), |γ| ≤ Ψ
(4)  

where Hγ represent entry-wise hard thresholding operation. 
The main computational cost of solving the previous subproblems 

belongs to SVD in updating the low-rank component F Li, especially 
with large feature pool size F . In (Halko et al., 2009), the authors prove 
that a matrix can be well approximated by its projection onto the column 
space of its random projections. This rank-revealing method provides a 
fast approximation of SVD. Hence, given ζ bilateral random projections 
(BRP) of an n × k dense feature pool matrix F (w.l.o.g, n ≥ k), i.e., X1 =

F B1 and X2 = F TB2, where B1 ∈ R k×R and B2 ∈ R n×R are inde-
pendent Gaussian random matrices, the low-rank component F L can be 
obtained according to (Fazel et al., 2008) as 

F L = X1
(
BT

2 X1
)− 1XT

2 (5) 

However, B1 and B2 are correlated random matrices updated from X2 

and X1, respectively, and F L can be obtained as a tight rank- R 

approximation to a full rank matrix F . Hence, we replace SVD with 
BRP, since BRP based low-rank approximation is near optimal and 
efficient in order to significantly reduce the time cost (Zhou and Tao, 
2011). However, when singular values of the feature pool F decay 

slowly, Eq. (5) may perform poorly, i.e., doesn’t guarantee a tight rank- 
R approximation. Accordingly, the power scheme in (Zhou and Tao, 
2011) can be employed with BRP to perform the decomposition process. 

According to the power scheme, we instead calculate BRP of a new 
version of the feature pool matrix F̃ =

(
F F T)q

F , whose singular 

values decay faster than F . In particular, ƛi

(
F̃

)
= ƛi

(
F̃

)2q+1
. Both F̃ 

and F share the same singular vectors. The BRP of F̃ can be expressed 
as 

X1 = F̃ B1 and X2 = F̃
T
B2 (6) 

Like Eq. (5), the BRP based ζ rank approximation of F̃ is demon-
strated as 

Algorithm 1.  

Algorithm 1: The introduced decomposition process for the feature pool F 

1. Input: F , ζ = 1, Ψ = n× k,∊ = 0.001,q = 1 
2. Initialize: F L0 := F , F S0 := 0, i := 0 
3. While ‖F − F L − F S‖

2
F /‖F ‖

2
F > ∊ do // the stopping criterion 

4. i := i + 1 

5. F̃ L =
[
(F − F Si− 1)(F − F Si− 1)

T
]q
(F − F Si− 1) // following the 

formulation F̃ =
(
F F T)qF in power scheme; at q = 1, we got F̃ = F , 

F ≈ F L + F S 

6. X1 = F̃ LB1, B2 = X1 

7. X2 = F̃ L
T
X1 = Q2R2, X1 = F̃ LX2 = Q1R1 

8. If rank
(
B2

TX1
)〈

ζ then ζ := rank
(
B2

TX1
)
, go to the first step; end 

9. F Li =

(

F̃ L

) 1
2q + 1

= Q1

[
R1
(
B2

TX1
)− 1R2

T
]

1
2q + 1Q2

T  

// see Eq. (9) 

10. F Si = Hγ(F − F Li), γ is the nonzero subset of the first Ψ largest entries of 
|F − F Li|

// See Eq. (4), 9 
11. End while 
12. Output: F L, F S   

F̃ L = X1
(
BT

2 X1
)− 1XT

2 (7) 

Hence, in order to obtain the approximation of the original feature 

Fig. 6. An illustration of the proposed feature selection technique that is based on a fusion process between Pearson dropping (PCC) and the introduced Minkowski- 
based equilibrium optimizer (MEO) in a serial and parallel manner in the original features domain F once and in the proposed sparse domain F S another. ˝+˝

represents combining decisions by OR operations while ˝× ˝ represents seeking the intersections of decisions by AND operations. 
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pool F with rank r, QR decomposition of X1 and X2 is calculated as 

X1 = Q1R1,X2 = Q2R2 (8) 

Accordingly, the low-rank composite F L and the sparse composite 
F S of the original feature pool F can be demonstrated as 
⎧
⎪⎨

⎪⎩

F L =
(

F̃ L

) 1
2q+1

= Q1

[
R1
(
BT

2 X1
)− 1RT

2

] 1
2q+1QT

2

F S = Hγ(F − F L), |γ|⩽ Ψ
(9) 

Algorithm 1 summarizes the main steps for the decomposition pro-
cess seeking the targeted sparse feature pool F S. 

4.3. The proposed feature selection scheme 

The goal of feature selection is to find which blood exams are more 
relevant to COVID-19 prediction. Hence, we can gain three jackpots: 
first, the number of required exams for the diagnostic decision is reduced 
and consequently the total price. Second, a dimensionality reduction is 
obtained and consequently less computations. Third, selecting the 

appropriate features helps to reduce data redundancy and to avoid noisy 
data, hence, the classification model performance can be improved. 

After the sparsification process, we now have two versions of feature 
pool, i.e., the original preprocessed feature pool F and its corre-
sponding sparse one F S. In addition, we intend to apply-two feature 
selectors. The first is Pearson correlation-based one (PCC) which pro-
vides a quick screen and removal of irrelevant features relying on the 
characteristics of the data, without any need to complicated machine 
learning algorithms, thus, it is computationally less expensive. However, 
PCC can give lower prediction performance. Hence, a second feature 
selector is needed. Inspired by the traditional Equilibrium optimizer 
(EO) (Faramarzi et al., 2020), which is a novel physics-based meta- 
heuristic optimization algorithm, we propose a new Minkowski-based 
equilibrium optimizer (MEO) which can provide better selection per-
formance compared to the traditional EO. The advantages of such meta- 
heuristics include their simplicity, independency to the problem, flexi-
bility, and gradient-free nature (Halim et al., 2021). 

Having two feature selectors, they can be applied serially or paral-
lelly and can be applied to the two versions of the feature pool, i.e., F 

and F S, then, the different selection decisions can be fused to get the 

Fig. 7. Pairwise Pearson correlation of features: (a), (c) for the original feature pool F while (b), (d) for the sparsified feature pool F S. The first row for COVID- 
specific dataset and the second one for CBC dataset. 
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most important features as proposed in Fig. 6. Applying the selectors 
serially is expected to provide the best decisions in contrast to applying 
the selectors parallelly. Hence, we combine the decisions from the serial 
application of selectors through (OR) operation and seek the intersection 
in decisions from the parallel application of selectors through (AND) 
operation. In the following subsection, the introduced two feature se-
lectors in the fused selection scheme, i.e., PCC, and the new Minkowski- 
based equilibrium optimizer (MEO) are indicated. 

4.3.1. Pearson correlation-based feature selection 
Features in their native form are not always correlated with each 

other. After the stage of feature sparsification, a clear and real correla-
tion is exploited between features. The features with an extremely high 
correlation should be eliminated. Hence, reducing relevant features is 
helpful to loose the learned model and then eliminate overfitting to a 
certain extent. Pearson Correlation Coefficient (PCC) is employed here 
to help in the feature dropping task and it is expressed as in Eq. (10) to 
evaluate the linear correlation between two feature vectors fi, fj 

PCC
(
fi, fj
)
=

COV(fi, fj)

σfi σfj
=

E
[(

fi − μfi

)(
fj − μfj )

]

σfi σfj
(10)  

where COV is the covariance matrix, σfi , σfj are the standard deviations 

of fi, fj, respectively, while μfi , μfj are the respective means. PCC
(

fi, fj
)

can be ranged from − 1 to 1. “1” indicates full positive correlation, while 
“− 1” implies a negative full correlation. 0 is a sign of non-correlation. 

Mostly, fi, fj show extremely high correlation when PCC
(

fi, fj
)

exceeds 

a threshold of 0.8 and strong correlation when PCC
(

fi, fj
)

exceeds 

threshold of 0.6. In Fig. 7, pairwise Pearson correlation of the original 
feature pool F and the sparsified one F S is shown. As indicated, after 
feature sparsification, Pearson maps become more brighter by 

discovering more correlation between features. For COVID-specific 
dataset, we have initially 34 features, by applying Pearson elimination 
to F and F S with threshold 0.8, we got 28 selected features from F , 
while we got 23 features from F S which demonstrates that sparsity 
allowed us to drop more 5 features. With a threshold of 0.6, the feature 
pool F is reduced from 34 to 24 features, while the sparsified feature 
pool F S turned from 34 into 15 features, which means that sparsity 
allowed us to drop more 9 features. On the other side, for CBC dataset, 
we have initially 16 features. The features in both F and F S in CBC 
dataset don’t show a correlation higher than 0.8. However, with a 
Pearson threshold of 0.6, the feature pool F reduced from 16 to 13 
features, while the sparsified one F S turned from 16 into 12 features, 
which means that sparsity allowed us to drop more 1 feature. 

4.3.2. Equilibrium-based feature selection 

4.3.2.1. The traditional equilibrium optimizer (EO). Equilibrium optimi-
zation (EO) is originally inspired by the dynamic mass balance equation 
which describes the conservation of mass that enters, leaves, or gener-
ates in a control volume (Faramarzi et al., 2020). In another words, the 
dynamic mass balance equation is utilized to measure the number of 
mass entries and be generated in the volume over a period of time. The 
following three steps indicates the operation of EO. 

Step1: Initialization. 
Similar to other meta-heuristic algorithms, the EO search starts by 

initializing the population of candidate solutions/ features/blood 
exams. For this initialization, a uniform random one in the search space 
is required. Eq. (11) demonstrates the initial distributed solutions in the 
search space. 

f initial
i = fmin + randi × (fmax − fmin), i = 1,⋯, n (11)  

where f initial
i indicates to the ith candidate solutions/features. fmin, and 

Fig. 8. 2D illustration of Equilibrium candidates’ collaboration in updating particles’ concentration.  
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fmax are the minimum and maximum bounds for the ith candidate solu-
tion f initial

i , respectively. rand is d-dimensional random vector ranging 
from zero to one. n specifies the number of particles/solutions in the 
group. Then, the equilibrium candidates are determined by a sorting 
process to their fitness function. 

The objective function, i.e., fitness function, is employed within each 
optimization process in order to measure the fitness or the quality of 
each solution. The solution with the best fit is assigned as the best-so-far 
one for solving the targeted optimization problem. The proposed fitness 
function is a weighted sum between the classification accuracy based on 
KNN classifier and the proportion of the number of features/particles 
selected during each iteration, as 

ξ = w acc + (1 − w)
K
k

(12)  

where acc represents the classification accuracy of the currently selected 
features. K represents the number of the currently selected features, 
while k is the total number of features in the feature pool. w is a 
weighting random coefficient between [0, 1]. 

Step 2: Selecting equilibrium pool and candidates. 
As most of meta-heuristic algorithms that search for food source, EO 

searches for the equilibrium state of system/problem. At the beginning 
of the optimization process, the equilibrium state is unknown, i.e., the 
concentrations that achieve equilibrium are unknowns. The equilibrium 
state represents the global optimum of the optimization problem which 
is the final convergence state of the algorithm. However, equilibrium 
candidates are identified to provide a search domain for the particles. 
According to Faramarzi et al. (2020), choosing or assigning five equi-
librium candidates, mostly, works effectively. The first four feqi , i ∈ {1,2,
3, 4}, are the four “best-so-far” particles identified in the population 
during the whole optimization process and the last one is the particle 
with concentration equals the arithmetic mean of the previous 
mentioned four particles, i.e., feqavg . The first four candidates help EO to 
have better diversification capability, while the last average one en-
hances the EO exploitation. Of course, the optimization problem has a 
word on determining the most proper number of candidates. The equi-
librium pool F→eq is a vector constructed from these candidates as 

F→eq =

{

f
→

eq1
, f
→

eq2
, f
→

eq3
, f
→

eq4
, f
→

eqavg

}

(13) 

Step 3: updating the concentration.when the candidate solutions/ 
features are initialized using Eq. (11), their positions are updated over 
iterations by 

f Ï+1
i

̅̅→
= feq

Ï
̅→

+
(

fi
Ï

→
− feq

Ï
̅→)

Ωi
Ï

̅→
+

Gi
Ï

̅→

αi
Ï

̅→
vi

Ï
̅→

(
1 − Ωi

Ï
̅→)

(14)  

where fi Ï
→

and f Ï+1
i

̅̅→
are the original and updated concentrations of solu-

tions/features at Ï and Ï + 1, respectively. feqÏ
̅→

is a randomly selected 

feature vector from the equilibrium pool F→eq. The exponential term Ω =

e− α→(t− t0), as indicated in Eq. (14), helps in the main concentration 
updating role by keeping a good balance between exploration and 
exploitation in the Equilibrium optimization process. The exponential 
term Ω relies on the turnover rate α, and the time interval (t − t0). α is 
originally varies with time in a real control volume. Hence, it is 

supposed to be a random vector ranging from zero to one. On the other 
side, the time interval boundaries are defined as 

t =

(

1 −
Ï

N Ï

)

(

η2
Ï

N Ï

)

(15)  

where Ï is the iteration number, while N Ï is the total number of itera-
tions. η2 is a constant value for controlling the exploitation process. 

t0
→

=
1
α→

ln
(
− η1 sign( r→− 0.5)

[
1 − e− α→t] )+ t (16)  

where η1 denotes a constant value which controls the diversification and 
intensification of EO process. By increasing the parameter η1, the 
exploration/diversification capability increases while the exploitation/ 
intensification ability decreases. On the other side, the higher the 
parameter η2, the higher intensification capability and the lower 
diversification capability. The term sign( r→− 0.5) controls the direction 
of exploitation and exploration based on another random vector, r, 
ranging from zero to one. By employing Eq. (15), (16), the exponential 
term can be rewritten as 

ΩÏ
̅→

= η1sign( r→− 0.5)
[
e − αÏ
̅→

t − 1
]

(17) 

Another term to enhance the exploitation phase is the generation 
rate G which is a first-order exponential decay process demonstrated as 

Gi
Ï

̅→
= G0

Ï
̅→

e− αi
Ï

→
(t− t0) (18)  

where 

G→0 = ω→
(

f
→

eq − α→ f
→
)

, ω→=

{
0.5r1, r2 ≥ pω

0, r2 < pω
(19)  

where r1, and r2 are random numbers in a range from zero to one. ω is 
defined as the generation rate control parameter, i.e., it controls gen-
eration term’s contribution to the updating process. pω is the probability 
of how many particles utilize generation term to update their states. For 
keeping a good balance between exploitation and exploration, pω is 
assigned a value of 0.5. 

Fig. 8 indicates a 2D representation of the equilibrium candidates’ 
collaboration to update the concentration of a particle. In this figure, 
f1 − feq is representative of the second term in Eq. (14) and it is respon-
sible for searching the space, i.e., exploration role, to find an optimum 
point. The large variation between a sample concentration and the 
equilibrium makes the term f1 − feq contribute more to the exploration 
process of EO. On the other side, the term feq − αf1 is a representative of 
the third term in Eq. (14). It introduces small variations in the concen-
tration once a point is found by the exploration process. These small 
variations contribute to making the solution more accurate. Hence, the 
term feq − αf1 contributes more to the exploitation process of EO. In 
addition, the sign of both the second and the third term helps in the 
exploration and the exploitation process. Having the same signs makes 
the variations larger and accordingly searching the full space better, 
while opposite signs keep small variations which enhances the local 
searches. In Algorithm 2, a pseudo code to indicate the procedure of the 
traditional EO is demonstrated. 
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Fig. 9. Flow chart of the proposed MEO algorithm.  
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Fig. 10. Comparison of the results of average fitness over iterations for the traditional EO, in the first row, and the proposed MEO, in the second one, for COVID- 
specific dataset. The first column is the results of the original feature pool F while the second one for the sparsified feature pool F S. 

Fig. 11. An example of 1DCNN model for a binary classification problem. In this example, the network consists of two convolutional layers (Conv_1with 32 filters 
and Conv_2 with 64 filters), Max pooling layer, flattening layer and finally some fully connected layers with soft-max layer. 
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Fig. 12. Summary of the proposed 1DCNN for COVID-19 prediction considering 9 selected features.  

Fig. 13. The employed evaluation metrics.  
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Table 4 
The validation results of the effect of employing the data preparation steps, i.e., SMOTE for data balancing and iForest for outlier detection, on the proposed COVID-19 
diagnosis algorithm on the employed datasets.  

dataset Case Case name ACC PPV SV F1 AUC SP Features* 

Covid-specific dataset 1 Imbalanced w/ outliers  0.83  0.834  0.816  0.824  0.890  0.773 19/33 
2 Balanced w/ outliers  0.866  0.876  0.918  0.896  0.929  0.921 18/33 
3 Imbalanced w/o outliers  0.894  0.882  0.902  0.891  0.956  0.901 19/33 
4 Balanced w/o outliers  0.988  0.985  0.975  0.979  0.988  0.985 13/33 

CBC dataset 1 Imbalanced w/ outliers  0.771  0.783  0.9  0.833  0.824  0.806 7/13 
2 Balanced w/ outliers  0.923  0.921  0.956  0.938  0.976  0.938 6/13 
3 Imbalanced w/o outliers  0.906  0.902  0.956  0.92  0.95  0.931 9/13 
4 Balanced w/o outliers  0.994  0.985  0.993  0.986  0.998  0.986 6/13  

* The selected number of features (x) out of the total size of the original feature pool (y); (x/y) 

Fig. 14. Confusion matrices of testing the proposed COVID-19 prediction algorithm adopting the four cases indicated in Table 4 showing the effect of SMOTE and 
iForest on the performance. 

Table 5 
Validation results of applying all features, and PCC and MEO-based feature selection, separately, in different cases for COVID-specific dataset. The best performance is 
marked by bold font. (–) is the number of selected features.   

Train and testing for the original samples in F Train and testing for the sparse samples in F s 

ACC PPV SV F1 AUC SP ACC PPV SV F1 AUC SP 

All features (33) 0.94 0.943 0.96 0.952 0.986 0.961 0.942 0.944 0.96 0.954 0.987 0.966 
PCC-based feature selection for the original features in F (22 

features) 
0.939 0.94 0.96 0.95 0.98 0.958 0.943 0.947 0.961 0.954 0.986 0.958 

PCC-based feature selection for the sparse features in F s (14 
features) 

0.932 0.935 0.958 0.946 0.977 0.958 0.939 0.942 0.96 0.95 0.983 0.955 

MEO-based selection for the original features in F (12 
features) 

0.925 0.93 0.95 0.94 0.98 0.948 0.932 0.94 0.952 0.945 0.98 0.961 

MEO-based selection for the sparse features in F s (12 
features) 

0.934 0.94 0.96 0.947 0.983 0.958 0.944 0.95 0.96 0.955 0.984 0.958  
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Table 6 
Validation results of applying all features, and PCC and MEO-based feature selection, separately, in different cases for CBC dataset. The best performance is marked by 
bold font. (–) is the number of selected features.   

Train and testing for the original samples in F Train and testing for the sparse samples in F s 

ACC PPV SV F1 AUC SP ACC PPV SV F1 AUC SP 

All features (13) 0.989 0.985 0.997 0.991 0.999 1 0.99 0.988 0.995 0.992 1 1 
PCC-based feature selection for the original features in F (10 

features) 
0.987 0.982 0.997 0.99 0.999 1 0.986 0.983 0.995 0.989 0.999 1 

PCC-based feature selection for the sparse features in F s (9 
features) 

0.989 0.987 0.995 0.991 0.999 1 0.989 0.987 0.998 0.991 0.999 1 

MEO-based selection for the original features in F (8 features) 0.99 0.988 1 0.992 0.999 1 0.986 0.984 0.994 0.989 0.999 1 
MEO-based selection for the sparse features in F s (6 features) 0.961 0.963 0.974 0.968 0.989 0.964 0.969 0.968 0.983 0.974 0.996 0.988  

Fig. 15. AdaBoost feature importance employing all features for COVID-specific dataset in the first row and CBC dataset in the second row. (a) and (c) in the features 
original domain while (b) and (d) in the sparse domain. 
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Algorithm 2.  

Algorithm 2: Pseudo code of the traditional EO optimizer 

1: Initialize the solution’s/ particle’s population randomly, i = 1,⋯, n;   
// Eq. (11), n is the search 
agents 

2: Assign a small number to the equilibrium candidates’ objective/ fitness 
function ξ;

// ξ = 0.0001 
3: Select the equilibrium candidates f

→
eq1

, f
→

eq2
, f
→

eq3
, f
→

eq4 
from the population 

4: Update the states of candidate solutions using search equation (Eq. (14)) 
5: Assign values to the following free parameters η1 = 2,η2 = 1,pω = 0.5 
6: While Ï < N Ï // the iteration no. N Ï =

100 
7: For i = 1 : n  

8: Calculate the fitness function of the ith 

particle ξ( f
→

i)

// follow Eq. (12) to 
calculate ξ 

9: 
If ξ
(

f
→

i

)〉

ξ( f
→

eq1
)

10: 
Replace f

→
eq1 

with f
→

i and ξ( f
→

eq1
) and ξ

(

f
→

i

)

11: 
Elseif ξ

(

f
→

i

)〈

ξ( f
→

eq1
) &ξ

(

f
→

i

)〉

ξ( f
→

eq2
)

12: 
Replace f

→
eq2 

with f
→

i and ξ( f
→

eq2
) and ξ

(

f
→

i

)

13: 
Elseif ξ

(

f
→

i

)〈

ξ( f
→

eq1
) & ξ

(

f
→

i

)〈

ξ( f
→

eq2
) &ξ

(

f
→

i

)〉

ξ( f
→

eq3
)

14: 
Replace f

→
eq3 

with f
→

i and ξ( f
→

eq3
) and ξ

(

f
→

i

)

15: 
Elseif ξ

(

f
→

i

)〈

ξ( f
→

eq1
) & ξ

(

f
→

i

)〈

ξ( f
→

eq2
) & 

ξ
(

f
→

i

)〈

ξ( f
→

eq3
)&ξ

(

f
→

i

)〉

ξ( f
→

eq4
)

16: 
Replace f

→
eq4 

with f
→

i and ξ( f
→

eq4
) and ξ

(

f
→

i

)

17: End If 
18: End for 
19: 

f
→

eqavg
=

(

f
→

eq1
+ f
→

eq2
+ f
→

eq3
+ f
→

eq4

)/

4 

20: 

(continued on next column)  

(continued ) 

Construct the equilibrium pool F→eq =

{

f
→

eq1
, f
→

eq2
, f
→

eq3
, f
→

eq4
, f
→

eqavg

}

21: Accomplish memory 

saving if ̈I > 1 
22: Assign t according to Eq. (15) 
23: For i = 1 : n 

24: Choose one candidate, randomly, from the equilibrium pool F→eq 

25: Generate random vectors of r→ and α→ from Eq. (17) 
26: Construct ω→, Ω→, G→0, G→ according to Eq. (19) 
27: Update concentration f

→
according to Eq. (14) 

28: End for 
29: Ï = Ï + 1 
30: End While   

4.3.2.2. The proposed Minkowski-based equilibrium optimizer (MEO). In 
the proposed MEO, we try to move a set of the worst solutions, i.e., 
particles with worst fitness, toward the “best-so-far” attempting to find 
better solution in a smaller number of iterations. However, this recycling 
idea may cause an entrapment in local minima, and accordingly, the 
chance of having better global solution is impossible. Hence, in the 
proposed modified version of EO (MEO), a recycling strategy for the 
worst solutions is presented with a strategy for local minima suppres-
sion. The proposed MEO is indicated in the following subsections. 

Recycling strategy for the worst solutions: 
As mentioned before, the main purpose of this strategy is to move the 

worst solutions toward the best-so-far solutions, hence, the chance to 
find solutions better than the best-so-far solutions can be enhanced. At 
the same time, the recycling strategy should guarantee to take the so-
lutions away from the local minimum. Hence, the number of worst so-
lutions N to be recycled is controlled by the following equation. 

N = n − round

(
Ï

N Ï
(n − n)

)

(20)  

Fig. 16. AdaBoost feature importance, for COVID-specific dataset, adopting the followings: 1. PCC-based feature selection in the features original domain (22 feature 
selected) while applying training and testing once for the original samples in F (a), and another for the sparse samples in F s (b). 2. PCC-based feature selection in 
sparse domain (14 feature selected) while applying training and testing once for the original samples in F (c), and another for the sparse samples in F s (d). 3. MEO- 
based feature selection in features original domain (12 feature selected) while applying training and testing once for the original samples in F (e), and another for 
the sparse samples in F s (f). 4. PCC-based feature selection in sparse domain (12 feature selected) while applying training and testing once for the original samples in 
F (g), and another for the sparse samples in F s (h). 
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where n is the size of the initial population, while n denotes a fixed 
number of the solutions to be updated within each iteration. Ï is the 
current iteration number and N Ï is the total number of iterations. As 
indicated from Eq. (20), as the iteration number increases, the recycling 
strategy is controlled by decreasing the number of the worst solutions to 
be updated to decrease the chance of local minima entrapment. 

After finding the most suitable number of worst particles to be 
recycled, the recycling mechanism of their concentrations/features are 
demonstrated as 

f
→

worst = γ1 f
→

eqavg
+(1 − γ1) f

→
eqrand

+ γ2

(

f
→

eqrand
− f
→

worst

)

(21)  

where γ1 is a weighting random parameter, in range from zero to one, 

between the mean equilibrium concentration feqavg and a randomly 
selected concentration from the equilibrium pool. This weighting 
mechanism is proposed to keep a suitable diversity between the worst 
solutions even after their movements towards the best-so-far ones. γ2 is a 
random number ranging from zero to one. 

Local minimum avoidance: 
To support MEO in their fighting towards the local minima problem 

for achieving better solutions within their searches, the technique in Eq. 
(22), (23) is proposed. In this technique, both local and global explo-
ration can be controlled according to the degree of the diversity in the 
equilibrium pool. The diversity in the equilibrium pool, Df , is calculated 
in Minkowski-based manner between each pair of equilibrium concen-
trations as 

Fig. 17. Classification reports of testing the proposed COVID diagnosis model based on the proposed fused selection method and 1DCNN in both original domain (a), 
(c) and sparse domain (b), (d). The first two rows belong to COVID-specific dataset while the other rows belong to CBC dataset. 
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Table 7 
Computitative comparison between some traditional ML techniques and the proposed 1DCNN model while training and testing performed once in original features 
domain and another in sparse domain for COVID-specific dataset (13 selected Features out of 33). The top performer is bolded, while the second is underlined.  

Training and testing Domain Classifier ACC PPV SV F1 AUC SP Macro- Micro- 

PPV SV F1- PPV SV F1- 

Original features domain LSVM 0.84 0.858 0.891 0.874 0.902 0.907 0.836 0.824 0.828 0.84 0.84 0.84 
RSVM 0.897 0.909 0.927 0.918 0.939 0.931 0.893 0.887 0.89 0.897 0.897 0.897 
LR 0.836 0.893 0.837 0.863 0.903 0.867 0.827 0.835 0.829 0.836 0.836 0.836 
RF 0.928 0.941 0.943 0.942 0.98 0.963 0.924 0.923 0.923 0.928 0.928 0.928 
AdaBoost 0.932 0.934 0.958 0.946 0.983 0.984 0.932 0.924 0.927 0.932 0.932 0.932 
DT 0.883 0.902 0.911 0.906 0.874 0.941 0.877 0.874 0.875 0.883 0.883 0.883 
KNN 0.869 0.868 0.932 0.899 0.936 0.949 0.872 0.85 0.857 0.869 0.869 0.869 
XGBoost 0.899 0.914 0.926 0.919 0.956 0.947 0.896 0.891 0.892 0.899 0.899 0.899 
GNB 0.787 0.794 0.888 0.838 0.858 0.925 0.783 0.756 0.763 0.787 0.787 0.787 
ET 0.931 0.934 0.956 0.945 0.983 0.979 0.93 0.923 0.926 0.931 0.931 0.931 
LDA 0.824 0.835 0.894 0.863 0.895 0.92 0.821 0.802 0.808 0.824 0.824 0.824 
QDA 0.783 0.789 0.89 0.836 0.869 0.917 0.78 0.749 0.757 0.783 0.783 0.783 
OURS 0.967 0.974 0.958 0.965 0.971 0.984 0.971 0.956 0.965 0.967 0.955 0.964  

Sparse domain LSVM 0.844 0.868 0.884 0.875 0.904 0.909 0.838 0.832 0.833 0.844 0.844 0.844 
RSVM 0.894 0.908 0.924 0.916 0.939 0.939 0.89 0.885 0.887 0.894 0.894 0.894 
LR 0.836 0.891 0.841 0.864 0.905 0.875 0.828 0.835 0.829 0.836 0.836 0.836 
RF 0.933 0.939 0.954 0.946 0.982 0.981 0.931 0.926 0.928 0.933 0.933 0.933 
AdaBoost 0.94 0.942 0.964 0.952 0.985 0.987 0.94 0.933 0.936 0.94 0.94 0.94 
DT 0.889 0.9 0.923 0.911 0.878 0.944 0.885 0.878 0.881 0.889 0.889 0.889 
KNN 0.892 0.886 0.948 0.916 0.947 0.965 0.897 0.874 0.882 0.892 0.892 0.892 
XGBoost 0.896 0.905 0.93 0.917 0.951 0.952 0.893 0.885 0.888 0.896 0.896 0.896 
GNB 0.822 0.862 0.849 0.855 0.869 0.885 0.811 0.813 0.811 0.822 0.822 0.822 
ET 0.94 0.942 0.963 0.952 0.985 0.987 0.94 0.933 0.936 0.94 0.94 0.94 
LDA 0.824 0.837 0.893 0.863 0.896 0.912 0.82 0.803 0.808 0.824 0.824 0.824 
QDA 0.79 0.803 0.88 0.839 0.865 0.912 0.785 0.762 0.768 0.79 0.79 0.79 
OURS 0.983 0.982 0.975 0.976 0.987 0.984 0.98 0.971 0.973 0.98 0.971 0.972  

Table 8 
Computitative comparison between some of the traditional ML techniques and the proposed 1DCNN model while training and testing performed once in original 
features’ domain and in another in sparse domain for CBC dataset (6 selected features out of 13). The top performer is bolded, while the second is underlined.  

Training and testing Domain Classifier ACC PPV SV F1 AUC SP Macro- Micro- 

PPV SV F1- PPV SV F1- 

Original features’ domain LSVM 0.828 0.848 0.873 0.860 0.880 0.845 0.822 0.815 0.818 0.828 0.828 0.828 
RSVM 0.893 0.897 0.930 0.913 0.937 0.908 0.892 0.882 0.886 0.893 0.893 0.893 
LR 0.810 0.844 0.844 0.843 0.881 0.828 0.802 0.801 0.801 0.810 0.810 0.810 
RF 0.956 0.954 0.974 0.964 0.994 0.989 0.957 0.951 0.953 0.956 0.956 0.956 
AdaBoost 0.976 0.976 0.985 0.980 0.998 0.983 0.976 0.974 0.975 0.976 0.976 0.976 
DT 0.932 0.940 0.950 0.944 0.928 0.971 0.932 0.928 0.929 0.932 0.932 0.932 
KNN 0.955 0.958 0.968 0.963 0.988 0.960 0.955 0.951 0.952 0.955 0.955 0.955 
XGBoost 0.946 0.940 0.974 0.957 0.981 0.977 0.949 0.939 0.943 0.946 0.946 0.946 
GNB 0.694 0.854 0.597 0.701 0.827 0.557 0.715 0.720 0.693 0.694 0.694 0.694 
ET 0.977 0.975 0.988 0.981 0.998 0.983 0.978 0.974 0.976 0.977 0.977 0.977 
LDA 0.802 0.838 0.837 0.837 0.871 0.810 0.794 0.792 0.792 0.802 0.802 0.802 
QDA 0.760 0.889 0.692 0.777 0.877 0.644 0.768 0.779 0.758 0.760 0.760 0.760 
OURS 0.984 0.981 0.988 0.982 0.998 0.984 0.98 0.984 0.981 0.98 0.983 0.98  

Sparse domain LSVM 0.816 0.841 0.860 0.850 0.871 0.787 0.809 0.804 0.805 0.816 0.816 0.816 
RSVM 0.876 0.870 0.936 0.902 0.936 0.931 0.879 0.860 0.867 0.876 0.876 0.876 
LR 0.801 0.836 0.837 0.836 0.874 0.805 0.793 0.791 0.791 0.801 0.801 0.801 
RF 0.969 0.976 0.974 0.975 0.995 0.966 0.968 0.968 0.968 0.969 0.969 0.969 
AdaBoost 0.980 0.981 0.986 0.983 0.998 0.977 0.980 0.978 0.979 0.980 0.980 0.980 
DT 0.938 0.951 0.947 0.949 0.936 0.948 0.935 0.936 0.935 0.938 0.938 0.938 
KNN 0.960 0.968 0.966 0.967 0.988 0.966 0.959 0.959 0.958 0.960 0.960 0.960 
XGBoost 0.942 0.950 0.954 0.952 0.981 0.948 0.940 0.938 0.939 0.942 0.942 0.942 
GNB 0.752 0.877 0.689 0.770 0.842 0.667 0.759 0.769 0.750 0.752 0.752 0.752 
ET 0.980 0.982 0.985 0.983 0.998 0.983 0.980 0.978 0.979 0.980 0.980 0.980 
LDA 0.798 0.830 0.840 0.835 0.868 0.822 0.790 0.787 0.788 0.798 0.798 0.798 
QDA 0.777 0.864 0.751 0.803 0.872 0.695 0.773 0.784 0.772 0.777 0.777 0.777 
OURS 0.991 0.983 0.99 0.985 0.998 0.984 0.981 0.988 0.987 0.981 0.987 0.981  
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Df =

(
∑N eq

i=1,j=1

⃒
⃒
⃒
⃒
⃒

f
→

eqi
− f
→

eqj∕=i

⃒
⃒
⃒
⃒
⃒

p)1/p

(22)  

where p is the order of Minkowski distance metric. N eq denotes the 
number of particles/ solutions in the equilibrium pool. Hence, the 
avoidance of local minima problem is demonstrated as 

f
→

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
→

+

(

f
→

min + rand
̅̅ →

(

f
→

max − f
→

min

))

. γ→3, if Df < θ

f
→

+

(
Df

N eq

(

1 − γ→4

)

+ γ→4

)

.

(

f
→

i − f
→

j

)

, if Df > θ
(23)  

where γ3 and γ4 are two random vectors in range [0,1]. The updating 
mechanism in Eq. (23) offers a global exploration property within the 
search boundaries fmax, fmin when the diversity in the equilibrium pool is 
low, i.e., Df < θ, where θ is a specific predefined threshold for the degree 
of diversity. In the other hand, with large diversity, i.e., Df > θ, the 
updating mechanism offers a local exploration between two solutions 
selected randomly from the population, i.e., fi, and fj. 

Fig. 9 indicates a flow chart for the proposed MEO. In addition, in 
Fig. 10, a comparison is set between the traditional EO and the proposed 
modified version MEO, with Minkowski distance of order p = 3, 
employing the original feature pool once and employing the sparsified 
one another for COVID-specific dataset. In the original feature domain 
F , the traditional EO provides a leader fitness of 0.838 with a leader 
KNN classification accuracy of 0.864, while the proposed MEO provides 
a leader fitness of 0.87 with a leader KNN classification accuracy of 
0.896. on the other side, in the sparse domain F S, the traditional EO 
provides a leader fitness of 0.848 with a leader KNN classification ac-
curacy of 0.882, while the proposed MEO provides a leader fitness of 
0.878 with a leader KNN classification accuracy of 0.911. Hence, 
Applying the proposed MEO to the sparsified feature pool F S shows the 
best performance in terms of leader accuracy. In addition, sparse 

features, even, help the traditional EO to have better performance 
compared to the traditional features. 

4.4. Classification stage: 

Following the proposed dataset preprocessing and feature selection, 
an efficient classifier is needed. Mostly, ensembles of different machine 
learning classifiers are employed to guarantee better classification per-
formance, such as the diagnosis criteria in (AlJame et al., 2020; Alves 
et al., 2021). In (Brinati et al., 2020; Cabitza et al., 2021; de Freitas 
Barbosa et al., 2021), the authors tried to introduce the performance of 
different machine learning classifiers in comparative way to choose the 
best classifier. On the other hand, instead of the traditional machine 
learning techniques, the authors in (Alakus & Turkoglu, 2020; Shaban 
et al., 2021) employed deep learning techniques in their diagnosis. 
(Alakus & Turkoglu, 2020) introduced a prediction study for COVID-19 
disease with deep learning application models, such as Artificial Neural 
Network (ANN), Convolutional Neural Networks (CNN), Long-Short 
Term Memory (LSTM), Recurrent Neural Networks (RNN), CNNLSTM, 
and CNNRNN. Shaban et al. (2021) proposed a hybrid classification 
model that consists of two classifiers: fuzzy inference engine and Deep 
Neural Network (DNN). 

Deep Learning (DL) is the latest accomplishment of the machine 
learning era by providing a multi-level hierarchical architecture with 
subsequent stages for more effective information processing. DL era is 
started by (Hinton & Salakhutdinov, 2006), when they explained the 
role of ‘‘the depth” of an ANN in machine learning. In other words, they 
pointed out the role of increasing the number of hidden layers in 
increasing the learning ability of networks. 

Convolutional Neural Networks (CNN), as a common type of deep 
neural networks (DNN), are mostly used with two-dimensional data (2D 
CNN), such as images (Albawi et al., 2017). CNN mainly constructed 
from convolutional layers with pooling layers, as a feature extraction 
stages, and fully connected layers for classification. The advantages of 

Fig. 18. Training-validation performance in terms of accuracy for the proposed COVID prediction algorithm. The first row for COVID-specific dataset and the other 
one for CBC dataset. The training in (a), (c) is performed in features original domain and the others (b), and (d) in sparse domain. The training is performed over the 
selected features by the proposed fused-based feature selection mechanism which results 13 features for COVID-specific dataset and 6 features for CBC-dataset. 
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CNNs can be summarized as following. 1) with a single body, CNNs can 
guarantee a fusion process between feature extraction and feature 
classification. 2) The features can be directly optimized from the raw 
input during the training process. 3) CNNs can deal with large inputs 
effectively via sparsely-connected neurons outperforming the tradi-
tional Multi-Layer Perceptrons (MLP) networks. 4) CNNs are robust to 
small variants in the input data, such as translation, scaling, skewing and 
distortion. 

1D Convolutional Neural Networks (1DCNNs) have recently been 
developed (Kiranyaz et al., 2021). They can deal efficiently with 1D 
signals. 1DCNNs have superior advantages, such as low computational 
cost due to employing 1D convolutions instead of 2D convolutions in 

2DCNNs. Usually, 1DCNN employs small number of hidden layers, 
hence, we get small number of learning parameters which suits CPU 
implementations and real-time applications. 

To understand the performed operations in a 1DCNN, Fig. 11 in-
dicates a simplified example that provides an overview. Conv is a 1D 
convolution layer with some feature detectors (filters). The selected 
number of filters defines how many sliding windows are used. Each filter 
has a kernel size (filter length) that matches the size/height of the slider 
window. This window will slide through the data and lead to an output 
matrix. The first Conv layer learns the basic functions. An additional 1D 
convolution layer with other filters before pooling allows our model to 
learn more complex functions. If the L layer is a convolution layer, the 

Fig. 19. Classification reports of testing the following studies: (Alakus & Turkoglu, 2020) {18/33–13/13} as (a), (AlJame et al., 2020) {18/33–13/13} as (b), 
(Cabitza et al., 2021) {33/33–13/13} as (c), (Brinati et al., 2020) {33/33–13/13} as (d), (Shaban et al., 2021) {33/33–13/13} as (e), and Ours {13/33–6/13} as (f). 
{} denotes {selected features/total no. of features for COVID-specific dataset – selected features/total no. of features for CBC dataset. (?.1) for COVID-specific dataset 
and (?.2) for CBC dataset. 
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formula for the one-dimensional convolution layer, i.e., the output of 
this layer, is indicated in Eq. (24). Pooling layer is a layer to reduce 
variance and computation complexity (e.g., average pooling reduces 75 
% of data) and extract low-level features from the neighborhood. 
Applying Max Pooling moves a window over our data and replaces the 
values with the maximum value. The pooling layer will remove a certain 
percentage of our values from the previous layer, creating a new matrix. 
To further reduce the probability of over-fitting, a drop layer is added. 
Dense layer is a fully connected layer to ensure better classification re-
sults. Flatten is a layer to flatten the multi-dimensional data, resulting 
from the previous conv layers, which cannot be feed directly into the 
feed forward neural network. Hence, they are used usually before dense 
layers to flatten data firstly. The final layer is a dense layer which uses a 
SoftMax activation function to generate a probability distribution across 
the output classes. The final output layer consists of neurons (one for 
each label/output class) including their probability. The output of a fully 
connected layer O (M ) is demonstrated in Eq. (25). 

M
L

j = U

(
∑c

i=1
M

L− 1
j *H

L

ij + χL
j

)

(24)  

where H denotes the convolution kernels, j represents the number of 
kernels, c indicates the channel number of input M L− 1

j ; M L− 1
j represents 

the output from the previous layer. χ denotes the bias corresponding to 
the kernel. U denotes the adopted activation function and * represents 
the convolution operator. 

O (M ) = U
(
M

L+1
. ϖL+1 + χL+1) (25)  

where ϖ , χ denote the weights and the bias, respectively. 
In Fig. 12, a graphical summary the adopted 1DCNN model in the 

proposed COVID − 19 prediction algorithm is shown. As indicated, the 
proposed network consists of 4 convolutional layers with filters sizes {
512,512,256,256}, all have the same kernel size of 32 and all employ 
ReLU as activation function. We employed 4 drop out layers. The first 
three with a dropping factor of 0.2 and the last one with a dropping 
factor of 0.5. Their main function is to inactivate 20 %, and 50 % of 
neurons, respectively, in order to prevent overfitting. Then, a flatten 
layer is utilized to flatten the multi-dimensional data to suit a dense 
layer of 128 neurons. Finally, a dense layer with 2 neurons and with 
SoftMax activation function is used to suit the binary classification 
problem. We have employed Stochastic Gradient Descent (SGD) as an 
optimizer with a learning rate of 0.001, and momentum of 0.9. The 
stopping criterion of the training process is when we got no change in 
the validation accuracy for 5 epochs. 

5. Experimental results and discussions 

To assess the performance of the proposed algorithm, several per-
formance metrics are employed. We chose six metrics to evaluate the 
performance: accuracy (ACC), precision (PPV), F1-score, AUC, speci-
ficity (SP), and sensitivity (SV). Those metrics are based on the resultant 
confusion matrix values, i.e., TP, TN, FP, and FN, see Fig. 13 for the 
metrics formulas. AUC (Area Under The Curve) ROC (Receiver Oper-
ating Characteristics) demonstrates the relation between TP rate, on Y- 
axis, and FP rate, on X-axis. The higher the AUC, the higher the effi-
ciency of the model in differentiating between the problem’s two classes. 

During the performed experiments of the proposed model, to avoid 
the risk of over-fitting, the employed dataset is splitted into a training set 
(75 % of the instances) and a test set (25 % of the instances) using a 
stratified procedure, then 30 % of the training set is used for validation. 
During all performed experiments, the models were trained and cali-
brated on the whole training set. Later, the calibrated models were 
evaluated on the hold-out test set in terms of the previously mentioned 
six metrics. In the upcoming subsections, the performance of the pro-
posed diagnosis algorithm is indicated in detail through an ablation 

study. In this ablation study, while we discuss the impact of a specific 
step, we keep the other steps of the proposed algorithm the same, see 
Fig. 2 for an illustration of the whole algorithm. 

5.1. Impact of data preparation 

In this step, as discussed in the methodology section, we employed 
iForest algorithm for outlier detection and SMOTE for data balancing. 
Table 4 indicates computitative validation results of the effect of 
employing the data preparation steps on the proposed COVID-19 diag-
nosis algorithm while the other main steps are kept the same. As indi-
cated, we got improvements in all evaluation metrics as we move from 
case (1) of not applying any preprocessing steps to the employed dataset 
to case (4) of applying both SMOTE and iForest for data balancing and 
outlier detection, respectively. For iForest, we kept the default param-
eter in Scikit-learn library, except the number of base estimators, we 
employed 150. For SMOTE, we kept the default parameters in 
Imbalanced-learn library. In Table 4, in COVID-specific dataset, we got 
the biggest enhancement in the specificity with an increase from 0.773 
(case 1) to 0.958 (case 4) with a reduction of 6 features. On the other 
side, in CBC dataset, we got the biggest enhancement in accuracy with 
an increase from 0.771 to 0.983. In Fig. 14, the confusion matrices of 
testing the prementioned cases is indicated. These matrices show the 
effectiveness of the adopted preprocessing steps in enhancing the per-
formance of the proposed COVID-19 prediction model. 

5.2. Impact of feature selection: 

In this subsection, we will discuss the effect of employing the pro-
posed feature selection that is based on a fusion mechanism between the 
selected features from a correlation-based (PCC) perspective and the 
modified equilibrium-based (MEO) perspective. Hence, we will discuss 
first the application of the two adopted feature selection techniques, i.e., 
PCC and MEO, separately, and then compare to the performance of 
applying the fusion mechanism. In the solo application, PCC and MEO 
can be applied to the original feature pool F (original feature domain) 
or the sparse one F s (sparse domain), then after the selection decisions, 
the classification step can be applied to samples from F or F s. Hence, 
we have ten conditions to be studied, check Table 5, 6. 1) employing all 
features in F , 2) employing all sparse features in sparse domain F s, 3) 
correlation-based selection in F and employing the same domain for 
performing training and testing, 4) correlation-based selection in F and 
performing training and testing in sparse domain, i.e., sparsified samples 
from F s, 5) correlation-based selection in F s and employing the orig-
inal features domain F for performing training and testing, 6) 
correlation-based selection in features original domain F and per-
forming training and testing in sparse domain F s, 7) MEO-based se-
lection in the features original domain F and employing the same 
domain F for performing training and testing, 8) MEO-based selection 
in features original domain performing training and testing in sparse 
domain, 9) MEO-based selection in sparse domain and employing the 
original features domain for performing training and testing. 10) MEO- 
based selection in features original domain and performing training and 
testing in sparse domain. 

To take a look at the selected features in each case and get an indi-
cation of its importance in the prementioned ten conditions, Figs. 15, 16 
indicates the AdaBoost feature importance in different conditions. As 
indicated, we can see how the sparse domain exploit the real importance 
of features compared to the original domain of features. Sparsity gives 
the highest importance to white blood cell count (WBC). Recently, WBC 
is considered as a prognostic indicator of COVID-19 (Li et al., 2021). In 
addition, in Table 5, 6, computitative validation results are indicated as 
a comparison between the prementioned conditions. As indicated, in 
COVID-specific dataset, Table 5,employing all features in the features 
original domain or sparse domain didn’t introduce that high perfor-
mance compared to the other conditions due to the existence of high 
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correlated features, such as these couple of features, Neutrophils (NET, 
NE), Lymphocytes (LYT, LY), Monocytes (MOT, MO), Eosinophils (EOT, 
EO). On the other side, performing a correlation-based or MEO-based 
selection in sparse domain can show superior performance even with 
smaller number of features than that of original features domain. Hence, 
it is demonstrated that sparsifying features can exploit more details from 
samples, hence better performance can be achieved. For CBC dataset, 
Table 6, we can see that employing all features provides the best per-
formance in sparse domain, but we can see the performance in features 
original domain is still competing, as well, due to employing less 
correlated features than that of COVID-specific dataset, see Fig. 7. 
However, even with employing 6 out of 13 features in the case of MEO- 
based feature selection in sparse domain, we can obtain accuracy of 
around 97 % as demonstrated. The introduced performance with CBC 
dataset competes the state-of-the-art performance by Shaban et al in 
(2021) which achieves accuracy of 97.6 % employing all features while 
the proposed prediction algorithm achieves accuracy of 99 % employing 
all features in sparse domain as indicated in Table 6. According to the 
demonstrated results in Table 5, 6, the proposed fused feature selection 
mechanism is introduced to combine the advantages of MEO and PCC- 
based feature selection. Hence, the most possible performance can be 
achieved with the least possible number of features. Fig. 17 indicates the 
classification reports of testing the proposed COVID diagnosis model 
based on the proposed fused selection method in both original domain 
and sparse domain. The fusion mechanism selects 13 features for 
COVID- specific dataset and 6 features for CBC dataset. These features 
later are entered to the proposed 1DCNN model for a final classification 
stage. As indicated from Fig. 17, the fusion mechanism in feature se-
lection helps to enhance the performance of the proposed prediction 
algorithm compared to the results in Table 5, 6, especially when per-
forming training and testing in sparse domain. In sparse domain, we 
achieved a testing accuracy of 98 %, 99 % for COVID-specific dataset 
and CBC dataset, respectively. Hence, the proposed COVID prediction 
algorithm adopts the fused selection mechanism for feature selection. In 
addition, the training and the testing processes are performed to the 
sparse samples in F s. 

5.3. Impact of classification model: 

In this subsection, we evaluate the proposed COVID-19 diagnosis 
model by comparing its 1DCNN model with other ML models, such as 
GNB, DT, ET, GBT, KNN, LR, RF, LSVM, RSVM, XGBoost, LDA, QDA, 
AdaBoost. A great review of these models can be found in (Tang et al., 
2014). With the traditional ML techniques, we employed 10-fold strat-
ified cross-validation to avoid the problem of overfitting. It is the best 
practice when developing a traditional ML model. Then, a grid search 
procedure is employed to find the best combination hyperparameters (e. 
g., learning rate, interaction depth) using AUC as reference measure. In 
Table 7, 8, computitative comparisons are indicated between the pro-
posed 1DCNN model and the prementioned ML algorithms. Table 7 
shows the testing results for COVID-specific dataset while Table 8 
demonstrates the testing results for CBC dataset. As indicated, the per-
formance of the proposed 1DCNN with the adopted fused feature se-
lection mechanism shows superior performance compared to the other 
ML models, especially when the training and testing processes are per-
formed to sparse samples. However, performing the training and testing 
processes in the original features domain still shows good results and, so 
far, better than the tradition ML methods. Moreover, we can see that 
AdaBoost and ET show good performance among the other traditional 
ML techniques. In Fig. 18, the training-validation performance is indi-
cated, in terms of accuracy, for the proposed COVID-19 prediction al-
gorithm, based on the introduced fusion-based feature selection and 
1DCNN model, once for the original samples in F , and another for the 
sparse samples in F s. 

5.4. Comparison to the state-of-the-art 

In this subsection, we compare the proposed COVID-19 prediction 
algorithm to other prediction methods from previous studies (Alakus & 
Turkoglu, 2020; AlJame et al., 2020; Brinati et al., 2020; Cabitza et al., 
2021; Shaban et al., 2021), see Table 1 for their dependencies. The 
proposed ERLX method in AlJame et al. (2020), is the most similar 
algorthim to ours, especially in the data preprocessing steps, but it 
doesn’t have clear feature selection mechanism and it employs ensemble 
of different ML techniques. The proposed HDS algorithm in Shaban et al. 
(2021) employed fuzzy inference engine and Deep Neural Network for 
their prediction scheme. The rest of studies (Brinati et al., 2020; Cabitza 
et al., 2021) didn’t employ any feature selection algorithms and just 
employ ensemble of different ML algorithms for the classification task. 
On the other side, Alakus and Turkoglu (2020) introduce a new 
ensemble of different deep learning models. Hence, for the sake of fair 
comparison between these prementioned studies, we employed the same 
preprocessing steps and the same adopted dataset while keeping the 
other steps adopted by each study. In addition, we employed their 
available codes, unless there is no one. In Fig. 19, a comparison of testing 
the prementioned studies is indicated as classification reports. As shown, 
the proposed COVID-19 prediction model outperformes the state-of-the- 
art in both datasets, i.e., it achieves accuracy of 98 %, 99 % for COVID- 
specific and CBC datasets, respectively. In addition, this superior per-
formance is achieved only with less than half the size of the available 
features/blood exams. Ours employs 6 out of 13 for CBC dataset and 13 
out of 33 for COVID-specific dataset, while the other studies employs, 
mostly, all available features as in (Brinati et al., 2020; Cabitza et al., 
2021, Shaban et al., 2021) or larger feature number than ours as in 
(Alakus & Turkoglu, 2020; AlJame et al., 2020). 

6. Conclusion 

In this paper, we proposed a novel COVID-19 prediction model based 
on routine blood tests. In this model, we exploited the benefits of spar-
sifying the feature pool to get the real dependencies between the 
employed blood tests. In this employed sparse domain, we succeeded to 
reduce the feature pool size to less than the half using the adopted 
hybrid feature selection scheme. This scheme fuses the elimination de-
cisions of Pearson’s correlation coefficient and a new Minkowski-based 
equilibrium optimizer. Then, with a deep convolutional model, we 
proved that the proposed algorithm can efficiently predict COVID-19 
infection with small number of blood tests. Hence, scarce healthcare 
resources can be more effectively prioritized, especially in developing 
and low middle income countries. The major limitation in this study is 
training time of 1DCNN compared to the traditional ML techniques, but 
still PCR tests typically take hours to perform, and the target is to find 
alternative predictive models that still compete with accurate results to 
improve healthcare resource prioritization and inform patient care. 
Hence, in the future work, we intend to reduce the computational cost of 
the whole prediction algorithm, especially the training stage. 
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