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Abstract

Ageing affects a wide range of phenotypes at all scales, but an objective measure of ageing

remains challenging, even in simple model organisms. To measure the ageing process, we

characterized the sequence of alterations of multiple phenotypes at organismal scale. Hun-

dreds of morphological, postural, and behavioral features were extracted from high-resolution

videos. Out of the 1019 features extracted, 896 are ageing biomarkers, defined as those that

show a significant correlation with relative age (age divided by lifespan). We used support vec-

tor regression to predict age, remaining life and lifespan of individual C. elegans. The quality of

these predictions (age R2 = 0.79; remaining life R2 = 0.77; lifespan R2 = 0.72) increased with

the number of features added to the model, supporting the use of multiple features to quantify

ageing. We quantified the rate of ageing as how quickly animals moved through a phenotypic

space; we quantified health decline as the slope of the declining predicted remaining life. In

both ageing dimensions, we found that short lived-animals aged faster than long-lived animals.

In our conditions, for isogenic wild-type worms, the health decline of the individuals was scaled

to their lifespan without significant deviation from the average for short- or long-lived animals.

Author summary

High dimensional biomedical data are used to quantify health and diagnose diseases.

Combining the most informative features collected in the best conditions is crucial for

predictive power. Using high-resolution videos and extraction of hundreds of morpholog-

ical, postural and behavioral features, we characterized the phenotypic evolution of

worms as they age. Out of the 1019 features extracted, 896 correlate with relative age. We

used machine-learning to predict age and lifespan of individual C. elegans (age R2 = 0.79;

remaining life R2 = 0.77; lifespan R2 = 0.72). The quality of these predictions increased

with the number of features added sequentially to the model, supporting the use of multi-

ple features to quantify ageing. We evaluated the relationship between ageing and the phe-

notypic progression. In our conditions, for isogenic wild-type worms, the rate of

phenotypic alterations scales with the lifespan of the individuals.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008002 July 21, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Martineau CN, Brown AEX, Laurent P

(2020) Multidimensional phenotyping predicts

lifespan and quantifies health in Caenorhabditis

elegans. PLoS Comput Biol 16(7): e1008002.

https://doi.org/10.1371/journal.pcbi.1008002

Editor: Zachary Pincus, Washington University in

Saint Louis, UNITED STATES

Received: July 11, 2019

Accepted: May 30, 2020

Published: July 21, 2020

Copyright: © 2020 Martineau et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://github.com/celegans-ulb/

MultidimensionalPhenotyping.

Funding: CNM was the beneficiary of a Université
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Introduction

During ageing, multiple phenotypes are altered at the molecular, cellular, tissue and organis-

mal levels. Ultimately, these alterations affect the health and longevity of the organism. The

plasticity of ageing was revealed in C. elegans through several mutations that extend its longev-

ity [1]. Ideally suited for longitudinal studies, the morphology, posture and behavioral reper-

toire of the worm can be quantified non-invasively. Studies have also used this organism to

assess the relationship between healthspan (the fraction of life considered ‘healthy’) and life-

span using phenotypes scored manually, through video tracking, or microscopy [2–7]. The

behavior of C. elegans has been previously shown to change from the first day of adulthood as

a consequence of modified neuronal and muscular functions [7–10]. Using locomotion veloc-

ity as an indicator of health, lifespan and healthspan were coupled for the long-lived mutant

daf-2 [4,11]. This is in contrast to previous results obtained by Bansal et al. [2], showing that

long-lived mutants spend a longer period of time in a frail state. Using a set of 5 biomarkers of

ageing, Zhang et al. showed that long-lived individuals have a longer span of poor health than

short-lived wild-type (N2) individuals [6]. Similarly, Podshivalova et al. and Churgin et al.
observed an extension of late-life behavioral quiescence in N2 and daf-2 mutants [3,5].

Hundreds of morphological, postural and behavioral features can be extracted from videos

of freely behaving worms and these high-dimensional phenotypic fingerprints have previously

been shown to accurately classify mutants and sensitively detect the effects of optogenetic stim-

ulation [12–14]. We hypothesized that using a higher-dimensional representation of pheno-

types would also be useful for quantifying ageing and predicting lifespan. We recorded 151

individuals for 3 minutes each day of their life and used mechanical stimulation to induce

locomotion. We identified a set of 896 features that correlate with the age of the worms nor-

malized to their lifespan (relative age), which can be considered biomarkers of ageing. By

quantifying changes in these biomarkers, we find that short-lived and long-lived animals age

at different rates. In our conditions, the phenotypic and health progression of isogenic wild-

type C. elegans individuals over ageing is simply scaled to their lifespan.

Results

Phenotypes correlate better with age and relative age after mechanical

stimulation

To assess the health of freely moving animals, we tracked 151 wild-type worms (strain N2 obtained

from the C. elegans Genetics Center) every day of their lives from the last larval stage before adult-

hood (L4) to death. Mechanical stimulus often triggers a change in direction and fast locomotion.

Such high locomotion rates have previously been shown to correlate with remaining lifespan

[8,11,15,16]. We therefore recorded worms in basal conditions and after a mechanical stimulation

and extracted morphological, postural, and locomotion features using Tierpsy Tracker [12]. For

most of the 1019 tested features, Pearson’s and Spearman’s correlation coefficients with age and

relative age were higher in stimulated conditions than in basal conditions (Fig 1, S1 Table). The

average correlation coefficients with age are 2.25 and 3.48 times higher following stimulation

(Pearson and Spearman, respectively); the average correlation coefficients with relative age were

1.98 and 2.92 times higher following stimulation (Pearson and Spearman, respectively). We there-

fore focused on the features measured following stimulation for the analysis below.

Multidimensional phenotyping predicts age, remaining life, and lifespan

Given the different ageing dynamics for different features, we hypothesized that they contain

independent phenotypic information and could be combined to improve the prediction of
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age, remaining life, and lifespan. We randomly selected 80% of the individuals as training set

and used support vector regression (SVR) to predict age, remaining life, and lifespan of the

remaining 20%. We compared two approaches for feature selection. For the additive feature

selection approach, we simply ranked features presenting the lowest prediction error and

added them one by one to the model. The root mean squared error decreases slowly as features

are added, most likely because the highest ranked features are also highly correlated with each

other. To select useful features that are also relatively uncorrelated, we also used a sequential

Fig 1. Behavior correlates better with age and relative age following mechanical stimulation. Absolute Spearman’s correlation coefficients of each feature with age and

relative age, after mechanical stimulation. Biomarkers of ageing with p values< 0.05 after Bonferroni corrections are depicted in green. Following previous work (e.g.

[17]), we define a biomarker of ageing as any phenotype correlating with relative age (fractional age relative to lifespan). To determine which features were the best

biomarkers, Spearman’s correlation coefficients with relative age were calculated for each feature after mechanical stimulation. Out of the 1019 features used in this study,

896 had p values< 0.05 after Bonferroni correction. A list of the 100 best biomarkers and their corresponding correlation coefficients is shown in S1 Table. This list

includes morphological, postural, and behavioral biomarkers. Many of the Tierpsy features are correlated with each other. Nonetheless, we observed noticeably distinct

dynamics between them over ageing (Fig 2). The length of the worm rose during early adulthood and slowly declined afterwards. The maximum speed rose similarly

during early adulthood but sharply declined to reach a minimum by mid-adulthood. The curvature at mid-body sharply declined between larval stage 4 and adulthood but

remained stable during adulthood. The path-density—a measure of how long the animal dwells in different parts of its path—remains flat in early life but begins to rise

around mid-life. To compare short-lived with long-lived animals, our cohort of 151 isogenic animals was split into 5 groups according to longevity. Visualized as a

function of relative age, the phenotype changes overlapped between these 5 groups, as expected for biomarkers of ageing.

https://doi.org/10.1371/journal.pcbi.1008002.g001
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feature selection approach. At each iteration, the next selected feature is the one that results in

the lowest prediction error when combined with previously selected features. We used a brute

force search (testing all remaining features at each iteration) to find the next feature to add.

Feature selection was done separately for the prediction of age, remaining life, and lifespan.

Using sequential feature selection, the prediction error decreases as more features are added

up to approximately 20 to 40 features at which point the accuracy plateaus. The features

selected by each method are in S3 Table. From the best set of 100 features, age, remaining life

and lifespan were predicted with respective root mean squared errors of 1.6, 2.2 and 3.3 days

by the sequential feature selection method (Fig 3A and 3B). For comparison, using all 1019 fea-

tures led to worse predictions with root mean squared errors of 2.5, 4.5, and 3.8 days for age,

remaining life and lifespan predictions, respectively.

Individuals show progressive phenotypic changes as they age

Numerous drugs and genetic manipulations can modulate longevity [1,18]. However, their

effects on C. elegans health progression are often unknown. To visualize the phenotypic

Fig 2. Evolution of 4 features over ageing. The evolution of the maximum (90th percentile) length, maximum speed, and

curvature at midbody and the median path density is displayed over chronological age (A) and relative age (B) for 5 groups

of longevity. Shaded areas indicate standard errors of the mean.

https://doi.org/10.1371/journal.pcbi.1008002.g002

Fig 3. Deep phenotyping predicts age, remaining life and lifespan. (A) Evolution of the Root Mean Squared Error (RMSE) over the number of features added to

the SVR models to predict age, remaining life and lifespan. The red line shows the RMSE for features selected using sequential feature selection. The blue line shows

the RMSE for features selected accordingly to their ranked prediction error. (B) Prediction of age (R2 = 0.79), remaining life (R2 = 0.77), and lifespan (R2 = 0.72) using

100 features combined iteratively are compared to the real age, remaining life and lifespan. The red line corresponds to perfect predictions.

https://doi.org/10.1371/journal.pcbi.1008002.g003
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progression of our cohort of 151 individuals, we used Principal Component Analysis (PCA)

(Fig 4) and t-distributed Stochastic Neighbor Embedding (t-SNE) (S1 Fig) to project the high

dimensional phenotypes into two dimensions. In PCA, these first two dimensions represented

49% of the total variance of our dataset and additional dimensions each accounted for less

than 10% of the remaining variance (S2 Table). In both PCA and t-SNE, the phenotypes were

distributed according to the age of the individuals, generating a relatively well-defined trajec-

tory of ageing in two dimensions. We characterized the phenotypic progression of our cohort

split into 5 groups of lifespan. In the subspaces examined, the aging trajectories of the 5 longev-

ity groups appeared qualitatively similar to the ageing trajectory of the full cohort of wild-type

animals.

Short-lived animals age faster than long-lived animals

Interestingly, in both the t-SNE and PCA representations, the short-lived group travelled faster

within the phenotypic landscape than the long-lived group. We used the distance between con-

secutive time points along PC1 as a simple approximation of the phenotypic rate of change. All

lifespan groups progress monotonically along PC1 starting soon after the reproductive phase

(Fig 5A). However, short-lived groups moved faster than long-lived groups along PC1 (Fig

Fig 4. Phenotypic trajectories of ageing wild-type C. elegans. (A) PCA representation of the phenotypes over age. Each circle corresponds to the

phenotype of an individual at a specific age. The colors of the circles indicate the relative age, from L4 (dark blue) to death (yellow). The red crosses

indicate the mean phenotype and standard error at each age (B) 5 groups of longevity are compared: the colored crosses indicate the mean phenotype and

standard error at each age in the same PCA space as represented in (A). The colors of the crosses indicate the chronological age.

https://doi.org/10.1371/journal.pcbi.1008002.g004

PLOS COMPUTATIONAL BIOLOGY C. elegans ageing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008002 July 21, 2020 6 / 14

https://doi.org/10.1371/journal.pcbi.1008002.g004
https://doi.org/10.1371/journal.pcbi.1008002


5C). Visualized as a function of relative age, progression along PC1 is continuous for short-

lived animals, it is slightly delayed for long-lived animals (Fig 5B). To confirm that short-lived

groups moved faster in the multidimensional phenotypic space than long-lived groups, we

computed the cumulated distance travelled by the individuals as they age in higher dimen-

sions, representing from 50% to 90% of the total variance. Short-lived groups travelled faster

within the multidimensional phenotypic landscape than long-lived groups (S2 Fig). Therefore,

within our multidimensional phenotypic space, the 5 longevity groups display a similar

sequence of alterations but at variable rates.

Fig 5. The rate of phenotypic change used as a proxy for the aging rate. The evolution of individuals along the first principal component

(PC1) is displayed over chronological (A) and relative (B) age for 5 groups of longevity. The mean for each group of longevity correspond to the

colored lines, the shaded areas indicate the standard errors of the mean. (C) The mean ageing rate for each group of longevity was determined as

the mean of the first derivative of PC1, error bars indicate the standard errors of the mean.

https://doi.org/10.1371/journal.pcbi.1008002.g005
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Long-lived animals have a longer healthspan

To more rigorously assess the animals’ health, we used the prognosis, which corresponds to

the remaining time until death predicted based on an animal’s current phenotype, as previ-

ously defined by Zhang et al. [6]. Consistent with previous work, we observed that prognosis

decreases with age and decreases more rapidly for worms having a short lifespan (Fig 6A and

6C). However, over relative age, the evolution of prognosis was similar for the different life-

span groups (Fig 6B). The fraction of lifespan in good health was suggested to be extended in

short-lived and reduced in long-lived animals compared to the average [6]. To check for the

same effect in our dataset, we calculated the deviation of the prognosis curve of each individual

from the average prognosis curve of the entire cohort. Positive deviation results from worms

spending more time healthier than average while negative deviation results from worms

spending more time being less healthy than average. We did not detect a significant deviation

from the reference prognosis decline in long-lived or short-lived worms. This result suggests

that health decline normalized to lifespan is similar for all longevity groups in our conditions

(Fig 6D). From the prognosis, we calculated healthspan as the fraction of life above 50% of the

initial predicted prognosis value; the gerospan corresponds to the fraction of life below this

threshold. Based on this healthspan and gerospan criterion, the fraction of lifespan in good

and bad health appears similar for long and short-lived cohorts (Fig 6E).

Fig 6. Health progression is coupled to lifespan. (A) Evolution of the predicted prognosis over chronological age. (B) Evolution of the predicted prognosis over relative

age. The mean for each group of longevity corresponds to the colored lines, the shaded areas indicate the standard errors of the mean. (C) The prognosis decline slope was

determined by fitting a linear curve to the prognosis over chronological age; the error bars indicate the standard errors of the mean. (D) The average prognosis decline was

determined for the entire cohort as a reference health decline. The average deviation of the prognosis curve of each individual from this reference health decline was

determined and plotted. The R2 value is indicated. (E) The healthspan and gerospan were calculated for each group of longevity as the fraction of life above 50% of the

initial predicted prognosis value; the error bars indicate the standard errors of the mean.

https://doi.org/10.1371/journal.pcbi.1008002.g006
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Discussion

Caenorhabditis elegans exhibits many age-associated changes in gene expression, protein qual-

ity control systems, tissue integrity and immunity [19]. Individual features such as hsp-16.2
expression, pharyngeal pumping rate, maximum velocity (at day 9 of adulthood) or a combi-

nation of multiple features such as movement, auto-fluorescence, and body size were previ-

ously shown to correlate well with lifespan or to predict remaining life [4,6,11,20]. We used

multidimensional phenotypes derived from worm tracking to attempt to access more of these

non-invasive biomarkers. We found that sequential feature selection improved lifespan predic-

tion compared to simply taking the most predictive features. Adding more selected features

improved predictions until the support vector regression model used approximately 20 to 40

features, accordingly to predictions, at which point their accuracy plateaued.

Our results show that phenotypes evoked by mechanical stimulation, including features

measuring the maximum locomotion capacities of the worms, better correlate with age and

relative age than their counterparts obtained in basal conditions. This is consistent with previ-

ous results showing that the maximum velocity of the animals correlates better with lifespan

than the mean velocity [3,4,16]. This approach is similar to the Short Physical Performance

Battery (SPPB), which combines standing balance, walking speed, and chair stand tests to eval-

uate maximal physical performances of human patients and their biological age. This similarity

supports analogies in the ageing processes between species despite different morphologies,

postures, and locomotory phenotypes [21–23].

Detailed phenotypic trajectories of ageing better represent the multifaceted responses to

perturbations happening over ageing than lifespan curves. Qualitatively, the short- and long-

lived wild type animals followed similar phenotypic trajectories in the subspaces we selected.

Using the same methodology, we previously observed that different genotypes can follow dis-

tinct trajectories [24].

In our conditions, the inter-individual differences in phenotype are mostly explained by a

scaling of the phenotypic progression accordingly to the lifespan of the individuals. This obser-

vation is reminiscent of the temporal scaling observed for lifespan curves [25]. Similarly to

[2,4,6], we observe that health decline and phenotypic progression occur at different rates in

short- and long-lived wild type animals. However, normalized to the lifespan, the dynamics of

health decline for short- and long-lived wild-type animals could not be distinguished. This

result differs from [6] but is consistent with other previously published results [4].

The features selected to measure health, the environment and/or the genotype used may

explain these discrepancies between studies. We explore more features than previous publica-

tions [2,4,6] although using fewer individuals than in [6]. Our features are mainly morphologi-

cal and locomotory, lacking indicators for reproduction or tissue integrity present in [6],

which might be crucial markers for health quantification. We used N2, while [6] used the ster-

ile strain spe-9(hc88). We transferred individual worms every day onto fresh bacteria with an

eyelash, maintaining the environment relatively constant at the cost of worm handling. In con-

trast, [6] maintained individual worms over their entire life in droplets of concentrated bacte-

ria sealed in hydrogel and observed “premature death” in short-lived worms as well as

“extended twilight” for long-lived worms. In this closed environment, declining bacterial con-

centrations are likely coupled with increasing metabolite concentrations. Low concentrations

of bacteria might increase longevity and the frail end of life by reducing mortality induced by

bacterial infection [5,26]. Evolving bacterial densities might therefore explain both the “prema-

ture death” of short-lived worms living in a high density of bacteria as well as the “extended

twilight” of long-lived worm living in a reduced density. In addition, small molecules
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produced by bacteria or by worms can accumulate in the droplet, potentially modulating the

longevity of the worm [27–29].

In conclusion, the sequence of alterations of multiple organismal phenotypes is highly pre-

dictive of age, lifespan and prognosis of individual C. elegans. In our conditions, for isogenic

wild-type worms, the rate of phenotypic alterations scales with the lifespan of the individuals.

Materials and methods

Strains and media

The wild-type strain N2 (obtained from the C. elegans Genetics Center) was used in this study.

Standard conditions were used to maintain and propagate this strain at 20˚C.

Collection of behavioral data

151 single worms were recorded using a worm tracker equipped with a bone conductor trans-

ducer for mechanical stimulation. Worms were tracked longitudinally every day from the L4

stage to death. Worms were maintained in strict conditions at 20˚C until and during the track-

ing. Single-worm tracking was performed as previously described [14] with slight modifica-

tions. Briefly, 3 cm plates containing low peptone NGM were seeded with 20 μL of OP50 30

minutes prior tracking. Each day, each single worm was picked with a sterile eyelash onto a

new freshly seeded plate and left to acclimate for 15 minutes. All animals were measured

within a period of 3 months, but not all animals were followed at the same time. After 2 min-

utes of acclimation in the tracker, worm behavior was recorded for 2 minutes at 20 frames per

second to extract basal phenotypes. To extract phenotypes after mechanical stimulation,

behavior was recorded for 5 seconds in basal condition before a vibration of 4 seconds at 750

Hz was applied, and recorded 1 more minute after stimulation.

Data preparation

Videos were analyzed using Tierpsy to extract behavioral features [12]. Tierpsy is freely avail-

able at https://github.com/Tierpsy/tierpsy-tracker. The extracted worm behavior dataset as

well as information for each feature are available on https://github.com/celegans-ulb/

MultidimensionalPhenotyping. For each worm, a set of 4539 features was extracted with the

Tierpsy software [12]. These features contain information about the worm morphology, pos-

ture, locomotion, and behavior. After feature extraction, worms containing more than 25% of

missing values were removed from the dataset. Features still containing missing values were

dropped for all the videos. The dataset was then z-normalized to allow comparison across fea-

tures with different units.

Correlation p values

For each feature, Pearson’s and Spearman’s correlation coefficients (and the associated p-val-

ues) with age and relative age were calculated using the default settings in the MATLAB statis-

tics toolbox.

Predictions

Predictions were performed using support vector regression with a linear kernel using the

fitrsvm and predict functions in MATLAB. The code used is available on https://github.com/

celegans-ulb/MultidimensionalPhenotyping. The training set comprises 80% of the individual

animals randomly selected from the total. Predictions were made on the remaining 20% of ani-

mals and compared to their actual age, remaining life, and lifespan. The training set includes
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the phenotypes as predictor values and the corresponding age, remaining lifespan or lifespan

as response value. Predictions were compared to the real age, remaining lifespan or lifespan.

Lifespan was predicted from prognosis, to which the actual age of the animal was added. To

measure prediction accuracy, we used the root mean squared error (RMSE) of the prediction.

To plot the prediction precision over the number of features, features were added to the model

one by one. For the sequential feature selection method, the feature giving the smallest root

mean squared error was selected at each iteration. All remaining features were tested at each

iteration to find the next best feature to add. For the additive feature selection method the fea-

tures were selected one by one according to their ranked individual RMSE. Feature selection

was done separately for the prediction of age, remaining life, and lifespan.

Cumulative distance as a measure of ageing

To quantify the change in phenotypes over time for different longevity groups, we calculated

the cumulative distance that each group travelled through phenotype space. The space was

defined as the first n principal components calculated using all individuals at all times. Each

longevity group was represented by a single point in this phenotype space which was the aver-

age of the individual worm phenotypes in the group on each day. The distance travelled at

each day is the Euclidean distance between the mean phenotype at the current day and the

mean phenotype on the previous day. The cumulative distance travelled is then the cumulative

sum of these distances over time. The phenotypic distance travelled was calculated indepen-

dently using principal components 1 to 2, 1 to 5, 1 to 12, 1 to 28, and 1 to 72.

Prognosis as a measure of health

Prognosis was predicted as described above and plotted over age or relative age. Average devia-

tion of prognosis was calculated as in [6]. If the level of health decreased uniformly throughout

life, plotted in relative age, it should follow a straight-line from the initial prognosis to the

prognosis at death. We calculated a neutral straight line corresponding to the population mean

starting prognosis to the mean prognosis at death. Individuals might have a positive or nega-

tive deviation from the neutral, straight-line. The total deviation is calculated as the area

between the actual trajectory of prognosis and a neutral straight line corresponding to the pop-

ulation mean starting prognosis to the mean prognosis at death. For each individual, the total

area is divided by the lifespan to obtain the average deviation. Healthspan was determined as

the time when 50% of initial prognosis was reached. Gerospan corresponds to the remaining

time of life (healthspan subtracted to lifespan).

Supporting information

S1 Fig. Phenotypic progression of the 5 lifespan groups. t-SNE representation of the pheno-

types over age for 5 different lifespan groups. Colour of each dot indicates the relative age,

from L4 (dark blue) to death (yellow). Crosses indicate mean phenotype and standard error of

the mean for each age. The black crosses indicate the mean phenotype and standard error for

the entire dataset at each age. The red crosses indicate the mean phenotype and standard error

at each age for a given lifespan group. (A) PCA using only the stimulated features, (B) PCA

using basal and stimulated features.

(TIF)

S2 Fig. Short-lived animals age faster than long-lived animals. (A, B) The evolution of indi-

viduals along the first principal component (PC1) for stimulated features (A) or all features (B)

is displayed over chronological and relative age for 5 groups of longevity. The mean for each
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group of longevity correspond to the coloured lines, the shaded areas indicate the standard

errors of the mean. (C) For stimulated features, the evolution of the cumulative distances of

individuals across multiple dimensions over chronological age for 5 groups of longevity (col-

ours as in A and B). (D) Ageing speed across multiple dimensions.

(TIF)

S1 Table. Biomarkers of ageing. Spearman’s correlation coefficients with relative age were

calculated for each feature after mechanical stimulation.

(XLSX)

S2 Table. Percentage of variance explained by the 10 first principal components for fea-

tures after mechanical stimulation.

(XLSX)

S3 Table. Features selected by the additive feature selection and sequential feature selec-

tion methods to predict age, remaining lifespan and lifespan.

(XLSX)

S4 Table. Features better correlated in basal conditions than stimulated conditions.

(XLSX)
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Investigation: Céline N. Martineau.
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