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Abstract 

Background  Backfat serves as a vital fat reservoir in pigs, and its excessive accumulation will adversely impact pig 
growth performance, farming efficiency, and pork quality. The aim of this research is to integrate assay for trans-
posase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to explore 
the molecular mechanisms underlying porcine backfat deposition.

Results  ATAC-seq analysis identified 568 genes originating from 698 regions exhibiting differential accessibility, 
which were significantly enriched in pathways pertinent to adipocyte differentiation and lipid metabolism. Besides, 
a total of 283 transcription factors (TFs) were identified by motif analysis. RNA-seq analysis revealed 978 differen-
tially expressed genes (DEGs), which were enriched in pathways related to energy metabolism, cell cycle and signal 
transduction. The integration of ATAC-seq and RNA-seq data indicates that DEG expression levels are associated 
with chromatin accessibility. This comprehensive study highlights the involvement of critical pathways, includ-
ing the Wnt signaling pathway, Jak-STAT signaling pathway, and fatty acid degradation, in the regulation of backfat 
deposition. Through rigorous analysis, we identified several candidate genes (LEP, CTBP2, EHHADH, OSMR, TCF7L2, 
BCL2, FGF1, UCP2, CCND1, TIMP1, and VDR) as potentially significant contributors to backfat deposition. Additionally, 
we constructed TF-TF and TF-target gene regulatory networks and identified a series of potential TFs related to back-
fat deposition (FOS, STAT3, SMAD3, and ESR1).

Conclusions  This study represents the first application of ATAC-seq and RNA-seq, affording a novel perspective 
into the mechanisms underlying backfat deposition and providing invaluable resources for the enhancement of pig 
breeding programs.
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Introduction
Adipose tissue is pivotal in energy storage and metab-
olism within animals [1]. It can be classified into sub-
cutaneous fat and visceral fat according to its position 
[2]. And its growth results from the increase in both 
the size and number of adipocytes [3]. Mature adipo-
cytes derive from the proliferation and differentiation 
of multipotent mesenchymal stem cells [4]. Notably, 
triglyceride accumulation initially enlarges existing adi-
pocytes, triggering the generation of new adipocytes 

*Correspondence:
Xuelei Han
hxl014@126.com
1 College of Animal Science and Technology, Henan Agricultural 
University, Zhengzhou 450046, China
2 Sanya Institute, Hainan Academy of Agricultural Science, Sanya 572025, 
China
3 Henan Yifa Animal Husbandry Co., Ltd, Hebi 458000, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10805-1&domain=pdf


Page 2 of 13Zhang et al. BMC Genomics          (2024) 25:902 

upon reaching their size limit [5]. Backfat thickness is 
a significant trait affecting the economic efficiency of 
pig production and reproductive performance [6]. With 
rising living standards, consumer preference has shifted 
towards quality over quantity with lean meat prod-
ucts being more favored, emphasizing the importance 
of reducing backfat and enhancing lean meat yield to 
meet market demands and improve profitability. The 
Yunong black pig (YN), renowned for its high fertility, 
rapid growth, superior meat quality and robust adapt-
ability, is a locally cultivated breed in China [7]. How-
ever, compared to Duroc pig (D), YN exhibits a thicker 
backfat, rendering them ideal models to investigate the 
molecular mechanisms underlying differential backfat 
deposition.

Chromatin accessibility, a crucial aspect of epigenet-
ics, represents the direct impact of chromatin struc-
ture on gene transcription [8]. That is to say, when the 
binding affinity between histones and DNA increases, 
a dense nucleosome structure forms, preventing tran-
scription factors (TFs) from binding to cis-regulatory 
elements on DNA. Conversely, reduced histone-DNA 
affinity results in a looser nucleosome structure, facili-
tating the binding of TFs to cis-regulatory elements [9, 
10]. The assay for transposase-accessible chromatin 
with high-throughput sequencing (ATAC-seq), widely 
used in studying various cis-regulatory elements and 
predicting TF binding sites, is a powerful technology 
for identifying open chromatin regions [11]. The com-
bination of ATAC-seq and RNA sequencing (RNA-seq) 
technologies enables the simultaneous acquisition of 
information on chromatin accessibility and down-
stream gene expression, thereby revealing the com-
plex networks of gene expression regulation [12]. This 
combined approach has been successfully employed 
in numerous studies to identify key factors involved in 
diverse biological processes [13–15].

Herein, this study aims to investigate the molecular 
mechanisms underlying porcine backfat deposition by 
leveraging ATAC-seq and RNA-seq to understand chro-
matin accessibility and gene expression profiles in YN 
and D backfat tissues. Through ATAC-seq, we identified 
differences in chromatin accessibility between these two 
breeds while RNA-seq revealed that in the gene expres-
sion. By integrating ATAC-seq and RNA-seq data, we 
delved into the regulatory and expression patterns of 
differentially expressed genes (DEGs) and their open 
chromatin regions, highlighting potential TFs and core 
genes involved in fat deposition regulation. These find-
ings deepen our understanding of the genetic and epige-
netic mechanisms underlying backfat deposition, setting 
the stage for future investigations into its molecular 
mechanisms.

Materials and methods
Animals and sample collection
The experimental animals comprised YN and D sourced 
from the farm of Henan Yifa Animal Husbandry Co., Ltd, 
all reared under identical conditions. Upon reaching a 
weight of 115.00 ± 5.00 kg, the animals were stunned by 
electric shock followed by slaughter in an unconscious 
state, and their backfat tissue was promptly transferred to 
liquid nitrogen and then stored at -80 °C for subsequent 
experiments.

Histological analysis
To access adipocyte size, fresh adipose tissue samples 
were initially fixed in a 4% paraformaldehyde solution for 
24 h prior to paraffin embedding and then were sectioned 
after solidification. After staining with hematoxylin and 
eosin (H&E), the sections were subsequently sealed with 
neutral resin. Digital scanning of the sections was per-
formed using a digital slice scanner. CaseViewer (C.V2.4) 
software was utilized to randomly select visual fields at 
100x magnification. Subsequently, ImageJ, an image anal-
ysis software, was used to randomly sample morphologi-
cally intact cells and measure the area of adipocytes in 
the captured images [16].

ATAC‑seq and analysis
Three biological replicates were used. The Agilent 2100 
Bioanalyzer was used to check the library fragment size 
and concentration. Upon passing quality control, 150 bp 
paired-end sequencing was performed using the Illu-
mina NovaSeq 6000 [17]. Raw sequencing data under-
went quality control with cutadapt (V2.5), involving the 
removal of adapter sequences, low-quality bases, and 
sequences with a high proportion of unknown bases from 
the raw sequencing data, as well as reads shorter than 5 
bp after the aforementioned quality control steps. Clean 
reads were aligned to the reference genome (Sus scrofa 
11.1) using Bowtie2 (V2.3.4.1) with specific parameters: 
“-X2000 --mm --local --threads 6” [18]. Low-quality 
alignments, mitochondrial genome alignments, and 
redundant sequences introduced by PCR were filtered 
out. After library and sequencing data quality control, 
MACS2 (V2.1.1) software was used to identify ATAC-seq 
enrichment peaks, mapping out open chromatin regions 
across the entire genome for each sample. The param-
eters used were: “-p 0.01 --nomodel --shift − 75 --ext-
size 150 -B --SPMR --keep-dup all --call-summits” [19]. 
ChIPseeker (V1.32.1) was used to evaluate the distribu-
tion of peaks in various functional regions of the genome 
and annotate associated genes [20]. Differential peaks 
were identified using the DESeq2 (V1.36.0) package in 
R based on the conditions: p-value < 0.05 and |log2(fold 
change)| ≥ 1 [21]. Volcano plots were generated using the 
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online bioinformatics visualization platform provided by 
WeSeq (https://​www.​bioin​forma​tics.​com.​cn/). To iden-
tify enriched motifs in the genomic regions of differential 
peaks, the findMotifsGenome.pl script from the HOMER 
suite was utilized. Protein-protein interactions (PPI) 
among TFs were analyzed using the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) data-
base (http://​string-​db.​org), considering interactions with 
a score above 0.4. Subsequently, visualization was per-
formed using Cytoscape software [22].

RNA‑seq and analysis
The Fastp (V0.23.2) software was utilized for quality con-
trol of the raw data, generating high-quality clean reads. 
These reads were subsequently aligned to the reference 
genome (Sus scrofa 11.1) using HISAT2 (V2.2.1) software 
with specific parameters: “--dta --phred33 -p 4 --known-
splicesite-infile” [23]. FeatureCounts (V2.0.3) was then 
utilized to quantify the reads aligned to the reference 
genome (Sus scrofa 11.1), applying the parameters: “-p 
--countReadPairs -T 2 -t exon -g gene_id” to accurately 
assign reads to their corresponding genes. To eliminate 
the influence of sequencing depth and gene length on 
expression calculation, the read counts were normalized 
using the Fragments Per Kilobase of transcript per Mil-
lion mapped reads (FPKM) method. DESeq2 (V1.36.0) 
was employed to analyze DEGs between groups [24], 
adopting a threshold of |log2(fold change)| ≥ 1 and 
p-value < 0.05 as criteria for statistical significance. Gene 
set enrichment analysis (GSEA) was performed using the 
OmicShare tools (https://​www.​omics​hare.​com/​tools), 
with statistical significance attributed to pathway exhib-
iting |NES| > 1, NOM p-value < 0.05, FDR q-value < 0.25.

Integration analysis of ATAC‑seq and RNA‑seq
To compare the differential peak associated genes by 
ATAC-seq to the DEGs by RNA-seq, the overlapping 
genes were identified. These overlapping genes were then 
subjected to correlation analysis to examine the relation-
ship between chromatin accessibility and gene expres-
sion levels. Furthermore, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were conducted on these overlap-
ping genes. The transcriptional regulatory relationships 
between TFs and target genes were obtained from the 
Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text Mining database (TRRUST; https://​
www.​grnpe​dia.​org/​trrust/).

GO and KEGG pathway analyses of differential genes
KEGG pathway enrichment analysis was conducted on 
the differential genes using KOBAS (http://​bioin​fo.​org/​
kobas). Pathways were deemed enriched if they surpassed 

a statistical significance threshold of p-value < 0.05. The 
resulting enriched pathways were visualized using Omic-
Share tools (https://​www.​omics​hare.​com/​tools).

Real‑time fluorescence quantitative PCR
To validate the RNA-seq data, seven DEGs were ran-
domly selected from both the D and YN groups for Real-
time fluorescence quantitative PCR (RT-qPCR). The 
primer information is shown in Table S13. RNA extracted 
from backfat was reverse-transcribed into cDNA using 
the Evo M-MLV RT Kit with gDNA Clean for qPCR 
(AG11705, Accurate Biotechnology (Hunan) Co., Ltd, 
Changsha, China). q-PCR was performed on the CFX96 
real-time PCR detection system (Bio-Rad, Hercules, CA, 
USA) using the SYBR Green Premix Pro Taq HS qPCR 
Kit (AG11701, Accurate Biotechnology (Hunan) Co., Ltd, 
Changsha, China), following the provided guidelines. 
GAPDH served as the internal control gene to normalize 
gene expression levels and the relative gene expression 
was calculated using the 2−ΔΔCt method.

Result
Histological analysis of backfat tissues in Yunong black 
pigs and duroc pigs
The paraffin parts of backfat tissues from YN and D 
revealed a significantly larger adipocytes in YN com-
pared to D (P < 0.001; Fig. 1A and B). Subsequently, fur-
ther experiments are performed utilizing these two sets 
of backfat tissues.

Characteristics of chromatin accessibility of backfat tissues 
in Yunong black pigs and duroc pigs
To investigate the mechanisms behind the differences 
in backfat thickness, ATAC-seq was used to exam-
ine the differences in genome-wide chromatin acces-
sibility between YN and D backfat tissues. A total of 
481,524,838 raw reads were obtained from the D group 
and 468,242,734 raw reads from the YN group. Follow-
ing rigorous filtering, the respective counts of clean reads 
amounted to 481,506,340 and 468,224,222, with over 97% 
of these reads from each sample successfully mapped to 
the reference genome (Sus scrofa 11.1; Table S1). Analy-
sis of the length of inserted fragments produced across 
libraries was consistent with the expected distribution, 
with the most prominent peak on the left side repre-
senting nucleosome-free fragments in open chromatin 
regions, while peaks around 200 bp and 400 bp on the 
right side corresponded to open chromatin regions con-
taining one and two nucleosome fragments, respectively 
(Fig.  2A). Chromosomal peak distribution plots dem-
onstrated consistency in both genomic signal and peak 
patterns across the two sets of chromosomes (Fig.  2B). 
Sequences uniquely aligned to the reference genome 
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were enriched within a 3 kb range around the gene 
transcription start site (TSS). Notably, a distinct enrich-
ment of sequencing reads was observed in proximity 
to TSS, underscoring the high quality of the ATAC-seq 

data (Fig. 2C). All peaks were annotated, and the results 
showed that most were mapped to promoters, introns, 
and distal intergenic regions (Fig. 2D).

Fig. 1  Histological analysis of backfat tissues. A 100x magnification of backfat tissues of YN and D. B Adipocyte area of backfat tissues of YN and D. 
mean ± SEM, *** P < 0.001

Fig. 2  ATAC-seq quality control and analyses of the peaks. A Distribution of inserted fragment length. B Distribution of peaks on the chromosomes. 
C ATAC-seq signal enrichment within 3 kb upstream and downstream of the TSS. D Peak distribution across various genomic regions.
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Differential chromatin accessibility and motif analysis 
of backfat tissues in Yunong black pigs and Duroc pigs
To determine the open chromatin regions associated 
with backfat deposition, differential chromatin accessibil-
ity analysis was conducted on the YN and D groups. Prin-
cipal component analysis (PCA) underscored the robust 
intra-group reproducibility and distinct inter-group 
variations across the samples (Fig.  3A). The differential 
analysis identified 698 differential peaks in the YN group 
compared to the D group, with 160 down-regulated and 
538 up-regulated peaks (Fig. 3B, Table S2). Annotation of 
these differential peaks revealed a total of 568 associated 
genes (Table S3). The enriched GO terms for these genes 
mainly included cellular developmental process, cell dif-
ferentiation, developmental process and cell develop-
ment, etc. (Fig. 3C, Table S4). KEGG pathway enrichment 
analysis of these genes identified 55 significantly enriched 
pathways (Table S5), with the top 10 pathways related to 
cellular metabolism, calcium and phosphate homeosta-
sis, lipid metabolism, and cell signaling, including Met-
abolic pathways, Sphingolipid metabolism, and PPAR 
signaling pathway (Fig.  3D). These results suggest that 
chromatin accessibility-induced transcriptional changes 
play a vital role in modulating the extent of backfat depo-
sition. A total of 283 TFs were identified through motif 
analysis (p-value < 0.01; Table S6), with a notable enrich-
ment of key TFs implicated in adipocyte differentiation 
and lipid metabolism. Specifically, FOS, ATF3, AP-1, and 
CEBP emerged as significantly enriched TFs, with FOS 
being the most enriched (Fig.  3E). Additionally, the TF 
interaction network underscores FOS, STAT3, ESR1, and 
SMAD3 as the top four hub TFs most closely connected 
with other TFs, particularly FOS exhibiting the most 
prominent interactions (Fig.  3F). This indicates that the 
differences in lipid deposition levels are associated with 
the binding of these TFs to open chromatin regions.

Gene expression profiling of backfat tissues in Yunong 
black pigs and duroc pigs
To assess the gene expression patterns in the YN and D 
groups, RNA-seq analysis was conducted on their backfat 
tissues. The D group and YN group obtained 232,432,430 
and 259,067,582 raw reads, respectively. After filtering, 
the number of clean reads for the D and YN groups was 
229,840,268 and 256,158,910, respectively. Notably, over 
96% of these clean reads from each sample were mapped 
to the reference genome (Sus scrofa 11.1; Table S7). PCA 
revealed correlations among the three biological rep-
licates of YN and D groups (Fig.  4A). To identify func-
tional genes involved in fat deposition, 978 DEGs were 
identified, with 396 genes down-regulated and 582 genes 
up-regulated in the YN group compared to the D group 
(Fig.  4B, Table  S8). GO enrichment analysis showed 

that DEGs are primarily enriched in terms including 
system development, multicellular organism develop-
ment, cell differentiation, and cellular developmental 
process (Fig.  4C, Table  S9). KEGG pathway enrichment 
analysis of the DEGs identified 86 significantly enriched 
pathways (Table  S10). Among the top 10 pathways, the 
enrichment of Metabolic pathways, Biosynthesis of 
amino acids, ECM-receptor interaction, Carbon metabo-
lism pathways, and p53 signaling pathway highlights the 
involvement of these DEGs in maintaining cellular and 
tissue homeostasis, as well as regulating metabolic pro-
cesses (Fig.  4D). To gain a deeper understanding of the 
expression patterns and functions of all genes, the gene 
set enrichment analysis (GSEA) was performed. Con-
sistently, the Biosynthesis of amino acids and Carbon 
metabolism pathways emerged as significantly enriched. 
Additionally, notable enrichments were also observed in 
the Jak-STAT signaling pathway and Fatty acid metabo-
lism (Fig. 4E).

Integration analysis of ATAC‑seq and RNA‑seq
 The integrated analysis of differential genes from ATAC-
seq and RNA-seq data was conducted. Through data 
alignment, a total of 39 overlapping genes were identi-
fied (Fig.  5A, Table  S11). Correlation analysis showed a 
significant positive relationship between the chromatin 
accessibility of these overlapping genes and their expres-
sion levels (Fig. 5B). To further elucidate the functions of 
these genes, GO and KEGG enrichment analyses were 
conducted. GO enrichment analysis revealed enrichment 
in terms including filamin binding, positive regulation 
of intracellular protein transport, positive regulation of 
p38MAPK and stress-activated MAPK cascades (Fig. 5C, 
Table S12). KEGG enrichment analysis showed that these 
genes participate in diverse pathways, including the Jak-
STAT signaling pathway, Wnt signaling pathway, and 
Fatty acid degradation. These pathways are notably asso-
ciated with cell proliferation and differentiation, signal 
transduction, and lipid metabolism (Fig. 5D, Table S13). 
By predicting target genes, 164 target genes of FOS, 
STAT3, ESR1, and SMAD3 were identified (Table  S14). 
Comparing these target genes with DEGs resulted in 
15 overlapping genes (Fig. 5E and F; Table 15), many of 
which are associated with lipid metabolism, energy bal-
ance, adipogenesis, and lipolysis, such as LEP, FGF1, 
VDR and BCL2.

Validation of RNA‑seq results using RT‑qPCR
To confirm RNA-seq results, RT-qPCR was conducted on 
seven randomly selected DEGs (ADH1C, HIF1A, LIPE, 
NPTX1, PRSS35, STAT3 and UCHL1). The findings dem-
onstrated that RT-qPCR gene expression patterns aligned 
with RNA-seq data, validating its accuracy (Fig. 6).
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Fig. 3  Differential peaks and corresponding gene enrichment analysis. A Principal component analysis (PCA). B Volcanic map of differential peaks. 
C GO enrichment analysis of genes linked to differential peaks. D KEGG pathway enrichment analysis of genes linked to differential peaks. E Top 10 
TFs enriched in motifs of differential peaks. F TF interaction network. Node size and color indicate the number of connections to other TFs
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Fig. 4  Analyses of RNA-seq. A PCA. B Volcanic map of DEGs. C GO enrichment analysis of DEGs. D KEGG pathway enrichment analysis of DEGs. E 
Pathway identified by GSEA
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Discussion
The study of backfat tissues in YN and D allows for a 
deeper understanding of the genetic characteristics and 
gene expression patterns in these two pig breeds, which 
helps breeders selectively cultivate economically viable 
pig breeds that cater to market demands. ATAC-seq, a 
widely utilized high-throughput sequencing method, is 

employed for examining open chromatin regions across 
the genome. Furthermore, it can be used to investigate 
transcriptional regulatory elements such as promoters, 
silencers and enhancers in the genome, revealing the 
structure and function of gene regulatory networks and 
identifying potential active TFs and their target genes 
[11]. While RNA-seq can reveal the transcriptional status 

Fig. 5  Analysis of integrated ATAC-seq and RNA-seq results. A Overlap of differential genes identified by ATAC-seq and RNA-seq. B Analysis 
of correlation between gene expression level and chromatin accessibility. C GO enrichment analysis of overlapping differential genes. D KEGG 
pathway enrichment analysis of overlapping differential genes. E Overlap of SMAD3, STAT3, FOS, and ESR1 target genes with DEGs identified 
by RNA-seq. F The regulatory network of SMAD3, STAT3, FOS and ESR1 with their corresponding target genes
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of TFs and genes [25]. Therefore, TFs and genes that may 
regulate backfat deposition could be identified through 
ATAC-seq and RNA-seq analysis of backfat tissues in YN 
and D.

In the present study, a comprehensive analysis utiliz-
ing ATAC-seq identified 568 genes from 698 regions 
exhibiting differential accessibility in the backfat tissues 
of YN and D groups. Complementarily, RNA-seq analysis 
revealed 978 DEGs. Subsequent KEGG pathway enrich-
ment analysis highlighted the enrichment of these genes 
in pathways pertinent to fat deposition, cell proliferation, 
differentiation, as well as fatty acid and glycolipid metab-
olism, including Metabolic pathways, PPAR signaling 
pathway, Sphingolipid metabolism, p53 signaling path-
way, ECM-receptor interaction, Carbon metabolism, and 
Biosynthesis of amino acids [26–34]. Interestingly, GSEA 
analysis also significantly enriched Biosynthesis of amino 
acids and Carbon metabolism pathways, emphasizing 
their significance in adipogenesis. Integrating ATAC-seq 
and RNA-seq data, 39 genes with differences in chro-
matin accessibility and expression levels were identi-
fied. Correlation analysis underscored a strong relation 
between the chromatin accessibility of these genes and 
their expression levels. KEGG pathway enrichment anal-
ysis illuminated their involvement in pathways crucial for 
fat deposition, such as the Wnt signaling pathway, Jak-
STAT signaling pathway, and Fatty acid degradation path-
way. The Wnt signaling pathway plays a crucial role in the 
regulation of adipogenesis [35, 36]. Specifically, the Wnt 
signaling pathway can reduce adipogenesis by inhibiting 
adipogenic TFs like CCAAT/enhancer binding protein 
alpha (C/EBPα) and peroxisome proliferator-activated 
receptor gamma (PPARγ) [37]. Its role extends to gov-
erning body fat distribution, obesity, and metabolic func-
tions [38]. CTBP2 and TCF7L2 are involved in the Wnt 

signaling pathway. CTBP2, acting as a transcriptional 
repressor, forms a transcriptional repressor complex with 
KLF3 to suppress the expression of key adipogenic regu-
lators including C/EBPα and PPARγ [39, 40]. TCF7L2, a 
key transcriptional effector in the adipogenesis process 
regulated by the Wnt signaling pathway, plays a critical 
role in the regulation of lipid metabolism [41, 42], adipo-
cyte size and glucose metabolism in adipose tissue, with 
its conditional deletion leading to insulin insensitivity, 
lipid metabolic disorders, and adipocyte hypertrophy [43, 
44]. The Jak-STAT signaling pathway controls both adi-
pose tissue development and adipogenesis by affecting 
various cytokines, growth factors, and hormones [45]. 
Specifically, it participates in the regulation of adipogene-
sis by controlling the transcription of CCAAT/enhancer-
binding protein beta (C/EBPβ) [46]. Additionally, Btg2, 
a member of the anti-proliferative protein family, has an 
inhibitory effect on adipogenesis, suppressed by the acti-
vation of the Jak-STAT signaling pathway [47]. LEP and 
OSMR are involved in the Jak-STAT signaling pathway. 
Leptin, encoded by LEP and primarily secreted by adi-
pose tissue, is an adipocyte-derived hormone crucial for 
lipolysis [48], regulating energy balance by acting on both 
the central nervous system and peripheral tissues [49, 
50], while also modulating the levels of fat deposition by 
controlling ATGL mRNA and protein expression through 
the Jak-STAT signaling pathway [48]. Notably, the con-
centration of leptin is positively correlated with fat mass, 
aligning with the findings of this research [51]. The OSM 
receptor, encoded by OSMR and highly expressed in fat 
tissue [52, 53], regulates the homeostasis of adipose tis-
sue by inhibiting adipogenesis through the OSM-OSMR 
signaling [54–56]. Fatty acids are important chemical 
substances within adipose tissue, stored as triglycer-
ides within adipocytes [57]. The fatty acid degradation 

Fig. 6  Verification of RNA-seq data by RT-qPCR. The y-axis displays the relative expression levels measured by RT-qPCR. mean ± SD, * P < 0.05, ** 
P < 0.01, *** P < 0.001
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pathway promotes fat oxidation, thereby reducing lipid 
levels and preventing fat accumulation [58, 59]. Conse-
quently, this pathway is essential for maintaining energy 
balance and combating obesity. EHHADH encodes a 
multifunctional enzyme crucial in the peroxisomal beta-
oxidation pathway and is closely linked to glucose and 
lipid metabolism [60, 61]. Recent research has suggested 
that EHHADH functions as a negative regulator of tri-
glyceride synthesis, with its overexpression resulting in 
reduced intracellular triglyceride levels [62].

Adipogenesis is regulated by numerous TFs [63]. Open 
chromatin regions offer binding sites for TFs, thereby 
regulating the transcription levels of target genes. The 
current study reveals a compelling correlation between 
gene expression levels and chromatin accessibility, 
indicating that these genes may be regulated by associ-
ated TFs, indicating that these genes may be regulated 
by associated TFs. Differential chromatin accessibil-
ity regions are enriched with several key TFs, including 
FOS, STAT3, ESR1, and SMAD3. FOS, a member of the 
FOS gene family, is involved in adipocyte differentiation 
[64]. Research by Hu et al. demonstrated that FOS inhib-
its intramuscular fat formation in goats and may nega-
tively regulate the expression of C/EBPβ, C/EBPα, and 
PPARγ [65]. Another study revealed that FOS knockout 
in 3T3-L1 adipocytes reduced lipid droplet accumula-
tion and inhibited adipocyte differentiation [64]. STAT3, 
a TF involved in regulating immune responses, cell sur-
vival, and the cell cycle, is highly expressed in adipocytes 
and mediates the effects of various cytokines [45, 66]. It 
is regulated both endogenously and exogenously by adi-
pocytes and vigorously activated during the proliferation 
phase of 3T3-L1 preadipocytes, playing a crucial role 
in adipocyte proliferation [67]. Early in the adipogen-
esis process, STAT3 binds to the distal region of the C/
EBPβ promoter, regulating its transcription level and 
thereby contributing to adipogenesis [46]. Additionally, 
STAT3 participates in the activation of PPARγ, further 
exerting its influence on the adipogenesis process [68]. 
ESR1, inversely associated with fat mass, encodes estro-
gen receptor α (Erα), a protein instrumental in regulating 
mitochondrial function and energy homeostasis in adi-
pocytes [69]. SMAD3 is indispensable for the formation 
and maintenance of white adipose tissue [70]. It inhibits 
the transcription of C/EBP, thereby suppressing adipo-
cyte differentiation [71]. Studies have shown that SMAD3 
knockout mice exhibit impaired lipid biosynthesis and fat 
deposition, which can protect against obesity induced by 
high-fat diets [72].

Further analysis identified 15 target genes of these 
TFs that exhibited differential expression between 
the D and YN groups, many of which are pivotal in 
lipid metabolism, energy metabolism, and adipocyte 

differentiation, including LEP, BCL2, FGF1, and UCP2, 
etc. BCL2 serves as an anti-apoptotic factor, inhibit-
ing cell apoptosis [73]. Studies have demonstrated that 
conjugated linoleic acid can promote adipocyte apop-
tosis by reducing the expression of the BCL2 in por-
cine backfat, thereby decreasing fat deposition [74]. 
FGF1, an important adipogenic factor, facilitates the 
proliferation and differentiation of preadipocytes. It 
promotes adipogenesis via the FGF-1/FGF receptor 1/
fibroblast growth factor receptor substrate 2 (FRS2)/
mitogen-activated protein kinase (MAPK) pathway 
[75]. UCP2 encodes uncoupling protein 2, crucial for 
cellular energy metabolism and mainly found in the 
pancreas, central nervous system, and white adipose 
tissue [76]. Studies have found that UCP2 deficiency 
in mice protects against high-fat diet-induced obesity 
modulating adipocyte apoptosis [77]. CCND1 encodes 
cyclin D1, a key regulator of cell cycle progression. Liu 
et  al. discovered that knocking down ZFP217 reduced 
the expression of the CCND1 gene and protein, subse-
quently hindering the cell cycle and adipogenesis [78]. 
TIMP1 acts as an inhibitor during adipogenesis, and 
specifically knocking down chemerin in subcutaneous 
adipose tissue promotes adipogenesis by down-regu-
lating TIMP1 [79, 80]. VDR is pivotal in the regulation 
of energy homeostasis in adipose tissue. Mice lacking 
VDR exhibit reduced energy expenditure, while VDR 
over-expression leads to increased energy expenditure 
[81]. As the receptor for 1,25-dihydroxyvitamin D3 
(1,25(OH)2D3), VDR is crucial in the 1,25(OH)2D3-
mediated adipogenesis process. It has been reported 
that 1,25(OH)2D3 inhibits adipogenesis through the 
regulation of C/EBPβ and PPARγ expression [82]. 
Overall, relevant studies have substantiated the critical 
biological functions of the aforementioned genes, TFs, 
and pathways, particularly highlighting their roles in 
adipose deposition. Furthermore, integrated RNA-seq 
and ATAC-seq analyses reveal a positive correlation 
between gene expression levels and chromatin acces-
sibility for most genes, while other genes exhibit the 
opposite effect. This discrepancy may be attributed to 
transcriptional repressors binding to open chromatin 
regions, or the influence of DNA methylation and other 
epigenetic modifications in these areas [14, 83]. Future 
studies are warranted to clarify the epigenetic processes 
by which specific TFs and their corresponding binding 
sites regulate the transcription of associated genes.

This study combines ATAC-seq and RNA-seq to con-
duct a systematic investigation of the molecular mecha-
nisms underlying porcine backfat deposition from both 
epigenetic and gene expression regulatory perspectives. 
It identifies potential TFs and genes influencing porcine 
backfat deposition, shedding new light on the complex 
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regulatory network of fat deposition and laying the foun-
dation for further exploration of the molecular mecha-
nisms underlying backfat deposition in pigs.

Conclusion
In summary, this study utilized ATAC-seq and RNA-seq 
to delve into chromatin accessibility and gene expres-
sion in the backfat tissue of YN and D at a genome-wide 
scale, identifying and predicting key genes, TFs, and path-
ways involved in backfat deposition. Integrated analysis of 
ATAC-seq and RNA-seq data revealed 11 potential can-
didate genes (LEP, CTBP2, EHHADH, OSMR, TCF7L2, 
BCL2, FGF1, UCP2, CCND1, TIMP1, and VDR) and three 
pathways (Wnt signaling pathway, Jak-STAT signaling 
pathway, and Fatty acid degradation). Additionally, the reg-
ulatory network of TF-TF and TF-target gene interactions 
were established, and four TFs (FOS, STAT3, SMAD3, and 
ESR1) were suggested to potentially have significant roles 
in backfat deposition. The identification of these candidate 
genes, TFs and pathways represents a significant advance-
ment in understanding the regulatory mechanisms under-
lying backfat deposition, thereby offering valuable insights 
for devising genetic improvement strategies in pig breed-
ing and advancing the livestock industry.
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