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Abstract

Stochastic actor-oriented models (SAOMs) are a modelling framework for analysing network dynamics using
network panel data. This paper extends the SAOM to the analysis of multilevel network panels through a
random coefficient model, estimated with a Bayesian approach. The proposed model allows testing
theories about network dynamics, social influence, and interdependence of multiple networks. It is
illustrated by a study of the dynamic interdependence of friendship networks and minor delinquency. Data
were available for 126 classrooms in the first year of secondary school, of which 82 were used, containing
relatively few missing data points and having not too much network turnover.

Keywords: delinquency, MCMC, random coefficient model, social influence, stochastic actor-oriented model, two-mode
network

1 Introduction

Social network research deals with analysing the dependencies among people or other social units
(social actors), these dependencies being induced by the relational ties that bind them together
(Brandes et al., 2013; Robins, 2015; Wasserman & Faust, 1994); and with exploring the interplay
of these dependencies and the individual behaviour or other characteristics of the actors. These de-
pendencies can best be studied in a dynamic approach, where the existence of a given configuration
of ties and characteristics leads to the creation, or supports the maintenance, of other ties, or leads
to a change in characteristics. While many endogenous network dependencies, like triadic closure
and balance, are of interest in their own right, there is a growing interest in the dynamic inter-
dependence of networks with other structures, such as actor variables (Veenstra et al., 2013), other
networks for the same actor set (Elmer et al., 2017; Huitsing et al., 2014), or sets of activities or
cognitions that can be represented as two-mode networks (Lomi & Stadtfeld, 2014).

Dynamic network data can be of various kinds. A frequently followed design is the collection of
network panel data, i.e., the observation of all relational ties (in one or more networks) and other
relevant variables, within a given group of social actors (such as individuals, firms, countries, etc.),
at two or more moments in time, the ‘panel waves’. For modelling panel data for a single network,
represented by a digraph, the stochastic actor-oriented model (SAOM) was proposed by Snijders
(2001). This was extended to a joint model for changing actor variables (vertex attributes) and
tie-variables by Steglich et al. (2010) and to a model for the interdependent dynamics of multiple
networks, potentially combining one-mode and two-mode networks, by Snijders et al. (2013).

Received: January 22, 2022. Revised: October 31, 2022. Accepted: November 23, 2022

© (RSS) Royal Statistical Society 2023.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial
License (https:/creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com


mailto:t.a.b.snijders@rug.nl
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/jrsssa/qnac009

J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 3 377

These joint dynamic models can be combined under the heading of ‘coevolution models’, as sum-
marized in Snijders (2017).

Two-mode networks are structures of ties between two different node sets, and can be used to re-
present activities or cognitions (second node set) of social actors (first node set). The combined ana-
lysis of a one-mode social network between actors and a two-mode network of which the second
mode is, e.g., a set of activities or cognitions, can shed light on how social ties are associated with
shared activities or cognitions. This was first developed by Wasserman and Iacobucci (1991) and
many later papers on this combination appeared, e.g., Wang et al. (2013) and Ziberna (2014). A
model for studying this interdependence longitudinally was proposed by Snijders et al. (2013).
For a one-mode network of social ties and a two-mode network of activities of the social actors,
this allows to disentangle the effects of social ties on joint activities from the effects of joint activities
on social ties. The model was applied, e.g., in Stadtfeld et al. (2016) and Karell and Freedman (2020).

Collecting longitudinal network data is very time-intensive and demands great care, but datasets
of longitudinal networks in many ‘parallel’ groups are becoming increasingly common. In this pa-
per, we use the study ‘Networks and actor attributes in early adolescence’ executed by Chris
Baerveldt and Andrea Knecht (Knecht, 2006; Knecht et al., 2010).

While the SAOM has proved useful in analysing networks in single groups, the methodology has
been limited in studying the extent to which network dynamics generalize to different contexts and
what might differ across groups of actors. However, to find scientific regularities, a more suitable
approach than studying single groups may be to study multiple groups, regarded as a sample from
a population, and to generalize to populations of networks (Entwisle et al., 2007; Snijders &
Baerveldt, 2003). For the exponential random graph model, a multilevel methodology was pro-
posed by Slaughter and Koehly (2016) (also see Schweinberger et al., 2020).

This paper proposes a multilevel extension of the SAOM for datasets composed of disjoint
groups of actors, for which only networks within each group are considered. This extension em-
ploys random coefficients like in the multilevel models treated, e.g., in Goldstein (2011) and
Snijders and Bosker (2012), and draws on the likelihood-based estimation frameworks of
Koskinen and Snijders (2007) and Snijders et al. (2010). It also permits the inclusion in the model
of observable group-level variables, such as compositional and contextual factors, like in standard
multilevel modelling. Our example is a coevolution of friendship networks and delinquent behav-
iour represented by two-mode networks, therefore the elaboration focuses on the coevolution
model of Snijders et al. (2013).

2 Friendship and delinquency

As the motivating example, we consider the dynamic relation between friendship and delinquent be-
haviour, using the study ‘Networks and actor attributes in early adolescence’. The dataset was col-
lected by Andrea Knecht, supervised by Chris Baerveldt (Knecht, 2006). The data was collected in
126 first-grade classrooms in 14 secondary schools in The Netherlands in 2003-2004, using written
questionnaires administered to the students. Schools were selected to have a mixture of public and
private, rural and urban schools spread all over the Netherlands, excluding very small and very large
schools, and excluding schools with special purposes. The entire dataset contains four waves with
about three months in between. It is available at https:/doi.org/10.17026/dans-z9b-h2bp.

We focus on the friendship network and on the four questions about delinquency: stealing, van-
dalism, graffiti, and fighting, for each of which self-reported frequencies were given with five cat-
egories. Written self-reports provide reliable measurements of delinquency for adolescents
(Kollisch & Oberwittler, 2004). The applied question treated here is how one’s delinquent behav-
iour is influenced by that of one’s friends; and how, in parallel, friends are chosen based on delin-
quent behaviour.

The dynamic relation between a network such as friendship and a changing actor variable such
as the tendency to commit delinquent behaviour has two sides: selection, changes of friendships
dependent on the delinquent behaviour of the two individuals concerned; and influence, changes
in delinquent behaviour of an actor dependent on the network position of this actor and the de-
linquent behaviour of the others, especially those to whom this actor has a friendship tie. There
a number of statistical models that investigate one of the sides only, influence (e.g., Doreian,
1989) or selection (e.g., Robins et al., 2001). A methodology to simultaneously model selection
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and influence using network and behaviour panel data, based on the SAOM, was proposed by
Steglich et al. (2010). The conclusions are not causal in the counterfactual sense, as demonstrated
by Shalizi and Thomas (2011), but in a temporal sense: does a change in behaviour follow on some
network configuration (influence), or does a change in friendship follow on a behaviour configur-
ation (selection). A further discussion of causality in network-behaviour systems was given by
Lomi et al. (2011).

The association between friendship and the tendency to delinquent behaviour was studied by Knecht
etal. (2010). This publication used the same dataset, constructing an actor variable representing delin-
quent behaviour as a sum score of the four delinquency items. It used the network-behaviour co-
evolution model of Steglich et al. (2010) with the two-step multilevel method of Snijders and
Baerveldt (2003), in which first the SAOM is estimated for each classroom separately, after which
the results for the classrooms are combined. Since most of the classrooms were too small for the sat-
isfactory application of this—rather complicated—model, only 21 classrooms could be used.

The current paper presents an extension of this study, replacing the two-step multilevel ap-
proach by an integrated random coefficient approach, which does not depend on the condition
of a convergent estimation algorithm for each classroom separately and therefore can use a
much larger part of the data set and a more elaborate model specification. This paper also treats
delinquency in a different manner.

Delinquency can be regarded either as a general behavioural tendency, or as a tendency towards
specific activities. The general tendency may be represented by the sum score or another aggregate,
like a factor score or latent class (Collins & Lanza, 2009); the specific activities can be represented
by the original variables or by a two-mode network, with ties going from students to delinquency
items. In the current paper, we used four dichotomized delinquency items represented by a two-
mode network. We employed the one-mode—two-mode coevolution model of Snijders et al.
(2013). This model allows to investigate the friends’ influence simultaneously at the level of the
general tendency, represented by the sum score (outdegree in the two-mode network), and at
the level of the specific activities, represented by the two-mode tie variables.

The earlier paper (Knecht et al., 2010) considered only influence at the level of the general ten-
dency. A third possibility using the SAOM would be to investigate the social influence for specific
activities by representing each of them by a dependent behavioural variable and conduct a co-
evolution study of the friendship network with four nondichotomized delinquency variables, cf.
Steglich et al. (2010). This would lead, however, to an extensive model with separate influence pa-
rameters for each activity, presumably with less power. As will be explained in the next section, the
two-mode network approach has a single parameter expressing the influence at the level of the spe-
cific activities, implying a more parsimonious analysis.

3 Multilevel stochastic actor-oriented model

The SAOM (Snijders, 2017) is a family of longitudinal network models for network panel data.
While networks are only observed at discrete time points, the model assumes that the networks
evolve in continuous time. This is necessary for representing the feedback between the tie variables
that can occur in the time elapsing between the observation moments. Some history of continuous-
time models for social network panel data is presented in Snijders (2001). Continuous-time models
for discrete-time panel data are well known (e.g., Bergstrom, 1988; Hamerle et al., 1993; Singer,
1996). Their use for network panel data in sociology is argued also by Block et al. (2018).

3.1 Data structure

We assume that we have panel network data for multiple independent groups. The groups are a
collection of mutually exclusive fixed sets of nodes Ny, ..., N'g, with time-dependent one-mode
networks for each of them. In our example, these nodes represent individuals, and the network
represents the friendships among them. We assume that there may only be network ties between
nodes in the same node sets, and at any point in time #, the network in group A, is represented by a
binary adjacency matrix X[&l(z) = (Xl[f](t))(i’f)ej\/gmrg, where Xl[f](t) =1 if there is a tie from i to j at
time ¢, and zero otherwise. Self-ties are excluded. In addition, we have for all groups two-mode
networks with a common second-mode node set #, which here is the set of the H = 4 delinquency
behaviours. The delinquency behaviours are dichotomized, and ngl(t) indicates whether
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individual i in group g engages in behaviour b at time z. These two-mode tie variables are collected
in a matrix Z&(z). A small example for five actors and three activities is in Figure 1.

Jointly, we denote the one-mode and two-mode network by YI&l(z) = (XI&l(z), ZI&l(2)), for
g=1, ..., G.Thesupports of X! and ZI¢! are denoted X, and Z,, respectively, with joint support
V= X x Z,.

For the data, we assume that Y!8!(¢) is observed at discrete points in time, ¢, t2, ..., ty, where M
can be as small as 2. The inferential target is to model how Y&l(z,,_;) changed into Y'&l(z,,) for
m=1, ...,M—1.

3.2 Model specification

The model for the SAOM in a single group can be described without the notational dependence on the
group membership. Therefore, we drop the superscript [g]. The process is actor-oriented in the sense
that transitions in the process are modelled as choices by actors i € N to change outgoing tie variables
Xjj or Zy,. It is assumed that Y(¢), 1 < ¢ < ty, given the available covariates, is a continuous-time
Markov process (theory about such processes is presented, e.g., in Norris, 1997). We present the
SAOM for the case of coevolution of a one-mode and a two-mode network; this can be generalized
to more networks and to coevolution with behavioural variables, see Snijders (2017).

At any moment # in continuous time, at most one actor i may make a change in at most one tie vari-
able X;; or Z,; this can be creation of the tie (0—1) or termination (1-0). This restriction was proposed
already by Holland and Leinhardt (1977), and it implies that the dynamic model is decomposed in the
smallest possible changes; these changes are called mini-steps. The basic ingredients of the model are:
rate functions (6, y) and 27(6, y), which indicate the rates at which actor 7 gets an opportunity, re-
spectively, to change some one-mode tie X (j€N,j#i) or to change some two-mode tie
Zi, (h € H); and evaluation functions fX(6, y) and f#(0, y), which indicate the value, as it were,
that actor i attaches to state y of the combined networks when making, respectively, a change in net-
work X or in network Z. The rate functions define the expected frequency of the mini-steps, and the
evaluation functions define the probability distribution of their results. For simple models, the number
of opportunities has a Poisson distribution. Since the choice situations with respect to the one-mode
network (friendship) and the two-mode network (delinquency behaviour) are different, different con-
siderations for the actors may apply, and the evaluation functions £ (6, y) and f#(6, ) will not be the
same.

By the properties of the exponential distribution, the time until the first opportunity for change
of any kind by any actor is exponentially distributed with rate

50,5 =>"250,y) + Y A0, y),

ieN ieN
and the probability that actor i € NV is selected for changing a tie variable in V € {X, Z} is

270, y)
Ao, y)

Given that i is selected for making a change in network V, which might be X or Z, the option set
consists of all outgoing tie variables in network V, together with the option ‘no change’. The set of

outcomes reachable in a mini-step by actor i in network V is denoted A} (y), with

Af(x,2) € {(x,2) € Villx = x| < 1, xp =2, Vjand Vk # i)
and
AZ(x,2) Clx, 2) € V:llz— 2| <1, 2y, =21, Yh and Yk # ).
Here, ||B — C|| denotes the Hamming distance between adjacency matrices B and C. Usually the

subset ‘C’ will be implemented as equality ‘=", but the subset symbol is used because there could
be constraints on the state space, such as in the case of changing composition or absorbing states.
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Figure 1. lllustration of combined one-mode and two-mode network with five actors (circles) and three activities
(squares). One-mode ties are represented by straight arrows, two-mode ties by curly arrows.

Conditionally on y, and on i being selected to make a change in network V, the probability that
the outcome of the choice is ¥ is

exp (£;/(6, ')
ZyeAV eXp fV 93

pY(0,y,y)= (1)

ify e .A,-V(y), and 0 ify ¢ A,»V(y). Note that since y € AI»V(y), the probability of no change, i.e.,
Yy =1, is positive.

3.2.1 Interpretation of process

For notational convenience, we further use the symbol y instead of ¥ in the role of outcome of the
mini-step. Typically, the evaluation functions £,V (6, y) are modelled as weighted functions of sta-
tistics calculated on y,

Z Hk Slzz

The statistics s,‘e/i(y) are briefly called effects, and will be functions pertaining to actor i and the net-
work neighbourhood of 7, possibly depending on covariates. Usual effects s(x, z) are counts of
subgraphs (configurations) that include ties originating with actor i. Since no information is avail-
able on the timing of the mini-steps, the focus of modelling is on the evaluation functions and not
on the rate functions (an exception is the diffusion model of Greenan, 2015). Often the rate func-
tions X (6, y) and 27 (6, y) are chosen to be constant between observation moments, and this will be
assumed further on. If the evaluation function £X(6, (x, z)) does not depend on z and f#(6, (x, z))
does not depend on x, the dynamics of the one- mode and two-mode networks are 1ndependent. In
our example, the interest is in the interdependence between friendship and delinquent behaviour,
which is reflected by effects that depend on both networks jointly.

The model can be interpreted as a sequential discrete-choice model where actors change their
outgoing ties, using random utilities (Maddala, 1983) to steer their choices, under the restriction
that they can change no more than one outgoing tie variable. From that perspective the model is
interpreted as a process whereby actors choose to change their network ties to what they deem
most preferable, allowing for a random element in their decisions. The model does not strictly re-
quire this interpretation and Snijders (2017) treats a wide variety of different model specifications,
including differential treatments of creating and terminating ties, more elaborate specifications of
the rate functions, and options for nondirected networks.

Of particular, importance is cross-network effects sl):l.(x, z) and sfi(x, z) depending on x as well as
2, reflecting the mutual dependence between the one-mode and the two-mode network. In our ap-
plication, where the networks are friendship and delinquent behaviours, the following cross-
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network effects are used. As mnemonic indicators, we use ‘0’ for outgoing friendship ties, ‘i’ for in-
coming friendship ties, and ‘d’ for ties in the delinquency network. The subgraphs used are illustrated
in the pictograms, where nodes of the first mode are denoted by circles, nodes of the second mode by
squares, one-mode ties by straight arrows, and two-mode ties by curly arrows. The superscript X or
Z indicates the network to which the effect applies, and superscript V indicates that it applies to V =
X aswellas V = Z. The second subscript 7 indicates the actor who considers changing some outgoing
tie. In the pictograms, the parts with a tie 7 — j have the role of dependent variables for friendship,
and the parts with a tie 7» have the role of dependent variables for delinquency.

(a) od: the product of the number of outgoing friendships and the number of delinquent behav-
iours of 7,

V(,)z ij (i__): h _—
e [Hen@—0

where Z is the average observed tie-variable for Z in the group.
(b) id: the product of the number of incoming friendships and the number of delinquent behav-

iours,
¥ (%, 2) = Zxﬂz —3), h <Wv@<—@
sfj,i(x,z)zz Xji—X Zz,h, h MI\/@(—@
j

where X is the average observed tie-variable for X in the group.
(c) odd: a mixed triadic effect: the number of friendships of i weighted by the number of delin-
quent behaviours i and j have in common,

h
oddt ‘x Z Z‘xl/zlhth

E—o

(d) idxod: the interaction between the ‘id” and ‘od’ effects defined by

1d><0d1 ‘x Z lelz Zjh _7)Z(Zil _2)

14

(e) od_av: a mixed four-node effect that is not a subgraph count: the total number of delinquent
behaviours reported by i multiplied by the average number of delinquent behaviours,
centred, reported by all #’s friends,

S avil%,2) = Zzih—zixiigfijfl_z)~ h ‘VV\‘@—>@'VV" ¢

h
Here, 0/0 is defined as 0.

Effects ‘idxod” and ‘od_av’ are used only for explaining the dynamics of the X and Z network,
respectively, the other three are used for explaining the dynamics of both networks. Note the ex-
change of i and j in effects ‘id’.

Brief interpretations of these effects, for positive parameter values, are the following.

For explaining the friendship dynamics (selection):
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(a) The ‘od’ effect indicates that those who engage in more delinquent behaviours will be more
active in nominating friends.

(b) The ‘id’ effect indicates that those who engage in more delinquent behaviours will be more
popular as friends.

(c) The ‘odd’ effect indicates that actors will tend to be friends with those who engage in the
same delinquent behaviours.

(d) The ‘idxod’ effect indicates that students who engage more in delinquent behaviours,
will be more attracted to friendships with others who also engage more in delinquent behaviours.

And for explaining the delinquency dynamics (influence):

(a) The ‘od’ effect indicates that those who nominate more friends will tend to engage in more
delinquent behaviours.

(b) The ‘id’ effect indicates that those who are more popular as friends will tend to engage in
more delinquent behaviours.

(c) The ‘odd’ effect indicates that actors will tend to engage in the same delinquent behaviours as
their friends.

(d) The ‘od_av’ effect indicates that those whose friends on average are more delinquent will also
themselves tend to engage in more delinquent behaviours.

Effects ‘odd” and ‘od_av’ are the clearest expressions of the idea of social influence, both implying
that the probability distribution of changes in delinquent behaviour of the actor is a function of the
delinquent behaviour of the actor’s friends. Effect ‘odd’ is social influence operating for specific
acts of delinquent behaviour, while ‘od_av’ is influence at the level of the general tendency towards
delinquency, measured by the sum score.

3.3 Data augmentation

The SAOM with rates (1) (6, y)) and one-step jump probabilities (p (6, y, y')) defines a discrete
Markov chain in continuous time with intensity matrix defined for y # ¥ and V € {X, Z} by

1% % L v
q(y, y/)= /1,' (0, y)Pi (0,9,9) lfy G-A,‘ (y) (2)
0 otherwise.

The process can be defined as a marked point process. Only in trivial cases, such as the random
walk on a |)|-cube (Aldous, 1983), is Bayesian inference for such models tractable (Koskinen
& Snijders, 2007). For two waves of observations y(t,,) and y(¢,.+1), it follows from Norris
(1997, Section 2.1) (also see Snijders, 2001, Section 2) that the likelihood is a || times | Y| matrix

PT =¢10

for T = t,,11 — t,y, which is huge. The model is doubly intractable given that both the likelihood
and the posterior involve intractable normalizing constants. Index the mini-steps by r=
1, ..., R (where R is random), and denote the results of the mini-steps by w’” = (i", V', y") and
the holding times by (s”). Koskinen and Snijders (2007) propose to augment data by performing
joint inference over the model parameters 6 as well as the unobserved sequences (") and (s").
The sequence ((i*, V7, y")) must be such that if y" differs from y~! it is only in variable V" and
row " of the adjacency matrix. The augmented data likelihood, conditional on y° = y(t,,), for a
sequence of holding times (s”) and results of mini-steps w = (w") = ((i", V’, y")), is given by

R R
Phaucl(@), (s)15°, 0) = exp[— > s, y'*)} [[470,y 0,y y).
r=1 r=1

It is more efficient to work with the marginal model pauc(w | y(¢,)) which is piyc(w, s|y(tm))
marginalized over holding times s. In the sequel, we will assume constant rates 2! = 1" for both
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networks V = X, Z, in which case the augmented likelihood is

prvl0) 150, 6) = exp  — F{tur — ) 2ot =V AT Ny )
3 > +\bm+ m R' 11 1X+/IZ i, bl b} bl

see Snijders et al. (2010) where also an approximation for nonconstant rates is given.
The Markov assumption implies that the likelihood for a sequence of augmented data
w=(wt), ..., w(tm)), given observation y = (y(t9), ¥(t1), ..., Y(tm)) is

Pauc(w 1y, 0) l_[ pauG((tme1) | y(Em), 0). (4)

4 Hierarchical model

We assume that each group g follows the same specification, i.e., has the same expressions for the
rate and evaluation functions, although the number of actors 7, = |N,| may be different. Each
group g has associated with it a group-specific parameter 6¢!. Exogenous heterogeneity across
groups typically takes the form of contextual and compositional effects.

While comparing structure across networks is a natural thing to do and has attracted some atten-
tion (e.g., Faust & Skvoretz, 2002), it is clear that comparing structure across different-sized net-
works is nontrivial (Anderson et al., 1999). One key problem is the way the average degree scales
with network size, something that has been studied for cross-sectional networks (Erdos & Rényi,
1960), in particular for the exponential random graph model (Krivitsky et al., 2011; Krivitsky &
Kolaczyk, 2015). Snijders (2003, p. 243) studied the empty SAOM, which is the model containing
only the outdegree effect, with evaluation function f;(x) = 0o 3, x;;. For this model, it was found that
for large network sizes 7 the expected average degree will tend to a finite constant if 8y = 0y9 —
0.5 log () for 8yp not depending on n. The consequences of network size for the relation between
parameter values and expected statistics in other specifications of the SAOM are currently unknown.
Furthermore, different group sizes will in themselves imply differences in the social processes which
could go together with different parameter values. This is an important issue which requires further
study. It leads to open questions for the model specification. From a practical point of view and the
current state of knowledge, this implies that our method should be applied only to data sets where
variation in group sizes 7, as well as in average degrees is moderate; and that if there is variation in
group sizes, rather many of the parameters should be specified as being randomly varying between
groups. This should include in any case the outdegree parameter, where the dependence on log (7,)
may lead to a main effect of log (7z,) >, x;; and the parameter might be expected to be close to —0.5.

Components of §¢ that are varying across g are similar to random slopes in regular multilevel
modelling (Goldstein, 2011; Snijders & Bosker, 2012), those that are constant across g will be
called ‘group-constant parameters’. The question of which parameters to specify as group-
constant and which as varying across groups needs to be guided by specific case considerations
as well as computational aspects just as in multilevel models in general. We partition the parameter
vector 8¢ for group g into subvectors yl¢!, of dimension p1, containing the varying parameters, and
7, of dimension p,, containing the group-constant parameters. We write the group-wise parame-
ters as the partitioned vector

ol — (Vlg] )
n

In classical multilevel modelling, it is usual to apply models with only a few random slopes.
However, it seems that Bayesian estimation allows entertaining models with more random slopes
(Eager & Roy, 2017). Group-level covariates, such as interventions or indicators of group com-
position, will usually be specified as group-constant effects.

We draw on standard hierarchical modelling approaches and assume that the group-level pa-
rameters have a multivariate normal distribution y!8!’ NNP(,u ¥). We assume that (1, X) and 7
are a priori independent with priors (x4, £) ~ z(u, X |T') and 5 ~ (7 | 9,5 Zo.)-
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An exception to this should be made for the rate parameters A, which are necessarily positive.
They reflect particular circumstances of groups and issues of study design, and will always be in-
cluded among the varying parameters y¢l. The multivariate normal distribution is assumed to be
truncated to positive values for these parameters. The values of x and X will, in practice, be such
that the nontruncated distribution has an extremely small probability for negative rate parame-
ters. An alternative is to employ a transformed normal or a Gamma distribution, which is conju-
gate for the Poisson counts (Koskinen & Snijders, 2007). However, the multivariate normal gives a
simple unified treatment for all varying parameters.

With this hierarchical specification, denoting the multivariate normal density by ¢, the joint
probability density function for data y!!l, ..., Il parametersy!!l, ..., yI¢1 and u, Z, 5 is given by

G

wlity T | D)2l | 10,5, Zog) | [0 1 15 Dpsaoma(¥E 1941, 7). (5)
g=1

5 Prior specifications

We present the inference scheme for a specific choice of priors. Other prior specifications may be
considered (see Appendix B) but the MCMC scheme largely remains unchanged.

5.1 Varying parameters: conjugate prior

For multivariate normal distributions with unknown expected value x4 and covariance matrix %,
the conjugate prior distribution is the inverse Wishart distribution for £, and conditional on X
for u a multivariate normal distribution

e 3 ~ InvWishart, (Ao, vo), and conditionally on £
o WIZ~Nylug, T/xo) -

These conjugate priors are treated, e.g., in Gelman et al. (2014), Section 3.6, and O’Hagan and
Forster (2004), Chapter 14. Thus, the hyper-parameters of the prior are Ay, vo, k9. The expected
value for the inverse Wishart(A, v) distribution is

1
B =

A

provided v> p + 1, and the mode is (v + p + 1)"'A (O’Hagan & Forster, 2004). Thus, the central
tendency of the inverse Wishart(A, v) distribution may be taken to be about v-'A. Parameter A is
on the scale of the sum of squares of a sample of size v from a distribution with variance-covariance
matrix X. The number of degrees of freedom vy can be regarded as the effective sample size that has
led to the prior information. The value of xj can be interpreted as the proportionality between X,
the uncertainty about the groupwise parameters yl&l given the average population value y, and the
prior uncertainty about x. Having the same proportionality of this kind for all parameters is rather
restrictive, but as a first approach, we prefer to use a conjugate prior which leads to relatively sim-
ple procedures for this already complicated model.

5.2 Group-constant parameters

For most components of the group-constant parameter 7, we assume an improper prior with con-
stant density () « c. This is justified because for the estimation of # the information from all
groups is combined, leading for 5 to a quite weak dependence on the prior. However, for effects
of group-level covariates the situation is different, and for those components of 5, a multivariate
normal prior distribution will be assumed.
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6 Estimation

The dependence structure among all variables is given in Figure 2. Parameters can be estimated by
an MCMC procedure, sampling the random variables indicated by the circles in Figure 2, going up
in the figure. The parameters in rectangular boxes are given hyperparameters.

6.1 Mini-steps

For all groups g independently, sequences 18! of outcomes of mini-steps (i, V7, y") are sampled by
an extension of the Metropolis—Hastings procedures of Koskinen and Snijders (2007) and Snijders
et al. (2010). The extension consists of the insertion of the determination of V”. The target prob-
ability function is (4) for given y = yI&l and 6 = (yI&, ).

6.2 Groupwise varying parameters

Groupwise varying parameters ¢! are sampled for given w!& and #, u, £, again for all groups g
independently, by Metropolis—Hastings steps with target density

¢(wa | 22 E)pAUG(ngJ |)’m, ylgjy 77)

Here, ¢ is the multivariate normal density and payg was given in (4). A random walk proposal dis-
tribution is used, like in Schweinberger (2007, Chapter 5.4) and Koskinen and Snijders (2007,
Section 4.4). The covariance matrix for the proposals is Cl¢! as defined below in the section on ini-
tial values, scaled to obtain approximately 25% acceptance rates (Gelman et al., 1996).

6.3 Group-constant parameters

The group-constant parameter # with prior density (17 | 1, Xo,;) is sampled using Metropolis—
Hastings steps analogous to the sampling of the groupwise varying parameters. Random walk pro-
posals for 57 are made with additive perturbations drawn from the multivariate normal distribution
with mean 0 and covariance matrix C,[YO] given below, scaled to obtain approximately 25 % accept-
ance rates. The target distribution is

G

(1 | 10,5 o) [ [ Pavc (@ |75, 7).
g=1

6.4 Global parameters

Given realizations of the varying group-level parameters y!'l ..., yI¢1, global parameters 4 and £
can be updated using Gibbs-sampling steps from the full conditional posteriors, as explained in
Gelman et al. (2014, Section 3.6), and O’Hagan and Forster (2004, Chapter 14). The conditional
distribution of u given ! ..., yI1, T is given by

G Ko 1
M) A N, 7+ by
HIE 7 sy No+G T +G™ %+ G

withy=(1/G) 3, 81 in which we recognize the posterior mean as a weighted sum of the group-
level parameters and the prior mean.

For the posterior variance-covariance matrix of 1€/, we have

A G~ InvWishart, (A1, vo + G),
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Figure 2. Dependence structure of hierarchical SAOM, representing only the first and last groups g=1, G.
where

KoG
K0+G

A=A +Q+ (7= u0) (7 — 1)’

G
Q=) (-l 3.
g=1

The influence of the prior is mainly carried by Ag and the last term of Ay, which involves xp and .
Since the central tendency of the inverse Wishart(A, v) distribution is about v='A, this shows that
the posterior distribution of X for large values of G will be close to the variance-covariance matrix
of the yl&l.

6.5 Combining the updates

Sequentially the within-group mini-steps w, the group-level parameters y, and the global param-
eters 77, u, ¥ are updated. To achieve good mixing, more updates are required for w than for the
other parameters.

6.6 Initial values

Initial values are obtained in a procedure consisting of two stages. First, parameters are estimated
for the model where all parameters in 6! that are coefficients in the linear predictor are assumed
to be group-constant, but the basic rate parameters are allowed to be group-dependent, i.e., a
multi-group model as in Ripley et al. (2022, Section 11.2). This estimation uses the Robbins—
Monro algorithm proposed for obtaining method-of-moments estimates in Snijders (2001), in a
brief version because great precision is not necessary here. This yields an estimated value 9(0),
with estimated covariance matrix CI%. The components of this vector and matrix corresponding
to 5 are denoted #°) and C,[YO].

Second, for each of the groups g separately, starting from the provisional estimate 8, and keep-
ing the components #° constant, a small number of Robbins—Monro steps again following
Snijders (2001) are taken to improve the estimate of 0¥, The result is used as initial value for
€1, The covariance matrix Cl¢! for the proposal distribution for 6!¢! is a weighted combination
of the covariance matrix for this estimate and the relevant part of CLl,
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7 Data and model definition

Data were collected in the first year of secondary school in 14 schools in the Netherlands in 2003-
2004, with students being on average slightly older than 12 years at the first wave. There were four
waves, with three months in between. Allowing for the social processes to be unstable at the very
start of the school year, we used the last three waves. These will be called waves 1-3 from now on,
which yields period 1 as the period from wave 1 to wave 2 and period 2 as the period from wave 2
to 3. Network X was the friendship network. Delinquency was dichotomized to construct the two-
mode network Z. Four delinquent behaviours were used as nodes of the second mode: stealing,
vandalism, graffiti, and fighting. One reason for dichotomization is that, for deviant behaviours,
the main distinction is between whether or not to do it; another reason is that the use of a valued
network would lead to an overly complex model with many parameters. The coding was z;;, = 1 if
individual 7 answered having done behaviour 5 at least once in the past three months, but for fight-
ing the threshold was “at least twice” because apparently fighting was rather common, and a bit of
fighting seemed to be not so deviant.

Covariates used were sex (female=1, male=2), language spoken at home, and advice. The Dutch
secondary school system is tiered and ‘advice’ here is defined as the recommended secondary
school level according to the advice given in the last grade of primary school. It is ordered from
low to high with range 1-9.

To improve convergence, classrooms were selected having not too much missing data and not an
extreme amount of turnover between waves in the two networks. Inclusion criteria with respect to
missingness were having less than 20% missing data in the first two waves for both networks, and
less than 10% in the first wave for the delinquency network (in view of its sparseness); and having
at least 10 persons with nonmissing advice. The turnover was measured by the Jaccard coefficient
(Batagelj & Bren, 1995) for similarity of subsequent waves, defined for network X and period #1 as

i min {x (), Xij(Eme1)}

i max {xii(£m), xij(tme1)}

(6)

and for Z similarly; the criterion here was that this should be higher than 0.2 for both networks
and both periods. Of the original 126 classrooms, this left 82.

7.1 Model specification

The mutual dependence between friendship and delinquent behaviour was represented by the ef-
fects discussed in Section 3.2. Here, we discuss the effects operating only on the friendship and
those operating only on the delinquency network. For the mathematical definition of the effects,
we refer to Appendix A.

The structural part of the model for friendship dynamics was defined in accordance with what is
usual for friendship networks. The outdegree is a necessary effect, representing the balance be-
tween creation and termination of ties. Reciprocity and transitive triplets effects were included
together with their interaction following Block (2015). As degree effects were included
outdegree-activity, indegree-popularity, and reciprocal degree-activity; for the latter, a negative
parameter is expected, reflecting that actors with more reciprocated friendship ties will tend to cre-
ate fewer new ties. For the covariates, we included homophily effects with respect to sex, language
(speaking at home the same nonDutch language), and advice, expecting positive parameters.
Classroom sizes do not very extremely much, ranging from 16 to 32, with only 4 less than or equal
to 20. Logarithm of classroom size was included to account for the major effects of differential
group sizes, where a parameter in the neighbourhood of —0.5 was expected (see above).

For the delinquency network, the outdegree effect as well as outdegree-activity and indegree-
popularity effects were included to reflect, respectively, differences between students and between de-
linquent activities, and effects of sex and advice. In multilevel modelling, it is advisable also to consider
group means of individual-level variables (Snijders & Bosker, 2012), which led to the inclusion of
classroom mean advice and of the endogenously varying classroom mean outdegree of delinquency.

For this multilevel network model with Bayesian estimation, it was mentioned above that it is
possible to specify fairly many parameters as randomly varying between groups, but not too
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many. In any case, the rate parameters must vary randomly between groups. A moderate number
of random effects was chosen. Random effects were given to outdegree, reciprocity,
outdegree-activity, indegree-popularity, reciprocal degree-activity, transitivity, same language,
and similar advice for the friendship network; and to outdegree, outdegree-activity, and indegree-
popularity for the delinquency network.

7.2 Prior specification

For the rate parameters, a data-dependent normal prior was used, with means and covariance matrices
given by the robust mean and covariance matrix of the rate parameter estimates in the multi-group
estimation. Note that the variability of these estimates reflects true as well as random variability.

For the parameters of the evaluation function, the determination of the prior distribution was
meant to be only weakly informative, based on existing experience with modelling friendship net-
works, while still obtaining convergence of the MCMC process. It should be noted that nonzero
prior means chosen for structural parameters below have little influence on the results. The evi-
dence for reciprocity, for example, is typically strong enough to overwhelm the prior (see
Appendix B for a brief illustration), and the performance of the MCMC is typically not contingent
on a strong prior. Naturally, it would be unwise to choose a strongly informative prior for any
parameter that is the main target of inference.

The effects used in this example all are scaled in such a way that their parameters have sizes usu-
ally between —1 and +1, except for the outdegree parameter which is negative, reflecting the spars-
ity of the networks, and reciprocity, which often has a parameter between +1 and +3. This implies
a prior uncertainty of the global means u with a standard deviation of approximately 1; for the
outdegree parameters the prior uncertainty is larger. Furthermore, the groups will tend to be simi-
lar to each other, which we express by the prior expectation that the between-group standard de-
viations are 10 times smaller than the prior standard deviations for the elements of x. This is
reflected by the value xp = 0.01.

These considerations led to prior means of —2 for the outdegree parameters, +1 for reciprocity,
+0.2 for transitive triplets, and 0 for all other elements of y¢/. For the 14-dimensional prior
Wishart distribution of the between-groups covariance matrix of y¢l, v51 Ao was chosen as a diag-
onal matrix with diagonal values 0.01 except for the two outdegree parameters, which had value
0.1; and number of degrees of freedom vy = 16. The prior covariance matrix of the global means
accordingly is (kvo) "' Ao, with diagonal values 1 and 10, respectively.

For the group-constant effects, improper constant prior distributions were used for all except
the effects of the group-level variables which are log group size, group mean advice, and group
mean outdegree of delinquency; for these parameters, the prior distributions were normal, with
means —0.5 for log group size and 0 for the others, and variances 0.09.

8 Results

8.1 Descriptive statistics
Table 1 gives the overall means and Jaccard similarity coefficients (defined similar to (6)) of the
four delinquent acts for the pooled data. They are positively associated.

A measure for delinquency is the outdegree in the two-mode network, i.e., the number of
delinquent behaviours reported by a student. For this variable and for the covariates the means,
within-classroom and between-classroom standard deviations (¢ and %), and the intraclass correl-
ation coefficients (icc) (calculated according to Snijders & Bosker, 2012, Chapter 3) are reported
in Table 2. From the icc, we see that the classrooms are quite homogeneous with respect to advice,
not assortative with respect to sex, while for the level of delinquency, there is a very little bit of
assortativity.

Means and across-classroom standard deviations are given in Table 3 for the set of 82 friendship
networks. These include the mean outdegree per classroom; the within-classroom standard devia-
tions of outdegrees and indegrees; reciprocity, defined as the proportion of ties i — j that is recip-
rocated by j — #; and transitivity, defined as the proportion of two-paths i — j — b that is closed
by i — b; Jaccard similarity coefficients (6) between subsequent waves; and proportion of missing
respondents. Average degrees are about 4, average reciprocity is about 0.60, and average transi-
tivity is about 0.56. These are quite usual figures for friendship networks. The between-wave
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Table 1. Overall means and similarity coefficients of delinquent acts

Mean Jaccard similarity
Stealing Vandalism Graffiti Fighting
Stealing 0.16 — 0.31 0.22 0.28
Vandalism 0.24 0.31 — 0.28 0.33
Graffiti 0.22 0.22 0.28 — 0.24
Fighting 0.24 0.28 0.33 0.24 —

Jaccard similarity ranges from 0.28 to 0.75, with a mean of 0.51. This indicates that a good pro-
portion of ties remains in place from one wave to the next.

Means and across-classroom standard deviations for the two-mode delinquency networks are
given in Table 4. The students report on average less than one out of the four delinquent acts.
The Jaccard measure for between-wave stability ranges from 0.21 to 0.70, with a mean of 0.41.
Here also, there is some change from one wave to the next, but not too much.

8.2 Modelling results

For the MCMC procedure, three parallel chains were used, each of 70,000 steps; each step con-
sisted of 200-900 updates of w in the 82 groups in two periods (with a total of 78,100), three up-
dates of 5, and one update of each of y, u, and Z. Of the 70,000 steps, the first 10,000 were the
warming phase. The homogeneity of the three chains was good according to the R measure of
Gelman et al. (2014), which was less than 1.04 for all global parameters.

Posterior means, standard deviations, and credibility intervals of the parameters are given in
Table 5. The estimated model for friendship dynamics is usual and has the usual interpretation
(e.g., Fujimoto et al., 2018; Ripley et al., 2022). We focus the interpretation on the mutual depend-
ency of delinquency and friendship, using the mnemonic indicators given above in the list of cross-
network effects.

8.2.1 Dependent variable: friendship

The delinquency outdegree, i.e., the number of delinquent acts practised, is a measure for delin-
quent behaviour. Effects of delinquent behaviour on friendship dynamics are minor. The table
shows that having a higher delinquency outdegree tends to lead to mentioning fewer friends
(od) while the other three effects depending on delinquency include 0 well within the 90% cred-
ibility interval. Figure 3 shows that the posterior correlation of the parameters for the ‘idxod’ and
‘odd’ effects is negative, and the value (0, 0) is rather to the outside of the cloud of points. There
seems to be some friendship selection based on similar delinquency of both friendship partners, but
whether this is at the level of the general tendency towards delinquency or at the level of the four
concrete delinquent acts cannot clearly be concluded from the data.

The effect of log classroom size is negative, and does not contradict the expected value of 0.5,
but the credibility interval extends beyond 0.

8.2.2 Dependent variable: delinquency

We start with discussing the five effects not related to friendship. The negative parameter for the
outdegree effect (&, = —2.422) indicates a reluctance to practising delinquency, stronger for girls
than for boys (7, = 0.199). There is hardly a differentiation between the four delinquent acts (in-
degree popularity, i1, = 0.018) but quite a strong differentiation between students (outdegree ac-
tivity, i, = 0.438), expressing that those currently practising more delinquency have a stronger
tendency to add new delinquent acts (see further in Appendix C). The evidence is inconclusive
for effects of individual school advice (7, = 0.029), but the classroom average outdegree of delin-
quency clearly has a negative effect (7, = —0.126) on the dynamics of delinquency. Two feedback
effects can be discerned here: at the individual level this is the outdegree activity effect, strongly
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Table 2. Actor variables: means, within-classroom and between-classroom standard deviations ¢ and %, intraclass
correlation coefficients (icc)

Mean 4 % icc
Sex M 0.53 0.50 0.02 0.00
Advice 6.69 0.89 1.48 0.74
Delinquency wave 1 0.77 1.03 0.26 0.06
Delinquency wave 2 0.91 1.11 0.27 0.06
Delinquency wave 3 0.91 1.14 0.29 0.06

Table 3. Between-group means (mean) and standard deviations (SD) of per-group descriptives of friendship networks

Wave 1 Wave 2 Wave 3

Mean (SD) Mean (SD) Mean (SD)
Mean outdegree 4.00 (0.67) 4.16 (0.61) 4.02 (0.69)
SD outdegree 2.61 (0.55) 2.71 (0.57) 2.55 (0.50)
SD indegree 1.96 (0.35) 1.96 (0.42) 1.99 (0.39)
Reciprocity 0.59 (0.08) 0.61 (0.09) 0.60 (0.09)
Transitivity 0.55 (0.09) 0.56 (0.09) 0.56 (0.09)
Jaccard with next wave 0.50 (0.09) 0.52 (0.08)
Proportion missings 0.03 (0.03) 0.07 (0.06) 0.06 (0.04)

Table 4. Between-group means (mean) and standard deviations (SD) of per-group descriptives of two-mode
delinquency networks

Wave 1 Wave 2 Wave 3
Mean (SD) Mean (SD) Mean (SD)
Mean outdegree 0.78 (0.34) 0.93 (0.36) 0.93 (0.37)
SD outdegree 1.02 (0.24) 1.10 (0.20) 1.12 (0.24)
SD indegree 2.02 (0.83) 2.14 (1.01) 2.00 (1.00)
Jaccard with next wave 0.39 (0.10) 0.43 (0.10)
Proportion missings 0.01 (0.02) 0.06 (0.05) 0.06 (0.05)

positive, and at the classroom level this is the effect of the classroom average, which is strongly
negative. This may be interpreted as temporal persistence of the individual level of delinquency
and regression to the mean at the classroom level. More research is needed to interpret this fully.

Social influence is represented by the four mixed effects of friendship and delinquency on the
dynamics of delinquent behaviour. The effects of indegrees (id) and outdegrees (od) show a similar
pattern to what was found for friendship dynamics: there is a negative effect of the outdegree for
friendship on the number of delinquent acts reported, and no clear effect of the friendship inde-
gree. There is a strong tendency to practise the same delinquent acts as one’s friends (‘odd’,
7, =0.238) and no clear evidence for the effect of the average delinquency of friends (‘od_av’,
fi, =—0.053).

Concluding, there is a weak social selection effect, where those who are more delinquent tend
to nominate fewer friends, and weak evidence for selection based on a similar delinquency,
which may be at the level of the general tendency toward delinquency or at the level of specific
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Table 5. Posterior summaries for friendship-delinquency coevolution

Effect par. (psd) CI betw. SD

0.025 0.975

Friendship

Outdegree (density) -2.180 (0.064) -2.31 -2.06 0.361
Reciprocity 2.050 (0.064) 1.93 2.18 0.385
Transitive triplets 0.467 (0.016) 0.44 0.50 0.103
Transitive recipr. triplets -0.160 (0.016) -0.19 -0.13
Indegree—popularity -0.073 (0.012) -0.10 -0.05 0.092
Outdegree—activity 0.035 (0.007) 0.02 0.0 0.055
Reciprocal degree—activity -0.184 (0.015) -0.21 -0.15 0.099
Same sex 0.657 (0.025) 0.61 0.71

Log class size —0.298 (0.221) -0.75 0.11

Advice similarity 0.089 (0.082) -0.07 0.25 0.245
Same nonDutch language 0.691 (0.206) 0.29 1.10

Deling. degree popularity ‘id’ 0.009 (0.018) -0.03 0.04

Deling. degree activity ‘od’ —-0.033 (0.018) -0.07 0.00

Deling. degree act X pop ‘idxod’ 0.018 (0.017) -0.02 0.04

Same delinquent acts ‘odd’ -0.010 (0.057) -0.12 0.10

delinquency

Outdegree (density) -2.422 (0.124) -2.67 -2.18 0.530
Indegree—popularity 0.018 (0.017) -0.02 0.05 0.079
Outdegree—activity 0.438 (0.019) 0.40 0.48 0.099
Average classroom outdegree -0.954 (0.149) -1.24 -0.66

Sex (M) 0.199  (0.042) 0.12 0.28

Advice 0.029 (0.021) -0.01 0.07

Classroom mean advice -0.126 (0.041) -0.21 -0.05

Friendship indegree activity ‘id’ —-0.004 (0.013) -0.03 0.02

Friendship outdegree activity ‘od’ -0.065 (0.016) -0.10 -0.03

Same deling. acts as friends ‘odd’ 0.238 (0.042) 0.16 0.32

Av. number of deling. acts of friends ‘od_av’ -0.054 (0.058) -0.17 0.05

Note. par, posterior mean f, #; psd, posterior standard deviation of 4, n; Cl, 95% credibility interval for y, ; betw. SD,
posterior between-groups standard deviation 6.

delinquent acts. There is a rather strong social influence effect in the sense of practising the same
delinquent behaviours as one’s friends. Moreover, there is regression to the mean at the class-
room level: classrooms relatively high on delinquency tend to go down, those relatively low
tend to go up in delinquency.

This contrasts with the results of Knecht et al. (2010), who used the same dataset. That publi-
cation used a simpler two-stage multilevel network method which allowed the inclusion of only 21
classrooms, with a restricted model specification because it needed to be estimated for each—small
—classroom separately. Major differences in the specification are that the earlier publication did
not distinguish the four separate delinquent acts in a two-mode network, but used a sum score for
delinquency without dichotomization; and did not use classroom-level variables. Minor differen-
ces are that it specified social selection as being based on similarity, proportional to minus the ab-
solute difference between delinquency values; and omitted control for similar advice and same
language.
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Figure 3. Posterior sample of 5 coordinates for ‘idxod’ and ‘odd".

The main differences in findings for selection and influence were the following. Knecht et al.
(2010) found weak evidence that more delinquent students are less attractive as friends, which
we did not find, and strong evidence for selection based on similar levels of delinquency. We found
some evidence for selection based on the matching between the delinquent behaviour of friends
(see Figure 3); but this was rather weak and inconclusive as to whether it is at the level of the gen-
eral tendency or the level of the four concrete behaviours. (As a robustness check we also utilized
the alternative specification of delinquency similarity, and found similar—although weaker—
results as reported above.) That the earlier publication found strong evidence for selection and
our model did not, might be attributed to the stronger measure, without dichotomization, they
used for delinquency; and to our richer further model specification. Knecht et al. (2010) found
no evidence for social influence, and we did. This may be attributed to the fact that we used
more classrooms and a specification of data and model allowing us to investigate social influence
at the level of the concrete delinquent acts. Furthermore, we found negative effects at the class-
room level of mean advice and also of the current classroom mean of delinquency; classroom-level
variables were not considered in the earlier publication.

The investigations in Knecht et al. (2010) were done in the light of contrasting criminological
theories, in particular, social control theory (Hirschi, 1969) according to which friends choose
each other based on delinquency; and differential association theory (Sutherland et al., 1974)
which states that delinquent behaviour is learned from friends. The earlier paper found support
for the former and not the latter theory, whereas our investigation also supports differential asso-
ciation theory. However, the ‘learning’ takes place at the level of very concrete behaviours, and we
do not find support for learning at a normative level.

9 Conclusions

Network analysis has typically been concerned with describing and modelling network processes for
individual networks only. We have proposed a modelling framework for samples of networks, thus
allowing generalizing beyond the specifics of individual cases. The model is a hierarchical extension
of the SAOM (Snijders, 2017) for longitudinal network panel data, using random coefficients to re-
present differences between groups. This allows taking into consideration group-level effects, e.g.,
interventions or compositional characteristics, and their cross-level interactions with within-group
effects. A further possibility is to investigate network dynamics in many very small groups, for which
an analysis per group may not give meaningful results; an example is Dolgova (2019).

We presented an example which is a reanalysis of Knecht et al. (2010), in which we were able to
use more data and an extended model specification, which led to richer insights based on this
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multilevel network data set. In particular, we found social influence at the level of the individual
delinquent activities, which was an effect not considered in the earlier paper.

The methods are implemented in the R package RSiena (Ripley et al., 2022). They have been
available in beta versions since a few years, which already led to applications, e.g., in Boda
(2018) and Raabe et al. (2019).

The research presented in this paper leads to various avenues for further research. The MCMC
algorithm proposed in this paper is a straightforward procedure, and it could undoubtedly be
made more efficient. The consequences of network size for parameter values, discussed in
Section 4, are still open questions and need further work. In the random coefficient linear model
for multilevel analysis (e.g., Goldstein, 2011; Snijders & Bosker, 2012), the contrast between
within-group and between-group regression coefficients is well known; this showed up here in
the question about the interpretation of the endogenous effect of average degree of delinquency
at the classroom level, which was tentatively interpreted as regression to the mean, but for which
further research also is necessary.
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Appendices
Appendix A. Statistics

A comprehensive list and definition of all effects currently employed in SAOMs is provided in
Ripley et al. (2022, Section 12). The effects used in this paper are defined as follows.

(a) Outdegree (density)
sﬁii(x) = Z]- Xjj

(b) Reciprocity
ngc,i(x) = Z/ XijX ji

(c) transitive triplets

X —
wi(X) =22 XiXipXp;

(d) transitive reciprocated triplets effect

t)ft,i(x) = Z;‘,h XijX jiXip X pj

S.

S.
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Figure A1. Credibility intervals (95%, dark; 99% light) for x with default prior and Ag = 3/ for different values of
log (a3).

(e) indegree-popularity
Sfflp,i(x ) =25 XiiXnj
(f) outdegree-activity
Sc))(da,i(x) =) i XijXih
(g) reciprocal degree activity
Snaad(X) = 22, XXX
(h) covariate B ego
Sego,i(%) = 22 xiiB;
(i) same covariate B
sigme,i(x) = Z/xi/I{Bi =B;}
(j) covariate B similarity
$4m.i(X) = 2 xji(c — |B; — Bj|/range(B)),

where c is a centring constant
(k) average degree

Fdegd®) = (/1) X2, 30, 1 Zij2k.

The other effects for network Z are similar. The cross-network effects were defined in Section
3.2.1. The effect of covariates in Table 5 are ego effects, unless indicated as ‘same’ or ‘similarity’.

Appendix B. Priors

B.1 Prior variance

As outlined in Section 6, the influence of the prior is mainly from Ay and will affect the inference
both for 4 and the group-wise parameters ¢, through X. As an illustrative example of the prior
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scale, we consider here the subset of 21 schools used in Knecht et al. (2010) for a simplified model
for the network only, Y&l = xl¢l (¢ =1, ..., 21) and M = 2 waves. In the structural part, we have
omitted indegree popularity, outdegree activity, reciprocity activity, and all group-level variables,
but added three-cycles. To further simplify the model, delinquency is treated as a nodal covariate.
All parameters are varying and p, = 0. Figure A1 provides the credibility intervals for g, using the
Normal-inverse-Wishart prior with x4, = 0, v = 12, ko = 1, Ag = 621, for different values of o} (a
very small number of draws, 300, have been used here).

For small values of 63, the credibility intervals are noticeably tighter than for increasingly large
values 63, when the prior variance overwhelms the data. The central tendencies (posterior means)
are remarkably constant as a function of 63, and are hardly pulled towards the prior mean of zero,
even for values of o3 as small as 0.25 (the smallest value in the plots).

The influence on the group parameters y%l of the same set of priors is illustrated in Figure A2. Note
the difference in vertical scale. The inference on these parameters is remarkably robust to the prior
variance. Only for extreme values of 63 do we see a big change in group-level parameters. The very
wide intervals are due to two specific schools. More specifically, in one school (number 20) ‘transi-
tive reciprocated triples’ and ‘3-cycles’ were collinear, which manifests itself in extremely large inter-
vals for these parameters when large o3 prevents this school from borrowing information from the
other schools. Another school (number 11) had a similar issue with structural parameters and in
addition a ‘sex similarity’ effect that is not estimable for the school (using, say, Method of
Moments). The issues with these two schools also manifests themselves in increasingly poor mixing
for yl8! for large values of o7 (results available upon request from the authors).

B.2 Reference prior

We may consider the influence of the prior for 1 and T on the predictive distributions for i by
comparing these to posteriors from group-level parameters estimated independently. We may de-
couple the a priori dependence of u on X by setting z(u, £) = n(u)n(X). When G > p1 + 1, we may
chose an improper prior for (¢, X) for reference.
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Figure A2. Equal 95% tail prediction intervals for !9 for different values of a3, from a3 = 0.25 (light grey) to o3 = 113
(dark grey). Groups ordered according to posterior predictive mean.
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Figure A3. Prediction-intervals for 9 fitted independently (horizontal axis) against predictions from Hierarchical
SAOM using Jeffrey’s prior (vertical) (excluding schools g= 11, 20).
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Figure A4. Posteriors for x fitted using Jeffrey's prior with vertical line representing 7, and the horizontal bar 3, +
st(y[kg]) from independently fitting each group (excluding rogue g= 10, 20).

Jeffreys rule (Jeffreys, 1998) is a principled choice for a reference prior. For the multivariate nor-
mal distribution, this is given by

plu, T) o || P1+2/2]

or (for the independence-Jeffreys prior)

plu, T) o || 1+1/2,
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Figure A5. Comparison of posteriors for u, for delinquency outdegree—activity and 7, for same delinquency acts as
friends ‘odd’ with 95% credibility intervals in dark grey and light grey, respectively.
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Figure A6. Comparison of posteriors for x, and y[g] for friendship: transitive triplets and delinquency outdegree—
activity, for groups ordered by posterior means. For x4, the dark horizontal grey band indicates the 99% credibility
interval and the light grey band the 90% credibility interval. Quartiles are indicated for each group.

For the conjugate model, this corresponds to xy — 0, vop — 0, and letting the determinant of Ag
tend to 0. Jeffrey’s prior is still conjugate for 4 and I, and as such does not alter the updating
scheme outlined in Section 6.

Figure A3 illustrates the inference obtained from (horizontal) fitting the model separately to
each school, assuming a constant prior, and (vertical) the predictive distributions obtained from
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the hierarchical SAOM with Jeffrey’s prior. The two previously mentioned schools 11 and 20 are
omitted for reasons mentioned above. Both analyses are based on the other 19 schools.
Figure A3 demonstrates a negligible influence on the distributions for ¢, Figure A4 presents the
posterior densities for y;, and shows that these are also centred on the raw, un-weighted means of
[g] from the separate estimations. This shows that imposing the multivariate normal model for the
group -level parameters does not alter the individual group-level inference. In order to make use of
all schools, we would however require more additional schools to borrow strength across groups,
and impose a more informative prior for x4 and X.

Appendix C. Posteriors

Figure AS provides the posterior distribution for the population mean y,,; for the delinquency out-
degree—activity effect and the group-constant parameter 7, for the effect of same delinquency
acts as friends ‘odd’. For both parameters, it is evident that they are positive with a high posterior
probability. There is less posterior uncertainty about g, than #,,. Whereas the latter is group-
constant, the group-wise parameters yklj vary around ;. This variability across groups is illus-
trated in the next figure. Figure A6 illustrates the posterior distributions of the parameters u,
and u;, + yL for groups ordered by posterior means, for transitive triplets (left panel) and delin-
quency outdegree—activity (right panel). The groups are more heterogeneous for transitive triplets
than for delinquency outdegree—activity, but both are positive with high posterior probability.
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