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Abstract
We seek to understand the topological and temporal nature of temporal networks by computing the distances, latencies and 
lengths of shortest fastest paths. Shortest fastest paths offer interesting insights about connectivity that were unknowable until 
recently. Moreover, distances and latencies tend to be computed by separate algorithms. We developed four algorithms that 
each compute all those values efficiently as a contribution to the literature. Two of those methods compute metrics from a fixed 
source temporal node. The other two, as a significant contribution to the literature, compute the metrics between all pairs of 
source and destination temporal nodes. The methods are also grouped by whether they work on paths with delays or not. Proofs 
of correctness for our algorithms are presented as well as bounds on their temporal complexities as functions of temporal net-
work parameters. Experimental results show the algorithms presented perform well against the state of the art and terminate in 
decent time on real-world datasets. One purpose of this study is to help develop algorithms to compute centrality functions on 
temporal networks such as the betweenness centrality and the closeness centrality.
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1  Introduction

Network science has been greatly influenced in recent years 
by temporal networks. Researchers in various fields have 
observed that real data varies over time and that static net-
works are insufficient to capture the full extent of some phe-
nomenon. Different models of temporal networks have been 
suggested, among which the Link Streams of Latapy et al. 
(2018) that captures the network evolution in continuous 
time. As is the case with other forms of networks, the notions 
of paths and distances are fundamental to the study of link 
streams. Kempe et al. (2002) mention the use of time-respect-
ing paths to study temporal networks. They further mention 
applications to epidemiology, in which one would seek infor-
mation about the spread of a virus in a population. Human 
interactions can also be analyzed with temporal networks as 
has been observed by Tang et al. (2010a) and the link stream 

framework can help advance those studies by allowing edges 
to have durations. Although online social networks can be 
thought to vary in discrete time, with tweets and retweets on 
Twitter for example, in real social networks the interactions 
have durations which are important to take into account in 
order to have an accurate description of the data. In practice, 
studies have emerged from the SocioPatterns Collaboration 
that includes datasets on face-to-face contacts (see Cattuto 
et al. 2010; SocioPatterns 2021) with temporal labels. Those 
datasets are valuable tools to more accurately investigate 
aspects of social networks such as homophily (Stehlé et al. 
2013) and epidemics (Moinet et al. 2018).

1.1 � Shortest fastest paths

Latapy et al. developed the notion of shortest fastest paths in 
their link stream model as a type of paths that gather together 
the temporal as well as the structural information of a link 
stream. A shortest fastest path is one that is shortest among 
the fastest paths between two endpoints. This type of path is 
used to define a betweenness centrality and it appears other 
distance-based centrality functions could be so defined as 
well. Simard et al. (2021) provide an explicit algorithm to 
compute this centrality in a link stream and the algorithms 
in the current manuscript can help speed up this process by 

A short version of this text was presented at the International 
Conference on Advances in Social Networks Analysis and Mining 
(ASONAM ’19), in Vancouver, Canada (Simard 2019b)
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computing the metrics used in their method. A social network 
can thus be analyzed through different perspectives: using the 
distance to measure how the connectivity of a group varies 
over time, the latency to measure how quickly an information 
can spread into a group of people and the length of a short-
est fastest path to measure how efficiently this information is 
relayed. Note also how the time a shortest path starts and ends 
influences the information it can spread. Shortest fastest paths 
describe a natural notion of communication efficiency: when a 
viral rumour (such as a piece of disinformation) spreads over 
a network it can spread quickly and those actors on short fast-
est paths from the source to any receiver can be considered as 
efficient spreaders.

Therefore, shortest and shortest fastest paths not only ena-
ble one to compute Latapy et al.’s betweenness centrality over 
link streams, but also quantify the reachability of different 
nodes over different times. Many authors noted how impor-
tant this task is given it can help determine how informa-
tion spreads over a social network, for example what person 
or group of people most likely initiated a campaign over an 
online social network, but also what individuals should be 
restricted in the event of a pandemic. The COVID-19 pan-
demic leads to a trove of online misinformation and there is 
ongoing research to study the phenomenon (see for exam-
ple Cinelli et al. 2020). Similarly, epidemic spreading over 
temporal networks is still being investigated, for example in 
the recent work of Ciaperoni et al. (2020), and some authors 
integrate centrality functions in their studies.

1.2 � Contributions and impact

Our main contributions in this work are two groups of algo-
rithms that compute metrics of shortest (fastest) paths in a link 
stream. Two algorithms in the first group work from a single 
source, while the two in the latter work from multiple sources. 
The two sets of algorithms are split on whether they assume 
paths have strictly positive or null delays. All methods return 
the lengths of shortest paths, the lengths of shortest fastest 
paths as well as pairs of starting and arrival times of temporal 
(fastest) paths. Some of that information is summarized as 
reachability triples (a, b, c) (see Definition 4.1) such that for 
every fixed source s and node v, a is a largest starting time 
from s to (b, v) and c is the distance from (a, s) to (b, v). There 
are three major novel aspects in this work. First, we compute 
multiple metrics at once, whereas many other authors devise 
separate algorithms for the same tasks. Second, we compute 
lengths of shortest fastest paths, which is a novel metric in 
the literature. Finally, we present algorithms that work from 
multiple sources. This has not been considered recently in 
the literature and one has to go back to the work of Xuan 
et al. (2003) to find similar algorithms that work with multiple 
sources. In short, our major contributions are: 

1.	 To provide four algorithms each of which compute mul-
tiple known metrics;

2.	 To design algorithms that compute the lengths of shortest 
fastest paths;

3.	 To design algorithms that compute metrics from multiple 
sources.

A major impact of this study is the ability to efficiently com-
pute values required to compute the betweenness centrality 
of a temporal node in a link stream. It also makes it faster to 
compute shortest paths between large numbers of nodes in 
link streams. The novel ability to compute reachability triples 
for all destinations (and sources) is relevant due to the impor-
tance of shortest paths in the analysis of temporal networks. 
We think our algorithms are also simple yet powerful enough 
that they could be extended to other metrics such as arrival 
times of foremost paths and lengths of shortest foremost paths. 
This seems to hold in particular if the temporal dimension is 
the first argument optimized over, such as in shortest fastest 
paths or shortest foremost paths.

Our algorithms are evaluated on datasets taken from the 
konect library of networks (Kunegis 2019). A description of 
the datasets used can be found in Appendix B.

General definitions are presented in Sect. 2, followed by a 
state of the art in Sect. 3. Then, we present our main methods 
in Sect. 4, experiments in Sect. 5 and we conclude in Sect. 6.

2 � Background

Most definitions are taken from Latapy et  al. (2018). A 
link stream L is a tuple L = (T ,V ,E) where T ⊆ ℝ is a 
set of time instants, V is a finite set of nodes (vertices) 
and E ⊆ T × V ⊗ V  is a set of links (edges). Here, V ⊗ V  
denotes the set of unordered pairs of vertices and we write 
uv ∈ V ⊗ V . We say an element (tv, v) ∈ T × V is a temporal 
vertex.

An edge of E is a tuple (t, uv). Given an interval I ⊆ T , we 
write (I, uv) ⊆ E , instead of I × {uv} ⊆ E , to mean all edges 
(t, uv) such that t ∈ I are in E. We say an edge (I, uv) ⊆ E 
is maximal if there exists no other edge (J, uv) ⊆ E such 
that I ⊂ J . We say a maximal edge ([a, b], uv) ⊆ E starts at 
a, ends on b and has duration b − a . Given the simple edge 
(a, uv), we write dur(a, uv) = b − a for the duration of the 
edge ([a, b], uv). We let � be the set of event times of T, 
that is 𝛺 ∶= {t ∈ T;∃ maximal edge ([t, t�], uv) ⊆ E or ([t�, t], uv) ⊆ E} . 
Elements of � × V  are called event nodes. We write 
E� ∶= {(t, uv) ∈ E;t ∈ �}.

A maximal edge, as well as � and � × V are illustrated on 
the link stream of Fig. 1. On this link stream, ([1, 2], cb) ⊂ E 
is a maximal edge, whereas ([1, 1.5], cb) ⊂ E is not. Thus, 
� = {0, 1, 2, 3}.
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The time-induced graph Gt induced by a time t ∈ T  is 
defined as Gt = (V , {uv;(t, uv) ∈ E}) . In a link stream L, a 
path P from (�, u) ∈ T × V  to (�, v) ∈ T × V  is a sequence 
(t0, u0, v0), (t1, u1, v1),… , (tk, uk, vk) of elements of T × V × V  
such that u0 = u , vk = v , t0 ≥ � , tk ≤ � and for all i, ti ≤ ti+1 , 
vi = ui+1 and (ti, uivi) ∈ E . We say that such a path starts at 
t0 , arrives at tk , has length k + 1 and duration tk − t0 . We write 
(�, u) ⇝ (�, v) to mean that there exists a path from (�, u) 
to (�, v) and say (�, v) is reachable from (�, u) . We also call 
t0 a starting time and tk an arrival time from (�, u) to (�, v) . 
Each path between two fixed temporal nodes (�, u) and (�, v) 
defines a pair of starting time and associated arrival time. 
On the link stream of Fig. 1, two paths are illustrated: the 
green one P1 = (0, d, c), (1, c, b), (3, b, a) and the red one 
P2 = (0, d, c), (2, c, b), (3, b, a) . Both have the same starting 
and arrival times from (0, d) to (3, a), namely times 0 and 3. 
Both paths are fastest. We can also say s is a starting time from 
a temporal node (�, u) ∈ T × V to a node v ∈ V , in which case 
there exists some time t ∈ T  such that s is the starting time 
of a path from (�, u) to (t, v). Same goes for the arrival times.

We say a path P is shortest if it has minimal length and 
call its length the distance from (�, u) to (�, v) , written 
d((�, u), (�, v)) . Similarly, P is fastest if it has minimal dura-
tion, in which case this duration is called the latency from 
(�, u) to (�, v) and is written l((�, u), (�, v)) . Note that if 
(�, u) ⇝ (�, v) , there exists at least one pair of starting time 
and arrival time (s, a) such that l((�, u), (�, v)) = a − s . Then, 
we say s is a latest starting time and a an earliest arrival time. 
Finally, P is called shortest fastest if it has minimal length 
among the set of fastest paths from (�, u) to (�, v) . We call 
its length the sf-metric from (�, u) to (�, v) and write it 
df ((�, u), (�, v)) . In general, this is not a distance as it does 
not respect the triangular inequality and is only a premetric, 
a simple counterexample is shown in Fig. 2. On the same fig-
ure are drawn a shortest path, two fastest paths and a unique 
shortest fastest path.

3 � Related work

This work is related to the study of Wu et al. (2014) and our 
algorithms can be applied in the same contexts as their short-
est and fastest paths methods. The main contribution of the 
present work is to compute sf-metrics, as well as distances 
and latencies, in a single pass over a dataset. Separately, Wu 
et al.’s fastest and shortest paths methods are insufficient to 
compute centralities such as the betweenness of a link stream, 
while an algorithm combining them to produce sf-metrics is 
not efficient because it requires iterating multiple times over 
the dataset. Meanwhile, our methods iterate only once over the 
dataset to produce the three metrics and are suitable for study-
ing different aspects of a link stream. We also output informa-
tion on the starting and arrival times of shortest (fastest) paths. 
This study was instigated as a first step in computing Latapy 
et al.’s betweenness centrality defined in Latapy et al. (2018) 
and computed in Simard et al. (2021).

More recently, Himmel et al. (2019) devised a generic 
algorithm to compute optimal paths in temporal graphs from 
one source node to all other destinations. Their algorithm is 
generic in the sense that it can compute different types of 
optimal paths such as shortest, fastest and foremost. Their 
main algorithm computes those paths separately. They do con-
sider a method to combine some optimization criteria, such 
as fastest and shortest; however, this is done through a linear 
combination of optimization objectives. This is in contrast to 
the present work, which is focused on a bilevel optimization 
approach (see Colson et al. 2007): the criterion that a path be 
fastest can never be violated, at the possible expense of paths 
not being shortest. We also present algorithms from multiple 
sources, which is not the case in their work. Brunelli et al. 

Fig. 1   A simple link stream with maximal edge ([1, 2], cb)

Fig. 2   The shortest path from (1,  g) to (9,  a) (both encircled) is 
drawn in green. The two fastest paths are drawn in red and in 
blue. The sole shortest fastest path is the red one. Observe that, 
df ((1, g), (9, a)) = 3 > df ((1, g), (9, f )) + df ((9, f ), (9, a)) = 2   (color 
figure online)
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(2021) took a similar approach to Himmel et al. and devised 
a generic algorithm to compute Pareto optimal paths to gen-
eralize multiple criteria (shortest paths, foremost paths, etc.). 
Again, their method only works from a single source. Moreo-
ver, they present the temporal complexity of their method but 
do not derive the explicit complexities when their method 
is applied to specific problems. In particular, it is not clear 
what complexity their method would achieve on the task of 
computing lengths of shortest fastest paths and how a concrete 
implementation would fare against our programs. In 2019, 
Li et al. (2019) improved on the work of Wu et al. by using 
dynamic programming approaches to compute shortest paths, 
fastest paths and (restricted) earliest-arrival paths. Although 
interesting, this work comes with the same restrictions that 
we observed in the work of Wu et al.

Furthermore, this work is also close to Tang et al. (2010b) 
since these authors define a betweenness centrality on tem-
poral networks in terms of fastest shortest paths. Whether to 
use fastest shortest or shortest fastest paths (or any other type 
of path that combines temporal and structural information) 
depends on what information one wants to emphasize and on 
the context of the study. Shortest and fastest paths were also 
studied by Xuan et al. (2003) and we were inspired by their 
all-pairs fastest path method to develop Algorithm 2 and 4. 
The latter are relevant to compute some centralities because 
metrics between all pairs of (temporal) nodes may be required. 
To our knowledge, Xuan et al.’s method is the only of its kind 
to return latencies between all pairs of nodes. More recently, 
Casteigts et al. (2015) adopted the same strategies as Xuan 
et al. for computing shortest and fastest paths in a distributed 
way.

Casteigts et al. (2012) also offer a survey of temporal net-
works that includes many applications of shortest and fastest 
paths. In particular, such paths can be used to study the reach-
ability of a temporal node from another. It appears from that 
survey that either the distance or the latency is often used as 
a temporal metric to evaluate how well a temporal node can 
communicate with another. In this regard, the sf-metric can 
be used as another temporal function since it combines the 
temporal as well as the structural information into a single 
map. Note that the notion of foremost paths (or journeys) is 
also used by some authors (such as Casteigts et al. 2015) to 
study temporal reachability. A foremost path only has minimal 
arrival time, while its starting time is unconstrained. This type 
of path is also useful in many studies and we expect that our 
algorithms can be extended to those cases to output lengths 
of shortest foremost paths. Finally, Casteigts et al. (2020) and 
Thejaswi and Gionis (2020) studied another type of temporal 
paths called restless, such that one cannot wait more that a 
prescribed amount of time on each node. This is an interesting 
constraint that we have not considered. However, we expect 
that our methods can also be extended to fit these constraints.

Finally, observe that the link stream framework is also 
close to the Time-Varying Graphs framework of Casteigts 
et al. (2012). Thus, all results presented in this paper carry 
to this other framework as well. We did not intend to survey 
the different models of temporal graphs present in the litera-
ture, as this is out of the scope of this work. To the best of 
our knowledge, there are two major models that allow edges 
to have duration and allow time to flow continuously: the 
Link Stream of Latapy et al. and the Time-Varying Graph 
of Casteigts et al. Other models, such as temporal networks 
(see Holme and Saramäki 2012), evolving graphs (Ferreira 
2004) and temporal-event graphs (Mellor 2017) mostly focus 
either on discrete timesteps or on zero transmission delay. Our 
algorithms also work on those models. The time-dependent 
network model mentioned by Brunelli et al. (2021) is slightly 
more general than the link stream we use since it allows the 
transmission delay over the edges to follow a non-constant 
function.

4 � Multiple‑targets shortest fastest paths 
algorithms

The full implementations of the algorithms presented here, in 
C++, can be found online (Simard 2019b).

We present here two main methods, Algorithms 1 and 2 
that compute the distances, latencies and sf-metrics from one 
source event node to all other event nodes. Algorithm 2 builds 
on the first method to compute those values for all pairs of 
event nodes. Section 4.4 also presents Algorithm 3 that was 
derived from Algorithm 1. This new method works with posi-
tive delays, a case that is often considered in the literature. 
Algorithm 4 also works with positive delays and is derived 
from Algorithm 2. We focus on the first two algorithms.

We present some small results that lead the way to those 
algorithms. The strategy for all methods is the same: we com-
pute the distances from any temporal node (sv, u) to (tv, v) such 
that sv is the largest (or maximal) starting time from any (tu, u) 
to (tv, v) . If it happens that tv − sv = l

(
(sv, u), (tv, v)

)
 , then this 

distance is the sf-metric from the former to the latter temporal 
node. Otherwise, since we iterate chronologically over � , this 
latency must have been computed at a time earlier than tv and 
is saved in memory.

All algorithms described in this section are presented in 
Appendix A in order not to disrupt the reading.

4.1 � Two simple lemmas

The algorithms we present compute what we call reachability 
triples that contain information about the lengths of shortest 
paths from one temporal node to another as well as the start-
ing and arrival times of those paths.
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Definition 4.1  (Reachability triples) Let (ts, s) be an event 
node. If there exists a shortest path of length l from (ts, s) 
to the event node (ty, y) that starts on a largest starting time 
t ∈ � , then we say (t, ty, l) is a reachability triple from (ts, s) 
to y.

In the following, we write Rv for the dictionary of reach-
ability triples from a fixed source event node to any node v. 
In order to reduce the cost of operations in Rv , we assume this 
dictionary is implemented in such a way that Rv holds keys 
sv and Rv[sv] holds pairs (av, dv) that form reachability triples 
(sv, av, dv) . This makes it easier to search for starting times sv.

All algorithms compute distances from largest starting 
times only. Those distances are contained in dictionaries Rv 
for each v ∈ V as part of reachability triples. Note that if a link 
stream reduces to a network, that is if the set of time instants 
T is a singleton, then each Rv will contain the usual distances 
from a fixed source to v. The temporal nature of a link stream 
forces us to take starting and arrival times into account when 
looking for shortest paths. Moreover, reachability triples could 
also be defined without the constraint that starting times are 
largest; however, the algorithms would not be as efficient 
because the dictionaries would grow larger with |�|.

Lemma 4.2, due to Wu et al. (2014), states that shortest 
paths are prefix-shortest. We say a path P(ts,s)(tu,u)

 from a tem-
poral node (ts, s) to another temporal node (tu, u) is a prefix of 
another path P(ts,s)(tv,v)

 from the same source to temporal node 
(tv, v) if P(ts,s)(tu,u)

 is a subsequence of P(ts,s)(tv,v)
.

Lemma 4.2  Let P(ts,s)(tv,v)
 be a shortest path from a temporal 

node (ts, s) to another (tv, v) . Then, every prefix P(ts,s)(tu,u)
 of 

P(ts,s)(tv,v)
 is a shortest path from (ts, s) to (tu, u).

Let (ts, s) and (t, v) be two temporal nodes. We define the 
outer distance from (ts, s) to (t, v), d((ts, s), (t−, v)) , as either 
limt0→t− d((ts, s), (t0, v)) , when t > ts , or d((ts, s), (t, v)) , when 
ts = t . Lemma 4.3 suggests it suffices to compute distances 
in induced graphs Gt for any time t to deduce the distances 
between two temporal nodes.

Lemma 4.3  Let (ts, s) be a source temporal node and (ty, y) 
be a temporal node reachable from the source by a non-empty 
shortest path. Then, there exists ts ≤ t ≤ ty and a connected 
component C of Gt such that

Proof  Let P = (t1, u1, u2),… , (tn, un, un+1) be a non-empty 
shortest path from (ts, s) to (ty, y) . Then, ty ≥ tn ≥ t1 ≥ ts and 
u1 = s, un+1 = y . There exist non-empty subpaths in P of the 
f o r m  (tj, uj, uj+1),… , (tj, uk, uk+1)   .  L e t 
Q = (tj, uj, uj+1),… , (tj, uk, uk+1) be such a subpath with the 

(1)
d((ts, s), (ty, y)) = min

u,v∈C
d((ts, s), (t

−, u))

+ d((t, u), (t, v)) + d((t, v), (ty, y)).

largest number of elements. By Lemma 4.2, the prefix of P 
from (ts, s) to (t−

j
, uj) is shortest and its length is 

d((ts, s), (t
−
j
, uj)) . Moreover, the subpath of P from (tj, uk+1) to 

(ty, y) must also be shortest with length d((tj, uk+1), (ty, y)) . 
Finally, since P is shortest and the two subpaths formed by 
P⧵Q are shortest, Q must also be a shortest path. Then, Q has 
length d((tj, uj), (tj, uk+1)) . The result follows by letting t = tj 
and C = {uj, uj+1,… , uk+1} be a connected component of 
Gt . 	�  ◻

4.2 � A single‑source method

In this section, we present Algorithm 1 that computes the 
distances (from largest starting times), latencies and sf-metrics 
from a source event node (ts, s) to all other reachable event 
nodes. This algorithm mixes iterations on the induced graphs 
Gt for each time t ∈ � with an all-pairs distances method on 
their connected components. Recall that if s∗ is the largest 
starting time from the source (ts, s) to some temporal node 
(t, v), then either t − s∗ = l

(
(ts, s), (t, v)

)
 or not. If so, then 

d((ts, s), (t, v)) is the sf-metric from (ts, s) to (t, v). This length 
is computed with Lemma 4.3 by using the outer distances 
saved in memory as well as the all-pairs distance method on 
Gt . Thus, when we iterate over all pairs (sv, dv) of starting time 
and outer distance from the source to (t, v), we can deduce 
the duration and the length of the shortest fastest paths from 
the source to (t, v). This method uses a set D that is assumed 
sorted in lexicographic order. Sorting D helps lower the tem-
poral complexity, but is not fundamental to understand the 
algorithm.

Remark 4.4  In all algorithms, we assume the dictionaries 
use self-balanced binary trees in order to obtain logarithmic 
worst-case complexities with simple structures. In our imple-
mentations, we used hash tables and heaps (see Remark 4.7) 
to lower the running times.

Furthermore, all operations on dictionaries such as min and 
max are well-defined whenever the relevant keys are present 
in the dictionaries. We assume the absence of a key is properly 
handled.

Before proving that Algorithm 1 is correct, let us go 
through a small example in order to build intuition. Other 
algorithms are highly similar.

Example 4.5  Consider again the link stream of Fig. 2. Suppose 
the source is again (1, g), t = 7 and C = {a, b, c} . Thus, Algo-
rithm 1 will look for shortest (fastest) paths that can reach 
temporal nodes (7, a), (7, b) and (7, c). The unique largest 
starting time from the source to C at time 7 is sv = 4 . This 
time is given by the greatest key in Ru for any u ∈ C . Then, 
we iterate over the outer distances from (4, g) to (7, v) for each 
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v ∈ C . Note how the time of the source has changed from 1 
to 4. By definition, and since the link stream is discrete, outer 
distances are given as the distances from (4, g) to (6, v) for 
each v ∈ C . Thus, we find outer distances 2 from (4, g) to 
(7, c) and 3 from (4, g) to (7, b). Node a is discovered at time 
7 and its outer distance does not exist before that. Finally, 
combining the outer distances with the distances inside the 
graph induced by C at time 7, we find that the distance from 
(4, g) to (7, c) is 2, 3 from (4, g) to (7, b) and also 3 from 
(4, g) to (7, a). This last distance is given by the combina-
tion between the outer distance from (4, g) to (7, c) and the 
distance in C from (7, c) to (7, a). Since node a is discovered 
first at time 7, that is its first arrival time from (1, g) is 7, then 
the latency from (1, g) to (7, a) is l((1, g), (7, a)) = 7 − 4 = 3 
and the distance from (1, g) to (7, a) is the sf-metric from the 
former to the latter.

Proposition 4.6  Algorithm 1 correctly computes the laten-
cies and sf-metrics from a source event node to all other 
reachable event nodes as well as the set of dictionaries 
{Rv;v ∈ V} . It requires at most O

(
|V|2|�| log |�| + |V|3|�|

)
 

operations in the worst case.

Proof of  correctness  Let  (tv, v) ∈ � × V  be some 
reachable destination. Let us show by induction on 
� ∶= |{t0 ∈ �;tv ≥ t0 ≥ ts}| that d[(tv, v)] = df

(
(ts, s), (tv, v)

)
 , 

f [(tv, v)] = l
(
(ts, s), (tv, v)

)
 and Rv is correct up to time tv.

–	 When � = 1 , we iterate only on time ts and the result is 
clear.

–	 Suppose the result holds for all k < 𝛥 . Let (t1,… , t�−1) 
be the times previously iterated over on Line 3 and t� the 
current time. By the induction hypothesis, by time t�−1 , 
all values of Rw , for all w ∈ V , are correctly updated. Let 
Cv be the connected component of Gt�

 containing v. If 
s ∈ Cv , then the result follows as in the case with � = 1 . 
Then, suppose s ∉ Cv . Since each Rv is correctly updated 
up to time t�−1 for each reachable v ∈ V , D contains triples 
(−sw, dw,w) for each w ∈ Cv that have been visited prior 
to t�−1 from the source from a starting time sw . The set 
D contains the largest starting time sw from the source 
to (t�,w) . Then, either t� + sw = l

(
(ts, s), (t�,w)

)
 or this 

latency is given by some f [(t0,w)] such that t0 < t𝛥 . Let’s 
iterate on (−sw, dw,w).

	   By Lemma  4.3, there exists a time −sw ≤ ti ≤ t� 
and a connected component Ci of Gti

 such that 
d((−sw, s), (t�,w)) = minx,y∈Ci

d((−sw, s), (t
−
i
, x))

+d((ti, x), (ti, y)) + d((ti, y), (t�,w)) . The sequence of dis-
tances 

d((−sw, s), (−sw, u)),… , d((−sw, s), (t�, u))

 is non-increasing for each u ∈ V  because each element 
is minimal. Thus, since w ∈ Cv , in particular this lemma 
holds with ti = t� and Ci = Cv . Then, 

 By the induction hypothesis, the outer distance 
dx = d((−sw, s), (t�−1, x)) can be recovered from 
(−sw, t�−1, dx) ∈ Rx for each x ∈ Cv . Then, using dx 
and the dictionary d′ returned by the all-pairs distances 
algorithm on Line 6, the expression above reduces to 
d((−sw, s), (t�,w)) = minx∈Cv

dx + d�[(x,w)] . In the last 
equation, the intermediary node x ∈ Cv over which the 
minimum is taken is irrelevant. If y ∈ Ux , then the distance 
from the source to y is the same as the distance from the 
source to x. Thus, it holds that: 

 Thus, when we iterate on the element (−sw, dw,w) from 
D, we construct the set Uw of nodes at distance dw from 
(−sw, s) at time t� . The last equation is thus used to insert 
into Rw the right triple (−sw, t�, d((−sw, s), (t�,w))) for 
each w ∈ Cv . When we have iterated over all of D, all dic-
tionaries Rv are correct at time t� . Finally, it suffices to 
observe that once f [(t�,w)] is updated with its final value, 
then by definition the update of d[(t�,w)] on Line 24 yields 
the sf-metric from (ts, s) to (t�,w) for each w.

	�  ◻

Proof of complexity  Let us write n ∶= |V|,mt ∶= |Et| and 
� ∶= |�| . On each time t ∈ {t0 ∈ �;t0 ≥ ts} , we first look 
up the connected components of Gt , which requires at most 
O
(
n + mt

)
 operations. On each component C of Gt , we 

run an all-pairs distances method, which makes at most 
O
(
n2 + |C|mt

)
 operations. Observe that the O

(
n2
)
 factor is 

for the initialization of a V × V array, which can be done once 
for the whole link stream. In order to see if a node has been 
reached at time t, it suffices at all previous times i to write 
distance duv in d[u, v] as (i, duv).

For each node v ∈ V , the list in Rv[−su] contains at most � 
elements since there can be at most as many pairs in Rv[−su] 
as there are arrival times on v. The same goes for the number 
of keys sv in Rv.

d((−sw, s), (t�,w)) = min
x,y∈Cv

d((−sw, s), (t
−
�
, x))

+ d((t�, x), (t�, y))

+ d((t�, y), (t�,w))

= min
x∈Cv

d((−sw, s), (t�−1, x))

+ d((t�, x), (t�,w)).

d((−sw, s), (t�,w)) = min
x∈Cv

dx + d�[(x,w)]

= min
x∈Cv

min
y∈Ux

dy + d�[(y,w)]

= min
x∈Cv

dx +min
y∈Ux

d�[(y,w)].
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We only need one distance in Rv[−su] , thus one distance 
per node, and D can be constructed with at most O(|C|) opera-
tions for all v ∈ C . Inserting and removing an element from 
Rv[−su] takes at most O(log�) operations. The costliest opera-
tion is finding the value of dmin , which involves searching in 
the set U of size |C| . This value is recomputed for every source 
u ∈ C , destination w ∈ C and the set U ⊆ C changes with 
every iteration. The for loop on Line 14 will make at most 
O
(
|C|2(|C| + log |�|)

)
.

The for loop over Gt will make at most

Recall that 
∑

t∈� mt = �E�� . Summing over all times in � , we 
deduce a complexity of O

(
nm� + n2� log� + n3�

)
 . The final 

complexity follows from the fact that E𝛺 ⊆ 𝛺 × V ⊗ V . 	
� ◻

Computing the minimum distance between all pairs of 
nodes in a connected component C, while accounting for the 
outer distances is tricky and leads to the factor of |V|3 . We 
do not expect this can be much reduced. Indeed, in the worst 
case all nodes of a time-induced graph Gt are reachable from 
the source from different starting times and are in the same 
connected component. Thus, |V| distances would have to be 
updated. Following Eq. (1), in order to update the distance 
from the source to any node w, we need to look at the dis-
tances from the source to any reachable node of Gt as well 
as the distance from those nodes to w. In the worst case, this 
amounts to running a single-source shortest path method on 
Gt from w. Doing this |V| times on each induced graphs leads 
to a lower bound of �

(
|V||E�|

)
.

Remark 4.7  Dictionary Rv might hold multiple triples (s, a, d) 
with the same starting time s, that is Rv[s] can grow linearly 
with |�| . This is the simplest implementation of this dic-
tionary that contains exactly all information. Since we only 
query for the largest starting time and the smallest distance 
(given that starting time), a more convenient way to imple-
ment Rv is with max and min heaps. Thus, Rv can be a max-
heap while Rv[sv] , for any key sv , would be a min-heap of 
elements (dv, [a1v , a

2
v
]) , sorted on the distance dv . Here, a1

v
 is 

the first arrival time on v from (sv, s) with distance dv , while a2
v
 

is the last one. This defines the interval [a1
v
, a2

v
] during which 

shortest paths of length dv are known which summarizes with 
one pair |�| amount of information. This would remove the 
logarithmic factor from the complexity of Algorithm 1, which 
in practice leads to significant improvement. However, since 
the data structure is different, accessors to Rv would have to 
be modified. Thus, if one specifically needs to know exactly 

O
(
n2
)
+
∑

C⊆V

O
(
|C|mt + |C|2(|C| + log𝜔)

)

≤ O
(
nmt + n2 log𝜔 + n3

)
.

when a path of length dv arrives on v from (sv, s) , then this 
structure would be inadequate.

Corollary 4.8  Algorithm 1 can be implemented with heaps 
to make at most O

(
|V|3|�|

)
 operations.

Proof  This follows from Proposition 4.6 and Remark 4.7. 	
� ◻

We use the sets V ,E� and � as parameters to evaluate the 
temporal complexities of our algorithms. These appear as 
natural choices since � indicates how the temporal dimen-
sion affects the number of operations while E� is a surrogate 
for E, which is in general uncountable.

4.3 � A multiple‑sources sf‑metrics method

Suppose � is finite and starts on some time a. Algorithm 2 
returns a set of dictionaries of sf-metrics Duv for each pair of 
nodes (u, v) ∈ V2 of dictionary Duv[suv] = (auv, duv) such that 
l
(
(suv, u), (auv, v)

)
= auv − suv and d((suv, u), (auv, v)) = duv . 

During its execution, it updates a dictionary D0 such that 
Duv[t] = (auv, duv) ,  t ∈ Rv and (auv, duv) ∈ Rv[t] from 
(a, u) ∈ T × V . This dictionary helps in computing D and in 
constructing Rv from any source. It also returns a set of dic-
tionaries Fuv of latencies.

Proposition 4.9  Algorithm 2 returns the latencies, sf-met-
rics and dictionaries Rv between all pairs of nodes in at most 
O
(
|V|3|�| log |�|

)
 operations.

Proof of correctness  Let us show that D0[u, v][tv] holds correct 
reachability triples from (a, u) to (tv, v) for any two nodes u, v 
and time tv . Thus, let us fix those three variables. Let us show 
this by induction on � ∶= |{t ∈ �;a ≤ t ≤ tv}|.

–	 If � = 1 , then either u and v are in the same connected 
component C of Gtv

 or not. This part is clear.
–	 Suppose the result holds for any k < 𝛥 . Let (t1,… , t�−1) be 

the sequence of times previously iterated over. Let Cv be 
the connected component containing v at time t� . If u ∈ Cv , 
then we argue as in the first case and the result follows. 
Otherwise, by the induction hypothesis, there must exist a 
largest starting time sv from u to (t�, v) that can be found in 
SA[u,w][t�−1] , for some w ∈ Cv since each such node w is 
connected to v. Observe that SA[u, v][t�−1] contains pairs 
of largest starting time and arrival time from u to (t�−1, v) . 
Observe also that t� is again an arrival time on v. Thus, 
it suffices to compute the distance from (sv, u) to (t�, v) 
to obtain a reachability triple (sv, t�, dv) from (a, u) to v. 
We argue as in the proof of Algorithm 1 that Algorithm 2 
returns this distance dv . The update D[u, v][t�][s∗] ← d∗ 
again follows the same reasoning as before.
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	�  ◻

Proof of  complexity  Again, let n ∶= |V|,mt ∶= |Et| and 
� ∶= |�| . The costliest operations occur in the for loop start-
ing on Line 11. There are at most � keys on each SAuv , for 
any u, v ∈ V . For any t ∈ � and u, v ∈ V , the size of SAuv[t] 
is upper-bounded by � since the starting time is maximal. 
Thus, at most O(log�) operations are required. Finding the 
largest starting time sv requires in the worst case O

(
|Cv| log�

)
 

operations.
Dictionary D0

uv
[t] , for any u, v ∈ V  and t ∈ � , has a size 

at most �2 , thus the loop over Cv (on Line 16) to find dmin 
requires at most O

(
|Cv| log�

)
 operations.

Meanwhile, inserting into SAuv takes at most O(log�) oper-
ations. The for loop on Line 11 thus makes at most:

operations. This loop is itself repeated for all connected com-
ponents C ⊆ V(Gt) , which in turn yields:

operations. Thus, this method should make at most 
O
(
n2 + nmt

)
+ O

(
n3 log�

)
 operations in the worst case on 

each time t. This number of operations is repeated at most � 
times. Observe again that O

(
nm𝛺

)
⊂ O

(
n3𝜔

)
 . 	�  ◻

Observe that Algorithm 1 needs to be called |V| times in 
order to deduce the lengths of all shortest fastest paths from 
any source to any destination, since it discovers all starting 
times from each source. The multiple-sources algorithm is 
empirically faster when the desired output is the set of sf-
metrics from all sources to all destinations. The temporal 
complexities of both methods are affected mostly by the 
induced graphs Gt . In Sect. 4.4, we will see that complexities 
decrease drastically on cases such as �-paths with 𝛾 > 0 since 
we can remove the dependency on those time-induced graphs. 
The complexity could also be reduced slightly with the use 
of heaps; however, this would make accessing information 
more difficult.

∑

u∈C

∑

v∈V⧵C

O
(
|Cv| log�

)
≤
∑

u∈C

∑

v∈V

O
(
|Cv| log�

)

≤
∑

u∈C

O
(
n2 log�

)

∑

C⊆V

∑

u∈C

O
(
n2 log𝜔

)
=
∑

u∈V

O
(
n2 log𝜔

)

4.4 � Shortest paths with delays

In the literature on temporal walks, it is commonly assumed 
that a path has a transmission delay � and we call this a �
-path. This is the case with Wu et al. whose algorithm we 
wish to compare Algorithm 1 against since their shortest path 
procedure is the most efficient known in temporal networks. 
Transmission delays are natural when modeling the spread 
of information and the time required for spreading is com-
mensurable with the time interval during which the network 
is observed.

A  � -pa t h  i n  a  l i nk  s t r eam i s  a  pa t h 
(t1, u1, u2),… , (tn, un, un+1) such that ti ≥ ti−1 + � for all 
1 < i ≤ n and some � ∈ ℝ+.1 We call � the delay and note 
that the usual path corresponds to a 0-path. An example �
-path is shown in Fig. 3 from (0, d) to (2, a) with � =

1

2
 . Note 

that with this choice of � , the subpath from (1, c) to (2, a) is 
the unique path from the former to the latter temporal node. 
When 𝛾 > 0 , it is not necessary to iterate over connected com-
ponents, since all nodes of a component do not communicate 
with each other, and we can simplify Algorithm 1 and 2 in 
order to reduce their numbers of operations. Thus, we present 
Algorithm 3 and 4 that are deduced from Algorithm 1 and 2 
and assume 𝛾 > 0 . Their correctness and temporal complexi-
ties follow from the same arguments used in Proposition 4.6 
and 4.9.

Observe that since paths have delays, we must ensure an 
edge appears long enough to be crossed given that delay.

Fig. 3   A �-path (in green) with � =
1

2
 from (0, d) to (2, a) (color fig-

ure online)

1  More generally, we could let � ∶ E → ℝ+ be a function of the edge 
to traverse. This was not considered here, but our methods could be 
extended for this case.
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Proposition 4.10  When 𝛾 > 0 , Algorithm 3 computes the 
latencies and sf-metrics from a source event node to all reach-
able event nodes as well as the set of dictionaries Rv , for all 
v ∈ V , in at most O

(
|V| + |E�| log |�|

)
 operations.

Proof  Correctness follows from the same reasoning as in 
Proposition 4.6. For the complexity, we first initialize a dic-
tionary of |V| elements, then we iterate over all edges of E� 
and perform logarithmic searches on lists that grow with |�|.

Note that, by the same argument as for Algorithm 1, the 
complexity can be lowered to O

(
|V| + |E�|

)
 by using a com-

bination of max and min heaps.
Finally, in Algorithm 3, the dictionaries d and f are imple-

mented such that the keys are nodes and values are pairs (t, k) 
such that t is the time value k is computed at that node. For 
example, if (t, fv) ∈ f [v] , then the latency from the source to 
(t, v) is fv . This enables us to sort dictionaries by time.

We also extended Algorithm 2 to the case of 𝛾 > 0 and 
devised Algorithm 4. This method is also guaranteed by the 
proof of Algorithm 2.

Proposition 4.11  When 𝛾 > 0 , Algorithm 4 returns the 
latencies, sf-metrics and dictionaries Rv between all pairs of 
nodes in at most O

(
|V|2 + |V||E�| log |�|

)
 operations.

Proof  Correctness follows from Proposition 4.9. For complex-
ity, initialization alone of the dictionaries requires O

(
|V|2

)
 

operations. Let (t, uv) be an edge of E� . Then, searching in the 
dictionaries for each values takes at most O(log |�|) opera-
tions when they are implemented as balanced trees. This is 
repeated for all nodes w ∈ V⧵{v} and all edges (t, uv) ∈ E�.

5 � Experiments

We present some experiments to highlight the running times 
of our algorithms. In the first one, we compare Algorithm 3 
with the single-source shortest path method from Wu et al. 
Algorithm 3 ( SSMD� ) acts as a surrogate for Algorithm 1 
( SSMD ) since Wu et al. designed their method to work on 
paths with strictly positive delays. Moreover, these authors 
evaluated their method from a small set of source nodes on 
large datasets and we follow the same procedure. In a sec-
ond experiment, we compared the running times of our two 
methods for null delays on synthetic link streams. We also 
compared Algorithm 2 ( MSMD ) and Algorithm 4 ( MSMD� ) 
on synthetic link streams. Finally, we compared Algorithm 3 
and 4 on the same task on some datasets.

Algorithm 2 was inspired by Xuan et al.’s fastest paths 
method that does not return distances. Comparing the two 
methods would be unfair against ours.

Remark 5.1  (Experimental setup) All experiments were run 
on a single machine with 2.6 GHz Intel Core i7 processor and 
16 Gb of RAM. All methods were implemented in C++ with 
standard libraries, including Wu et al.’s method. We imple-
mented standard approaches to compute connected compo-
nents and all pairs distances in graphs. The full code can be 
found online (Simard 2019b).

5.1 � Runtime comparison with the literature

Let us compare how Algorithm 3 (SSMD� ) fares against Wu 
et al.’s shortest path algorithm. This is our comparison with 
the literature.

Wu et al. analyzed their method with the framework of 
temporal graphs. We translate their temporal complexity with 
link stream parameters, upper bounding M with |E�| and dmax 
with |�| . Thus, the shortest path algorithm of Wu et al. makes 
at most O

(
|V| + |E�| log |�|

)
 operations in the worst case, 

which is the same temporal complexity as SSMD�.
We ran experiments on link streams of various sizes, as 

measured with |V| , |�| and |E�| . We used the same datasets 
as Wu et al. and added some, randomly chose 200 different 
source nodes from each and ran both methods one after the 
other. The full results (in s) can be found in Table 1. The 
running times of Wu et al.’s method are comparable to those 
of SSMD� . Our method does more operations, since it must 
compute latencies as well and ensure the distances correspond 
to the sf-metrics, so this is encouraging and unexpected. All 
datasets are heterogenous, which explains the variability in 
running times and we have not yet pinpointed any hidden link 
stream parameter that would precisely explain this variability, 
including the measure used for the visualizations of Fig. 4.

Remark 5.2  (Notes on the datasets used) The datasets are 
only used as benchmarks. They all describe discrete tempo-
ral networks and can be found as part of the konect library of 
networks (Kunegis 2013). Only the values of the parameters 
|V|, |�| and |E�| are extracted in Table 1 since only these were 
required for our experiments.

A short description of the datasets used follows in Appen-
dix B. Figure 4 shows the temporal evolution of some network 
measures on two of the datasets used: Arxiv-Hepph and Wiki-
conflict. On each, we sampled 0.1% of the dataset to build a 
sublink stream. On each sublink stream and on each induced 
graph Gt , we evaluated the density of Gt and normalized the 
values to [0, 1]. We chose this measure as an indicator of the 
temporal evolution of each dataset. It shows how varied the 
datasets are. Even though in both cases we observe strong 
fluctuations in the density, in the Wikiconflict dataset the den-
sity appears stratified. Meanwhile, in the Arxiv-Hepph dataset 
this density is mostly low and takes more distinct values in the 
range [0, 0.4], which hints that its connectivity varies more 
than in the other dataset. The Wikiconflict therefore seems to 
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have groups of edges of similar sizes appear at regular times, 
while in the other dataset there is a less obvious pattern in the 
appearances of edges.

Remark 5.3  (Further implementation details) Previous results 
(Simard 2019a) showed SSMD� to be unstable on some data-
sets compared with Wu et al. This can be explained by the 
data structure used to implement R . Note that Rv[sv] , for any 
node v and starting time sv , can grow as O(|�|) which can 
be large. Thus, even logarithmic search in this structure can 
be costly. Notice also that we only ever need the largest key 
of Rv and the smallest distance of Rv[sv] . Thus, we reimple-
mented dictionary R with (max/min)-heaps as explained in 
Remark 4.7. This provides constant time access to the larg-
est/smallest element. This is a choice of implementation to 

increase the performance of this method and all results pre-
sented here that specifically test the performance of SSMD� 
used that implementation. The new method is considerably 
faster and is comparable with Wu et al.’s method. We did not 
reimplement the latter’s method using heaps because at each 
step they remove dominated elements which naturally tends 
to make their structures smaller.

Figure 2 shows statistics on the running times and ratios 
between Algorithm 3 and Wu et al. Observe that even with 
large running times, the ratios 

(
SSMD�

Wu et al.

)
 are still decent.

5.2 � Comparison between algorithms SSMD 
and MSMD

Algorithms SSMD and MSMD were run on a set of randomly 
generated link streams of size |V| ranging from 100 to 170, 
with increments of 10. Although the link streams are small 
in scale, the running times are significant since we compute 
the distances from every source to every destination. The link 
streams were constructed by generating Erdös-Renyi graphs 
G(n, p), with n = |V| and p = 0.7 . Then, on each edge (u, v), 
we drew a time instant t ∈ {0, 1,… , 7} uniformly at random 
and added both directed edges (t, uv) and (t, vu) to E. In this 
case, edges have no duration and the time instants are integers: 
this helps ensure the size of � is fixed and small, so the run-
ning times scale only with |V| and |E�|.

Figure 5a shows the running times of each algorithms on 
a link stream with a fixed number of nodes. We observe that, 
as the number of nodes involved increases, the amount of 
time taken by SSMD grows faster than that of MSMD . This 
gives clear indication that this latter method is faster than 
the former. In terms of scale, the MSMD method manages 
a link stream of 170 nodes and about 20,000 edges in less 
than 3 s. Its counterpart takes more than 25 min for the same 
calculations.

Since MSMD is more scalable than SSMD , we generated a 
new set of link streams, again with the same process as before, 
with time instants drawn uniformly at random in the set 
{0,… , 10} while the duration of an edge (t, uv) is drawn uni-
formly at random in the subset {0,… , 10 − t} . In that case, the 
size of � barely varies. We let |V| ∈ {10, 20,… , 190, 200} . 
The results are summarized in Fig. 5b. We fitted, with the sta-
tistical software R (R Core Team 2013), a linear model on the 
runtime of MSMD as function of |E�| in order to extrapolate 
the runtime of this method for larger values of link stream 
parameters. Since the number of nodes and event times are 
low compared to the number of edges, the trend is linear in 
the number of edges. The fit is reasonable and this is sufficient 
to illustrate the scaling trend. Extrapolating, we obtain the 
values shown with the blue line. The trend does not suggest 
the method is at this point scalable to big link streams as in 

Fig. 4   Visualization of the temporal evolution of the density on sub-
link streams of two datasets, Arxiv-Hepph and Wikiconflict. Each 
sublink stream was constructed by sampling 0.1% of the dataset. On 
each sublink stream, we evaluated on each induced graph Gt the den-
sity of Gt . Values are normalized to [0, 1]
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general the sizes of V and � would also grow to be much 
larger than in this experiment.

5.3 � MSMD against MSMD
 on synthetic link streams 
with varying densities

We ran algorithms MSMD and MSMD� side-by-side on syn-
thetic link streams to see how well the latter performs against 
the former. It is expected that MSMD� would be faster. How-
ever, instead of looking at the trend on link streams with vary-
ing number of nodes, we investigated this trend against the 
density of the stream. Thus, we constructed link streams as 
before from graphs G(n, p), while varying the parameter p 
instead of n. The density of the resulting link stream varies 
with p. The number of nodes is fixed to 200 and edges have 
positive integer duration, to allow duration while keeping the 
cost of computation low.

Experimentally, the density of each time-induced graph of 
the link stream affects the performance of MSMD� against 
MSMD . This can be seen in Fig. 6: as the value of p increases, 
after a threshold around p ≈ 0.63 , MSMD� takes longer to 
complete than MSMD . This suggests that when many edges 
appear at the same time, it becomes advantageous to compute 
all-pairs distances in the time-induced graphs and reuse them 
on each connected components. Note that these do not solve 
exactly the same problem since one works with 𝛾 > 0 while 
the other does not. However, if the choice of � is a modeling 
parameter,2 this can be interesting to take into account. It is 
not clear why the running time of MSMD is decreasing for 

Table 1   Runtime comparisons 
(in s) between SSMD� and Wu 
et al.’s method

Datasets with runtime less than 10 s are in bold

Dataset |V| |�| |E�| Wu et al. SSMD� Runtime ratio

facebook-wosn 63731 204914 817035 16.40 12.90 0.8
contact 274 15662 28244 1.00 1.16 1.2
lkml person 337509 624757 1565683 54.20 18.80 0.3
delicious ut 4512099 1583 301186579 5190.00 8740.00 1.7
movielens 16528 34535 95580 2.49 1.20 0.5
dnc 1891 10176 39264 1.12 1.35 1.2
enron 87273 178721 1148072 23.10 22.40 1.0
munmun twitter 530418 175218 4664605 174.00 196.00 1.1
lastfm band 174077 1058994 19150868 103.00 124.00 1.2
elec 7118 90741 103675 3.77 3.43 0.9
epinions-rating 755760 501 13668320 137.00 75.60 0.6
flickr-growth 2302925 134 33140017 1400.00 2180.00 1.6
dblp 12590 30 49759 1.18 0.36 0.3
sociopatterns hyper 113 973 20818 0.28 0.25 0.9
digg 30398 9125 87627 3.67 1.62 0.4
prosper loans 89269 1259 3394979 33.10 27.30 0.8
sociopatterns infect 410 223 17298 0.47 0.37 0.8
delicious ui 25221771 1583 301186579 6950.00 2200.00 0.3
mit 96 33452 1086404 14.30 13.20 0.9
wikiconflict 116836 215982 2917785 37.70 40.80 1.1
slashdot-threads 51083 67327 140778 9.16 6.18 0.7
lastfm song 1084620 1058994 19150868 197.00 91.20 0.5
arxiv-hepph 28093 2337 4596803 56.70 57.90 1.0
youtube-growth 3223585 203 9375374 518.00 299.00 0.6

Table 2   Summary statistics of 
running times (in s) between 
algorithms SSMD� and Wu 
et al. (2014), with Q. standing 
for quartile

The ratio goes above 1 only at about the 3rd quartile. Outliers still exist

Method Min 1st Q. Median Mean 3rd Q. Max

SSMD� (s) 0.25 1.55 20.6 588.0 99.4 8740
Wu et al. (s) 0.28 3.38 28.1 622.0 146.0 6950
Ratios 0.31 0.53 0.85 0.84 1.09 1.68

2  The choice of whether � should be positive or null depends on the 
application. For example, if one models the interactions in minutes 
between individuals that meet face-to-face, then the transmission 
delay � between any two individuals is negligible.
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low probabilities, p ∈ (0, 0.25) . Recall that the connectivity 
threshold of G(n, p) is log n

n
 . Evaluating this adjusted threshold 

in the form of log |V||�|
|V||�| ≈ 0.035 does not explain why the two 

lines intersect.

Remark 5.4  In link streams, whether edges have durations or 
not and whether those durations are integers or real numbers 
can slow down our methods as durations influence the sizes 
of � and E� . Running times with real edge durations can 
sometimes be prohibitive, so we focused our experiments on 
integer durations.

5.4 � Comparing algorithms SSMD
 and MSMD
 
on real datasets

Algorithm MSMD� can terminate in reasonable time on some 
datasets, as opposed to MSMD . In order to probe this method 
further, we tested how long it would take for this method to 
terminate on some datasets against SSMD�.

We compared both methods on selected datasets on which 
SSMD� took less than 10 s to finish (as observed in Table 1). 
This way, we could expect it to finish in a decent amount of 
time from all sources. We ran SSMD� from all sources along-
side MSMD� . For the same task, it is faster to run the special-
ized method MSMD� . However, note that both methods could 
finish in a short amount of time on real-world datasets, which 
is positive. Statistics on the running times of both methods are 
summarized in Table 3.

(a)

(b)

Fig. 5   Runtimes (in s) of algorithms SSMD and MSMD on synthetic 
link streams. Link streams are generated randomly with fixed seed 
(color figure online)

Fig. 6   Running time (in s) of MSMD� (in red) and MSMD (in blue) 
on synthetic link streams generated with G(200, p) with varying val-
ues of p. As p increases, so does the density of each induced graphs, 

favoring MSMD over MSMD� . Edges have positive integer duration 
(color figure online)
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6 � Conclusion

In this paper, we presented different algorithms to compute 
metrics between pairs of event nodes. As opposed to similar 
known algorithms, those methods return all metrics at once 
in a single pass over the dataset. Moreover, the starting and 
arrival times of shortest paths are returned, which is valuable 
information to compute, for example, the betweenness central-
ity of temporal nodes.

Algorithm SSMD works from a fixed source and is suit-
able when not all pairwise metrics are required. Our experi-
ments show that SSMD� is comparable to the state-of-the-
art method to compute distances from a source node to all 
other nodes. These results improve on previous ones (Simard 
2019a) and make use of a more efficient data structure. Even 
though some experiments are advantageous to our methods, 
we do not claim they are in general faster than the state of the 
art. However for the task at hand of computing all metrics 
at once on a link stream, we think we can fairly conclude 
that our methods are usable in practice. The experiment in 
Sect. 5.1 was designed to illustrate if SSMD� could be used 
in real-world setting. Thus, comparing it to another short-
est path method is relevant since it does not do significantly 
more operations that this type of algorithm. One could surely 
implement the shortest path algorithm of Wu et al. to make it 
faster than SSMD�.

In practice, MSMD has finished its task faster than its 
counterpart on synthetic link streams. Since the link streams 
used were smaller than what we would expect from real-
world instances, we extrapolated the running times produced 
by MSMD . At this point, scalability is an issue, when � = 0 , 
and we could not expect to run this method on realistic link 
streams and obtain results in a reasonable amount the time. 
Thus, in order to speed up the computation time, we suggest 
studying how to lessen the amount of operations in either 
methods by skipping some temporal nodes and extrapolating 
the distances. Also, finding ways not to have to recompute 

the connected components and the all-pairs distances at every 
time would also be helpful in improving both methods.

Both algorithms SSMD� and MSMD� , when 𝛾 > 0 , could 
finish their task on some datasets in a decent amount of time. 
Algorithm MSMD� took less than 30 s to finish all tasks, even 
on datasets of almost 100, 000 edges. Thus, in that case, real-
istic datasets of decent size could be handled by our methods.

In light of our experiments as well as the recent literature 
(see Himmel et al. 2019), it would be interesting to have a 
lower bound on the complexity of computing our metrics. 
Since shortest paths methods seem to be based on the same 
arguments as shortest paths algorithms in graphs, it might 
also be relevant to deduce a lower bound in terms of the latter. 
That is, how much slower is it to compute distances in a link 
stream as opposed to computing distances in a graph? Can this 
complexity be expressed in terms of natural parameters of the 
link stream such as V ,� and E�?

Aside from scalability, another limitation of this study lies 
in the ordering of the objective functions we chose to opti-
mize. Namely, we compute lengths of shortest fastest paths. If 
one were to require lengths of fastest shortest paths, our meth-
ods would need to be redesigned. Moreover, the multitude of 
possible combinations of optimal paths to compute (foremost 
paths, shortest foremost paths, etc.) is not all considered in 
this work. Brunelli et al. tackled this limitation by building 
a more general framework for optimal paths. We believe our 
methods can be modified to compute some other types of 
paths combining temporal and structural information hierar-
chically, such as shortest foremost paths. In turn, those paths 
can be used to compute other centralities than the betweenness 
centrality or to investigate different topics such as reachability. 
In Algorithm 3, for example, whenever we consider an edge 
(t, uv) with u ≠ s , we have access to the last arrival time au 
from the source at time su . If we instead considered the first 
such arrival time, then we could decide if the path from (su, s) 
to (t, v) that involves the edge (t, uv) is restless (see Casteigts 
et al. 2020) or not and update the relevant dictionaries accord-
ingly, say of restless reachability triples.

Table 3   Summary statistics of 
the running times (in s) between 
algorithms SSMD� and MSMD�

In practice, SSMD� is faster on some datasets than its counterpart. However, statistically MSMD� is better 
suited to compute all metrics

Method Min 1st Q. Median Mean 3rd Q. Max

SSMD� (s) 1.10 2.89 3.77 48.80 71.0 216.0
MSMD� (s) 0.30 2.16 3.97 12.90 24.6 27.6



	 Social Network Analysis and Mining           (2021) 11:51 

1 3

   51   Page 14 of 16

Algorithms



Social Network Analysis and Mining           (2021) 11:51 	

1 3

Page 15 of 16     51 

Datasets

The following datasets were used in the experiments. More 
documentation can be found online (Kunegis 2019). Datasets 
are part of the KONECT project (Kunegis 2013). Descriptions 
below are found in the directories of the datasets. 

	 1.	 arxiv-hepph A co-citation network from the website 
arXiv arxiv.​org of scientific papers. Papers are taken 
from the high energy physics phenomenology (hep-ph) 
section. Two papers are linked if they are both cited by 
another paper, with the timestamp indicating the date of 
the latter’s publication.

	 2.	 contact A network of human contacts. It describes 
the Haggle network, a project funded by the European 
Union. Each edge describes a contact between two per-
sons measured by carried wireless devices.

	 3.	 dblp A citation network. Extracted from the website 
dblp.​uni-​trier.​de/ of scientific publications. Nodes are 
publications and two publications are linked if one cites 
the other.

	 4.	 delicious ui A user-url network from the web-
site https://​del.​icio.​us (now deprecated). Edges connect 
users to the urls they tagged.

	 5.	 delicious ut An interaction network from the same 
website. Edges connected users to the tags they used.

	 6.	 digg A communication network. Extracted from the 
website digg.​com. Edges connect two users when one 
replied to the other.

	 7.	 dnc A communication network. Extracted from the 
2016 Democratic National Committee email leak of the 
american Democratic Party. Edges connect two people 
if one sent an email to the other.

	 8.	 elec An online contact network. Represents admin 
elections in the English Wikipedia. Edges connect two 
users if one voted for or against the other.

	 9.	 enron A communication network. Describes email 
exchanges in the former company Enron.

	10.	 epinions-ratings A ratings network. The web-
site seems deprecated. Each edge connects a user and a 
product they rated.

	11.	 facebook-wosn A social network. Data are extracted 
from a portion of the website Facebook faceb​ook.​com. 
Edges connect users that are friends on the website.

	12.	 flickr-growth A social network. Edges describe 
friendship connections on the website flickr.​com.

	13.	 lastfm band An interaction network between users 
and bands. From the website last.​fm. Edges connect 
users to bands they listened to.

	14.	 lastfm song An interaction network between users 
and songs listened. From the same website as above, 
edges connect users to songs they listened to.

	15.	 lkml person An interaction network of people on 
the Linux Kernel Mailing List (lkml). Edges connect 
people to threads in the mailing list they contributed to.

	16.	 mit A human contact network. Edges connect 100 stu-
dents when they had contact with each other.

	17.	 movielens An interaction network. Extracted from 
the website http://​movie​lens.​umn.​edu/. Edges connect 
users to the tags they used.

	18.	 munmun twitter An interaction network of users 
and tags. Extracted from the website twitt​er.​com. Edges 
connect users to the tags they used in tweets.

	19.	 prosper loans An interaction network. Extracted 
from the website prosp​er.​com. Edges connect people 
(lenders) to other people (borrowers) to whom they lent 
money.

	20.	 slashdot-threads A comunication network. 
Extracted from the website https://​slash​dot.​org/. Edges 
connect users when one replied to another.

	21.	 sociopatterns hyper A human contact network. 
Edges represent face-to-face contacts of more than 20 s.

	22.	 sociopatterns infect A human contact net-
work. Edges represent face-to-face contacts of more 
than 20 s.

	23.	 wikiconflict A network of online contacts. 
Extracted from the english Wikipedia https://​en.​wikip​

http://arxiv.org
http://dblp.uni-trier.de/
https://del.icio.us
http://digg.com
http://facebook.com
http://flickr.com
http://last.fm
http://movielens.umn.edu/
http://twitter.com
http://prosper.com
https://slashdot.org/
https://en.wikipedia.org/wiki/Main_Page
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edia.​org/​wiki/​Main_​Page. Each edge connects users to 
other users with whom they are in editing conflicts.

	24.	 youtube-growth A social network. Extracted from 
the website youtu​be.​com. Edges connect users with their 
friends on the platform.
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