
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2021) 11:51
https://doi.org/10.1007/s13278-021-00759-7

ORIGINAL ARTICLE

Evaluating metrics in link streams

Frédéric Simard1

Received: 29 November 2019 / Revised: 13 May 2021 / Accepted: 18 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract
We seek to understand the topological and temporal nature of temporal networks by computing the distances, latencies and
lengths of shortest fastest paths. Shortest fastest paths offer interesting insights about connectivity that were unknowable until
recently. Moreover, distances and latencies tend to be computed by separate algorithms. We developed four algorithms that
each compute all those values efficiently as a contribution to the literature. Two of those methods compute metrics from a fixed
source temporal node. The other two, as a significant contribution to the literature, compute the metrics between all pairs of
source and destination temporal nodes. The methods are also grouped by whether they work on paths with delays or not. Proofs
of correctness for our algorithms are presented as well as bounds on their temporal complexities as functions of temporal net-
work parameters. Experimental results show the algorithms presented perform well against the state of the art and terminate in
decent time on real-world datasets. One purpose of this study is to help develop algorithms to compute centrality functions on
temporal networks such as the betweenness centrality and the closeness centrality.

Keywords Temporal networks · Link streams · Algorithms · Shortest paths · Fastest paths · Distances · Latencies

1 Introduction

Network science has been greatly influenced in recent years
by temporal networks. Researchers in various fields have
observed that real data varies over time and that static net-
works are insufficient to capture the full extent of some phe-
nomenon. Different models of temporal networks have been
suggested, among which the Link Streams of Latapy et al.
(2018) that captures the network evolution in continuous
time. As is the case with other forms of networks, the notions
of paths and distances are fundamental to the study of link
streams. Kempe et al. (2002) mention the use of time-respect-
ing paths to study temporal networks. They further mention
applications to epidemiology, in which one would seek infor-
mation about the spread of a virus in a population. Human
interactions can also be analyzed with temporal networks as
has been observed by Tang et al. (2010a) and the link stream

framework can help advance those studies by allowing edges
to have durations. Although online social networks can be
thought to vary in discrete time, with tweets and retweets on
Twitter for example, in real social networks the interactions
have durations which are important to take into account in
order to have an accurate description of the data. In practice,
studies have emerged from the SocioPatterns Collaboration
that includes datasets on face-to-face contacts (see Cattuto
et al. 2010; SocioPatterns 2021) with temporal labels. Those
datasets are valuable tools to more accurately investigate
aspects of social networks such as homophily (Stehlé et al.
2013) and epidemics (Moinet et al. 2018).

1.1 Shortest fastest paths

Latapy et al. developed the notion of shortest fastest paths in
their link stream model as a type of paths that gather together
the temporal as well as the structural information of a link
stream. A shortest fastest path is one that is shortest among
the fastest paths between two endpoints. This type of path is
used to define a betweenness centrality and it appears other
distance-based centrality functions could be so defined as
well. Simard et al. (2021) provide an explicit algorithm to
compute this centrality in a link stream and the algorithms
in the current manuscript can help speed up this process by

A short version of this text was presented at the International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM ’19), in Vancouver, Canada (Simard 2019b)

 * Frédéric Simard
 fsima063@uottawa.ca

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, ON, Canada

http://orcid.org/0000-0001-6419-6899
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-021-00759-7&domain=pdf

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 2 of 16

computing the metrics used in their method. A social network
can thus be analyzed through different perspectives: using the
distance to measure how the connectivity of a group varies
over time, the latency to measure how quickly an information
can spread into a group of people and the length of a short-
est fastest path to measure how efficiently this information is
relayed. Note also how the time a shortest path starts and ends
influences the information it can spread. Shortest fastest paths
describe a natural notion of communication efficiency: when a
viral rumour (such as a piece of disinformation) spreads over
a network it can spread quickly and those actors on short fast-
est paths from the source to any receiver can be considered as
efficient spreaders.

Therefore, shortest and shortest fastest paths not only ena-
ble one to compute Latapy et al.’s betweenness centrality over
link streams, but also quantify the reachability of different
nodes over different times. Many authors noted how impor-
tant this task is given it can help determine how informa-
tion spreads over a social network, for example what person
or group of people most likely initiated a campaign over an
online social network, but also what individuals should be
restricted in the event of a pandemic. The COVID-19 pan-
demic leads to a trove of online misinformation and there is
ongoing research to study the phenomenon (see for exam-
ple Cinelli et al. 2020). Similarly, epidemic spreading over
temporal networks is still being investigated, for example in
the recent work of Ciaperoni et al. (2020), and some authors
integrate centrality functions in their studies.

1.2 Contributions and impact

Our main contributions in this work are two groups of algo-
rithms that compute metrics of shortest (fastest) paths in a link
stream. Two algorithms in the first group work from a single
source, while the two in the latter work from multiple sources.
The two sets of algorithms are split on whether they assume
paths have strictly positive or null delays. All methods return
the lengths of shortest paths, the lengths of shortest fastest
paths as well as pairs of starting and arrival times of temporal
(fastest) paths. Some of that information is summarized as
reachability triples (a, b, c) (see Definition 4.1) such that for
every fixed source s and node v, a is a largest starting time
from s to (b, v) and c is the distance from (a, s) to (b, v). There
are three major novel aspects in this work. First, we compute
multiple metrics at once, whereas many other authors devise
separate algorithms for the same tasks. Second, we compute
lengths of shortest fastest paths, which is a novel metric in
the literature. Finally, we present algorithms that work from
multiple sources. This has not been considered recently in
the literature and one has to go back to the work of Xuan
et al. (2003) to find similar algorithms that work with multiple
sources. In short, our major contributions are:

1. To provide four algorithms each of which compute mul-
tiple known metrics;

2. To design algorithms that compute the lengths of shortest
fastest paths;

3. To design algorithms that compute metrics from multiple
sources.

A major impact of this study is the ability to efficiently com-
pute values required to compute the betweenness centrality
of a temporal node in a link stream. It also makes it faster to
compute shortest paths between large numbers of nodes in
link streams. The novel ability to compute reachability triples
for all destinations (and sources) is relevant due to the impor-
tance of shortest paths in the analysis of temporal networks.
We think our algorithms are also simple yet powerful enough
that they could be extended to other metrics such as arrival
times of foremost paths and lengths of shortest foremost paths.
This seems to hold in particular if the temporal dimension is
the first argument optimized over, such as in shortest fastest
paths or shortest foremost paths.

Our algorithms are evaluated on datasets taken from the
konect library of networks (Kunegis 2019). A description of
the datasets used can be found in Appendix B.

General definitions are presented in Sect. 2, followed by a
state of the art in Sect. 3. Then, we present our main methods
in Sect. 4, experiments in Sect. 5 and we conclude in Sect. 6.

2 Background

Most definitions are taken from Latapy et al. (2018). A
link stream L is a tuple L = (T ,V ,E) where T ⊆ ℝ is a
set of time instants, V is a finite set of nodes (vertices)
and E ⊆ T × V ⊗ V is a set of links (edges). Here, V ⊗ V
denotes the set of unordered pairs of vertices and we write
uv ∈ V ⊗ V . We say an element (tv, v) ∈ T × V is a temporal
vertex.

An edge of E is a tuple (t, uv). Given an interval I ⊆ T , we
write (I, uv) ⊆ E , instead of I × {uv} ⊆ E , to mean all edges
(t, uv) such that t ∈ I are in E. We say an edge (I, uv) ⊆ E
is maximal if there exists no other edge (J, uv) ⊆ E such
that I ⊂ J . We say a maximal edge ([a, b], uv) ⊆ E starts at
a, ends on b and has duration b − a . Given the simple edge
(a, uv), we write dur(a, uv) = b − a for the duration of the
edge ([a, b], uv). We let � be the set of event times of T,
that is 𝛺 ∶= {t ∈ T;∃ maximal edge ([t, t�], uv) ⊆ E or ([t�, t], uv) ⊆ E} .
Elements of � × V are called event nodes. We write
E� ∶= {(t, uv) ∈ E;t ∈ �}.

A maximal edge, as well as � and � × V are illustrated on
the link stream of Fig. 1. On this link stream, ([1, 2], cb) ⊂ E
is a maximal edge, whereas ([1, 1.5], cb) ⊂ E is not. Thus,
� = {0, 1, 2, 3}.

Social Network Analysis and Mining (2021) 11:51

1 3

Page 3 of 16 51

The time-induced graph Gt induced by a time t ∈ T is
defined as Gt = (V , {uv;(t, uv) ∈ E}) . In a link stream L, a
path P from (�, u) ∈ T × V to (�, v) ∈ T × V is a sequence
(t0, u0, v0), (t1, u1, v1),… , (tk, uk, vk) of elements of T × V × V
such that u0 = u , vk = v , t0 ≥ � , tk ≤ � and for all i, ti ≤ ti+1 ,
vi = ui+1 and (ti, uivi) ∈ E . We say that such a path starts at
t0 , arrives at tk , has length k + 1 and duration tk − t0 . We write
(�, u) ⇝ (�, v) to mean that there exists a path from (�, u)
to (�, v) and say (�, v) is reachable from (�, u) . We also call
t0 a starting time and tk an arrival time from (�, u) to (�, v) .
Each path between two fixed temporal nodes (�, u) and (�, v)
defines a pair of starting time and associated arrival time.
On the link stream of Fig. 1, two paths are illustrated: the
green one P1 = (0, d, c), (1, c, b), (3, b, a) and the red one
P2 = (0, d, c), (2, c, b), (3, b, a) . Both have the same starting
and arrival times from (0, d) to (3, a), namely times 0 and 3.
Both paths are fastest. We can also say s is a starting time from
a temporal node (�, u) ∈ T × V to a node v ∈ V , in which case
there exists some time t ∈ T such that s is the starting time
of a path from (�, u) to (t, v). Same goes for the arrival times.

We say a path P is shortest if it has minimal length and
call its length the distance from (�, u) to (�, v) , written
d((�, u), (�, v)) . Similarly, P is fastest if it has minimal dura-
tion, in which case this duration is called the latency from
(�, u) to (�, v) and is written l((�, u), (�, v)) . Note that if
(�, u) ⇝ (�, v) , there exists at least one pair of starting time
and arrival time (s, a) such that l((�, u), (�, v)) = a − s . Then,
we say s is a latest starting time and a an earliest arrival time.
Finally, P is called shortest fastest if it has minimal length
among the set of fastest paths from (�, u) to (�, v) . We call
its length the sf-metric from (�, u) to (�, v) and write it
df ((�, u), (�, v)) . In general, this is not a distance as it does
not respect the triangular inequality and is only a premetric,
a simple counterexample is shown in Fig. 2. On the same fig-
ure are drawn a shortest path, two fastest paths and a unique
shortest fastest path.

3 Related work

This work is related to the study of Wu et al. (2014) and our
algorithms can be applied in the same contexts as their short-
est and fastest paths methods. The main contribution of the
present work is to compute sf-metrics, as well as distances
and latencies, in a single pass over a dataset. Separately, Wu
et al.’s fastest and shortest paths methods are insufficient to
compute centralities such as the betweenness of a link stream,
while an algorithm combining them to produce sf-metrics is
not efficient because it requires iterating multiple times over
the dataset. Meanwhile, our methods iterate only once over the
dataset to produce the three metrics and are suitable for study-
ing different aspects of a link stream. We also output informa-
tion on the starting and arrival times of shortest (fastest) paths.
This study was instigated as a first step in computing Latapy
et al.’s betweenness centrality defined in Latapy et al. (2018)
and computed in Simard et al. (2021).

More recently, Himmel et al. (2019) devised a generic
algorithm to compute optimal paths in temporal graphs from
one source node to all other destinations. Their algorithm is
generic in the sense that it can compute different types of
optimal paths such as shortest, fastest and foremost. Their
main algorithm computes those paths separately. They do con-
sider a method to combine some optimization criteria, such
as fastest and shortest; however, this is done through a linear
combination of optimization objectives. This is in contrast to
the present work, which is focused on a bilevel optimization
approach (see Colson et al. 2007): the criterion that a path be
fastest can never be violated, at the possible expense of paths
not being shortest. We also present algorithms from multiple
sources, which is not the case in their work. Brunelli et al.

Fig. 1 A simple link stream with maximal edge ([1, 2], cb)

Fig. 2 The shortest path from (1, g) to (9, a) (both encircled) is
drawn in green. The two fastest paths are drawn in red and in
blue. The sole shortest fastest path is the red one. Observe that,
df ((1, g), (9, a)) = 3 > df ((1, g), (9, f)) + df ((9, f), (9, a)) = 2 (color
figure online)

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 4 of 16

(2021) took a similar approach to Himmel et al. and devised
a generic algorithm to compute Pareto optimal paths to gen-
eralize multiple criteria (shortest paths, foremost paths, etc.).
Again, their method only works from a single source. Moreo-
ver, they present the temporal complexity of their method but
do not derive the explicit complexities when their method
is applied to specific problems. In particular, it is not clear
what complexity their method would achieve on the task of
computing lengths of shortest fastest paths and how a concrete
implementation would fare against our programs. In 2019,
Li et al. (2019) improved on the work of Wu et al. by using
dynamic programming approaches to compute shortest paths,
fastest paths and (restricted) earliest-arrival paths. Although
interesting, this work comes with the same restrictions that
we observed in the work of Wu et al.

Furthermore, this work is also close to Tang et al. (2010b)
since these authors define a betweenness centrality on tem-
poral networks in terms of fastest shortest paths. Whether to
use fastest shortest or shortest fastest paths (or any other type
of path that combines temporal and structural information)
depends on what information one wants to emphasize and on
the context of the study. Shortest and fastest paths were also
studied by Xuan et al. (2003) and we were inspired by their
all-pairs fastest path method to develop Algorithm 2 and 4.
The latter are relevant to compute some centralities because
metrics between all pairs of (temporal) nodes may be required.
To our knowledge, Xuan et al.’s method is the only of its kind
to return latencies between all pairs of nodes. More recently,
Casteigts et al. (2015) adopted the same strategies as Xuan
et al. for computing shortest and fastest paths in a distributed
way.

Casteigts et al. (2012) also offer a survey of temporal net-
works that includes many applications of shortest and fastest
paths. In particular, such paths can be used to study the reach-
ability of a temporal node from another. It appears from that
survey that either the distance or the latency is often used as
a temporal metric to evaluate how well a temporal node can
communicate with another. In this regard, the sf-metric can
be used as another temporal function since it combines the
temporal as well as the structural information into a single
map. Note that the notion of foremost paths (or journeys) is
also used by some authors (such as Casteigts et al. 2015) to
study temporal reachability. A foremost path only has minimal
arrival time, while its starting time is unconstrained. This type
of path is also useful in many studies and we expect that our
algorithms can be extended to those cases to output lengths
of shortest foremost paths. Finally, Casteigts et al. (2020) and
Thejaswi and Gionis (2020) studied another type of temporal
paths called restless, such that one cannot wait more that a
prescribed amount of time on each node. This is an interesting
constraint that we have not considered. However, we expect
that our methods can also be extended to fit these constraints.

Finally, observe that the link stream framework is also
close to the Time-Varying Graphs framework of Casteigts
et al. (2012). Thus, all results presented in this paper carry
to this other framework as well. We did not intend to survey
the different models of temporal graphs present in the litera-
ture, as this is out of the scope of this work. To the best of
our knowledge, there are two major models that allow edges
to have duration and allow time to flow continuously: the
Link Stream of Latapy et al. and the Time-Varying Graph
of Casteigts et al. Other models, such as temporal networks
(see Holme and Saramäki 2012), evolving graphs (Ferreira
2004) and temporal-event graphs (Mellor 2017) mostly focus
either on discrete timesteps or on zero transmission delay. Our
algorithms also work on those models. The time-dependent
network model mentioned by Brunelli et al. (2021) is slightly
more general than the link stream we use since it allows the
transmission delay over the edges to follow a non-constant
function.

4 Multiple‑targets shortest fastest paths
algorithms

The full implementations of the algorithms presented here, in
C++, can be found online (Simard 2019b).

We present here two main methods, Algorithms 1 and 2
that compute the distances, latencies and sf-metrics from one
source event node to all other event nodes. Algorithm 2 builds
on the first method to compute those values for all pairs of
event nodes. Section 4.4 also presents Algorithm 3 that was
derived from Algorithm 1. This new method works with posi-
tive delays, a case that is often considered in the literature.
Algorithm 4 also works with positive delays and is derived
from Algorithm 2. We focus on the first two algorithms.

We present some small results that lead the way to those
algorithms. The strategy for all methods is the same: we com-
pute the distances from any temporal node (sv, u) to (tv, v) such
that sv is the largest (or maximal) starting time from any (tu, u)
to (tv, v) . If it happens that tv − sv = l

(
(sv, u), (tv, v)

)
 , then this

distance is the sf-metric from the former to the latter temporal
node. Otherwise, since we iterate chronologically over � , this
latency must have been computed at a time earlier than tv and
is saved in memory.

All algorithms described in this section are presented in
Appendix A in order not to disrupt the reading.

4.1 Two simple lemmas

The algorithms we present compute what we call reachability
triples that contain information about the lengths of shortest
paths from one temporal node to another as well as the start-
ing and arrival times of those paths.

Social Network Analysis and Mining (2021) 11:51

1 3

Page 5 of 16 51

Definition 4.1 (Reachability triples) Let (ts, s) be an event
node. If there exists a shortest path of length l from (ts, s)
to the event node (ty, y) that starts on a largest starting time
t ∈ � , then we say (t, ty, l) is a reachability triple from (ts, s)
to y.

In the following, we write Rv for the dictionary of reach-
ability triples from a fixed source event node to any node v.
In order to reduce the cost of operations in Rv , we assume this
dictionary is implemented in such a way that Rv holds keys
sv and Rv[sv] holds pairs (av, dv) that form reachability triples
(sv, av, dv) . This makes it easier to search for starting times sv.

All algorithms compute distances from largest starting
times only. Those distances are contained in dictionaries Rv
for each v ∈ V as part of reachability triples. Note that if a link
stream reduces to a network, that is if the set of time instants
T is a singleton, then each Rv will contain the usual distances
from a fixed source to v. The temporal nature of a link stream
forces us to take starting and arrival times into account when
looking for shortest paths. Moreover, reachability triples could
also be defined without the constraint that starting times are
largest; however, the algorithms would not be as efficient
because the dictionaries would grow larger with |�|.

Lemma 4.2, due to Wu et al. (2014), states that shortest
paths are prefix-shortest. We say a path P(ts,s)(tu,u)

 from a tem-
poral node (ts, s) to another temporal node (tu, u) is a prefix of
another path P(ts,s)(tv,v)

 from the same source to temporal node
(tv, v) if P(ts,s)(tu,u)

 is a subsequence of P(ts,s)(tv,v)
.

Lemma 4.2 Let P(ts,s)(tv,v)
 be a shortest path from a temporal

node (ts, s) to another (tv, v) . Then, every prefix P(ts,s)(tu,u)
 of

P(ts,s)(tv,v)
 is a shortest path from (ts, s) to (tu, u).

Let (ts, s) and (t, v) be two temporal nodes. We define the
outer distance from (ts, s) to (t, v), d((ts, s), (t−, v)) , as either
limt0→t− d((ts, s), (t0, v)) , when t > ts , or d((ts, s), (t, v)) , when
ts = t . Lemma 4.3 suggests it suffices to compute distances
in induced graphs Gt for any time t to deduce the distances
between two temporal nodes.

Lemma 4.3 Let (ts, s) be a source temporal node and (ty, y)
be a temporal node reachable from the source by a non-empty
shortest path. Then, there exists ts ≤ t ≤ ty and a connected
component C of Gt such that

Proof Let P = (t1, u1, u2),… , (tn, un, un+1) be a non-empty
shortest path from (ts, s) to (ty, y) . Then, ty ≥ tn ≥ t1 ≥ ts and
u1 = s, un+1 = y . There exist non-empty subpaths in P of the
f o r m (tj, uj, uj+1),… , (tj, uk, uk+1) . L e t
Q = (tj, uj, uj+1),… , (tj, uk, uk+1) be such a subpath with the

(1)
d((ts, s), (ty, y)) = min

u,v∈C
d((ts, s), (t

−, u))

+ d((t, u), (t, v)) + d((t, v), (ty, y)).

largest number of elements. By Lemma 4.2, the prefix of P
from (ts, s) to (t−

j
, uj) is shortest and its length is

d((ts, s), (t
−
j
, uj)) . Moreover, the subpath of P from (tj, uk+1) to

(ty, y) must also be shortest with length d((tj, uk+1), (ty, y)) .
Finally, since P is shortest and the two subpaths formed by
P⧵Q are shortest, Q must also be a shortest path. Then, Q has
length d((tj, uj), (tj, uk+1)) . The result follows by letting t = tj
and C = {uj, uj+1,… , uk+1} be a connected component of
Gt . ◻

4.2 A single‑source method

In this section, we present Algorithm 1 that computes the
distances (from largest starting times), latencies and sf-metrics
from a source event node (ts, s) to all other reachable event
nodes. This algorithm mixes iterations on the induced graphs
Gt for each time t ∈ � with an all-pairs distances method on
their connected components. Recall that if s∗ is the largest
starting time from the source (ts, s) to some temporal node
(t, v), then either t − s∗ = l

(
(ts, s), (t, v)

)
 or not. If so, then

d((ts, s), (t, v)) is the sf-metric from (ts, s) to (t, v). This length
is computed with Lemma 4.3 by using the outer distances
saved in memory as well as the all-pairs distance method on
Gt . Thus, when we iterate over all pairs (sv, dv) of starting time
and outer distance from the source to (t, v), we can deduce
the duration and the length of the shortest fastest paths from
the source to (t, v). This method uses a set D that is assumed
sorted in lexicographic order. Sorting D helps lower the tem-
poral complexity, but is not fundamental to understand the
algorithm.

Remark 4.4 In all algorithms, we assume the dictionaries
use self-balanced binary trees in order to obtain logarithmic
worst-case complexities with simple structures. In our imple-
mentations, we used hash tables and heaps (see Remark 4.7)
to lower the running times.

Furthermore, all operations on dictionaries such as min and
max are well-defined whenever the relevant keys are present
in the dictionaries. We assume the absence of a key is properly
handled.

Before proving that Algorithm 1 is correct, let us go
through a small example in order to build intuition. Other
algorithms are highly similar.

Example 4.5 Consider again the link stream of Fig. 2. Suppose
the source is again (1, g), t = 7 and C = {a, b, c} . Thus, Algo-
rithm 1 will look for shortest (fastest) paths that can reach
temporal nodes (7, a), (7, b) and (7, c). The unique largest
starting time from the source to C at time 7 is sv = 4 . This
time is given by the greatest key in Ru for any u ∈ C . Then,
we iterate over the outer distances from (4, g) to (7, v) for each

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 6 of 16

v ∈ C . Note how the time of the source has changed from 1
to 4. By definition, and since the link stream is discrete, outer
distances are given as the distances from (4, g) to (6, v) for
each v ∈ C . Thus, we find outer distances 2 from (4, g) to
(7, c) and 3 from (4, g) to (7, b). Node a is discovered at time
7 and its outer distance does not exist before that. Finally,
combining the outer distances with the distances inside the
graph induced by C at time 7, we find that the distance from
(4, g) to (7, c) is 2, 3 from (4, g) to (7, b) and also 3 from
(4, g) to (7, a). This last distance is given by the combina-
tion between the outer distance from (4, g) to (7, c) and the
distance in C from (7, c) to (7, a). Since node a is discovered
first at time 7, that is its first arrival time from (1, g) is 7, then
the latency from (1, g) to (7, a) is l((1, g), (7, a)) = 7 − 4 = 3
and the distance from (1, g) to (7, a) is the sf-metric from the
former to the latter.

Proposition 4.6 Algorithm 1 correctly computes the laten-
cies and sf-metrics from a source event node to all other
reachable event nodes as well as the set of dictionaries
{Rv;v ∈ V} . It requires at most O

(
|V|2|�| log |�| + |V|3|�|

)

operations in the worst case.

Proof of correctness Let (tv, v) ∈ � × V be some
reachable destination. Let us show by induction on
� ∶= |{t0 ∈ �;tv ≥ t0 ≥ ts}| that d[(tv, v)] = df

(
(ts, s), (tv, v)

)
 ,

f [(tv, v)] = l
(
(ts, s), (tv, v)

)
 and Rv is correct up to time tv.

– When � = 1 , we iterate only on time ts and the result is
clear.

– Suppose the result holds for all k < 𝛥 . Let (t1,… , t�−1)
be the times previously iterated over on Line 3 and t� the
current time. By the induction hypothesis, by time t�−1 ,
all values of Rw , for all w ∈ V , are correctly updated. Let
Cv be the connected component of Gt�

 containing v. If
s ∈ Cv , then the result follows as in the case with � = 1 .
Then, suppose s ∉ Cv . Since each Rv is correctly updated
up to time t�−1 for each reachable v ∈ V , D contains triples
(−sw, dw,w) for each w ∈ Cv that have been visited prior
to t�−1 from the source from a starting time sw . The set
D contains the largest starting time sw from the source
to (t�,w) . Then, either t� + sw = l

(
(ts, s), (t�,w)

)
 or this

latency is given by some f [(t0,w)] such that t0 < t𝛥 . Let’s
iterate on (−sw, dw,w).

 By Lemma 4.3, there exists a time −sw ≤ ti ≤ t�
and a connected component Ci of Gti

 such that
d((−sw, s), (t�,w)) = minx,y∈Ci

d((−sw, s), (t
−
i
, x))

+d((ti, x), (ti, y)) + d((ti, y), (t�,w)) . The sequence of dis-
tances

d((−sw, s), (−sw, u)),… , d((−sw, s), (t�, u))

 is non-increasing for each u ∈ V because each element
is minimal. Thus, since w ∈ Cv , in particular this lemma
holds with ti = t� and Ci = Cv . Then,

 By the induction hypothesis, the outer distance
dx = d((−sw, s), (t�−1, x)) can be recovered from
(−sw, t�−1, dx) ∈ Rx for each x ∈ Cv . Then, using dx
and the dictionary d′ returned by the all-pairs distances
algorithm on Line 6, the expression above reduces to
d((−sw, s), (t�,w)) = minx∈Cv

dx + d�[(x,w)] . In the last
equation, the intermediary node x ∈ Cv over which the
minimum is taken is irrelevant. If y ∈ Ux , then the distance
from the source to y is the same as the distance from the
source to x. Thus, it holds that:

 Thus, when we iterate on the element (−sw, dw,w) from
D, we construct the set Uw of nodes at distance dw from
(−sw, s) at time t� . The last equation is thus used to insert
into Rw the right triple (−sw, t�, d((−sw, s), (t�,w))) for
each w ∈ Cv . When we have iterated over all of D, all dic-
tionaries Rv are correct at time t� . Finally, it suffices to
observe that once f [(t�,w)] is updated with its final value,
then by definition the update of d[(t�,w)] on Line 24 yields
the sf-metric from (ts, s) to (t�,w) for each w.

 ◻

Proof of complexity Let us write n ∶= |V|,mt ∶= |Et| and
� ∶= |�| . On each time t ∈ {t0 ∈ �;t0 ≥ ts} , we first look
up the connected components of Gt , which requires at most
O
(
n + mt

)
 operations. On each component C of Gt , we

run an all-pairs distances method, which makes at most
O
(
n2 + |C|mt

)
 operations. Observe that the O

(
n2
)
 factor is

for the initialization of a V × V array, which can be done once
for the whole link stream. In order to see if a node has been
reached at time t, it suffices at all previous times i to write
distance duv in d[u, v] as (i, duv).

For each node v ∈ V , the list in Rv[−su] contains at most �
elements since there can be at most as many pairs in Rv[−su]
as there are arrival times on v. The same goes for the number
of keys sv in Rv.

d((−sw, s), (t�,w)) = min
x,y∈Cv

d((−sw, s), (t
−
�
, x))

+ d((t�, x), (t�, y))

+ d((t�, y), (t�,w))

= min
x∈Cv

d((−sw, s), (t�−1, x))

+ d((t�, x), (t�,w)).

d((−sw, s), (t�,w)) = min
x∈Cv

dx + d�[(x,w)]

= min
x∈Cv

min
y∈Ux

dy + d�[(y,w)]

= min
x∈Cv

dx +min
y∈Ux

d�[(y,w)].

Social Network Analysis and Mining (2021) 11:51

1 3

Page 7 of 16 51

We only need one distance in Rv[−su] , thus one distance
per node, and D can be constructed with at most O(|C|) opera-
tions for all v ∈ C . Inserting and removing an element from
Rv[−su] takes at most O(log�) operations. The costliest opera-
tion is finding the value of dmin , which involves searching in
the set U of size |C| . This value is recomputed for every source
u ∈ C , destination w ∈ C and the set U ⊆ C changes with
every iteration. The for loop on Line 14 will make at most
O
(
|C|2(|C| + log |�|)

)
.

The for loop over Gt will make at most

Recall that
∑

t∈� mt = �E�� . Summing over all times in � , we
deduce a complexity of O

(
nm� + n2� log� + n3�

)
 . The final

complexity follows from the fact that E𝛺 ⊆ 𝛺 × V ⊗ V .
 ◻

Computing the minimum distance between all pairs of
nodes in a connected component C, while accounting for the
outer distances is tricky and leads to the factor of |V|3 . We
do not expect this can be much reduced. Indeed, in the worst
case all nodes of a time-induced graph Gt are reachable from
the source from different starting times and are in the same
connected component. Thus, |V| distances would have to be
updated. Following Eq. (1), in order to update the distance
from the source to any node w, we need to look at the dis-
tances from the source to any reachable node of Gt as well
as the distance from those nodes to w. In the worst case, this
amounts to running a single-source shortest path method on
Gt from w. Doing this |V| times on each induced graphs leads
to a lower bound of �

(
|V||E�|

)
.

Remark 4.7 Dictionary Rv might hold multiple triples (s, a, d)
with the same starting time s, that is Rv[s] can grow linearly
with |�| . This is the simplest implementation of this dic-
tionary that contains exactly all information. Since we only
query for the largest starting time and the smallest distance
(given that starting time), a more convenient way to imple-
ment Rv is with max and min heaps. Thus, Rv can be a max-
heap while Rv[sv] , for any key sv , would be a min-heap of
elements (dv, [a1v , a

2
v
]) , sorted on the distance dv . Here, a1

v
 is

the first arrival time on v from (sv, s) with distance dv , while a2
v

is the last one. This defines the interval [a1
v
, a2

v
] during which

shortest paths of length dv are known which summarizes with
one pair |�| amount of information. This would remove the
logarithmic factor from the complexity of Algorithm 1, which
in practice leads to significant improvement. However, since
the data structure is different, accessors to Rv would have to
be modified. Thus, if one specifically needs to know exactly

O
(
n2
)
+
∑

C⊆V

O
(
|C|mt + |C|2(|C| + log𝜔)

)

≤ O
(
nmt + n2 log𝜔 + n3

)
.

when a path of length dv arrives on v from (sv, s) , then this
structure would be inadequate.

Corollary 4.8 Algorithm 1 can be implemented with heaps
to make at most O

(
|V|3|�|

)
 operations.

Proof This follows from Proposition 4.6 and Remark 4.7.
 ◻

We use the sets V ,E� and � as parameters to evaluate the
temporal complexities of our algorithms. These appear as
natural choices since � indicates how the temporal dimen-
sion affects the number of operations while E� is a surrogate
for E, which is in general uncountable.

4.3 A multiple‑sources sf‑metrics method

Suppose � is finite and starts on some time a. Algorithm 2
returns a set of dictionaries of sf-metrics Duv for each pair of
nodes (u, v) ∈ V2 of dictionary Duv[suv] = (auv, duv) such that
l
(
(suv, u), (auv, v)

)
= auv − suv and d((suv, u), (auv, v)) = duv .

During its execution, it updates a dictionary D0 such that
Duv[t] = (auv, duv) , t ∈ Rv and (auv, duv) ∈ Rv[t] from
(a, u) ∈ T × V . This dictionary helps in computing D and in
constructing Rv from any source. It also returns a set of dic-
tionaries Fuv of latencies.

Proposition 4.9 Algorithm 2 returns the latencies, sf-met-
rics and dictionaries Rv between all pairs of nodes in at most
O
(
|V|3|�| log |�|

)
 operations.

Proof of correctness Let us show that D0[u, v][tv] holds correct
reachability triples from (a, u) to (tv, v) for any two nodes u, v
and time tv . Thus, let us fix those three variables. Let us show
this by induction on � ∶= |{t ∈ �;a ≤ t ≤ tv}|.

– If � = 1 , then either u and v are in the same connected
component C of Gtv

 or not. This part is clear.
– Suppose the result holds for any k < 𝛥 . Let (t1,… , t�−1) be

the sequence of times previously iterated over. Let Cv be
the connected component containing v at time t� . If u ∈ Cv ,
then we argue as in the first case and the result follows.
Otherwise, by the induction hypothesis, there must exist a
largest starting time sv from u to (t�, v) that can be found in
SA[u,w][t�−1] , for some w ∈ Cv since each such node w is
connected to v. Observe that SA[u, v][t�−1] contains pairs
of largest starting time and arrival time from u to (t�−1, v) .
Observe also that t� is again an arrival time on v. Thus,
it suffices to compute the distance from (sv, u) to (t�, v)
to obtain a reachability triple (sv, t�, dv) from (a, u) to v.
We argue as in the proof of Algorithm 1 that Algorithm 2
returns this distance dv . The update D[u, v][t�][s∗] ← d∗
again follows the same reasoning as before.

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 8 of 16

 ◻

Proof of complexity Again, let n ∶= |V|,mt ∶= |Et| and
� ∶= |�| . The costliest operations occur in the for loop start-
ing on Line 11. There are at most � keys on each SAuv , for
any u, v ∈ V . For any t ∈ � and u, v ∈ V , the size of SAuv[t]
is upper-bounded by � since the starting time is maximal.
Thus, at most O(log�) operations are required. Finding the
largest starting time sv requires in the worst case O

(
|Cv| log�

)

operations.
Dictionary D0

uv
[t] , for any u, v ∈ V and t ∈ � , has a size

at most �2 , thus the loop over Cv (on Line 16) to find dmin
requires at most O

(
|Cv| log�

)
 operations.

Meanwhile, inserting into SAuv takes at most O(log�) oper-
ations. The for loop on Line 11 thus makes at most:

operations. This loop is itself repeated for all connected com-
ponents C ⊆ V(Gt) , which in turn yields:

operations. Thus, this method should make at most
O
(
n2 + nmt

)
+ O

(
n3 log�

)
 operations in the worst case on

each time t. This number of operations is repeated at most �
times. Observe again that O

(
nm𝛺

)
⊂ O

(
n3𝜔

)
 . ◻

Observe that Algorithm 1 needs to be called |V| times in
order to deduce the lengths of all shortest fastest paths from
any source to any destination, since it discovers all starting
times from each source. The multiple-sources algorithm is
empirically faster when the desired output is the set of sf-
metrics from all sources to all destinations. The temporal
complexities of both methods are affected mostly by the
induced graphs Gt . In Sect. 4.4, we will see that complexities
decrease drastically on cases such as �-paths with 𝛾 > 0 since
we can remove the dependency on those time-induced graphs.
The complexity could also be reduced slightly with the use
of heaps; however, this would make accessing information
more difficult.

∑

u∈C

∑

v∈V⧵C

O
(
|Cv| log�

)
≤
∑

u∈C

∑

v∈V

O
(
|Cv| log�

)

≤
∑

u∈C

O
(
n2 log�

)

∑

C⊆V

∑

u∈C

O
(
n2 log𝜔

)
=
∑

u∈V

O
(
n2 log𝜔

)

4.4 Shortest paths with delays

In the literature on temporal walks, it is commonly assumed
that a path has a transmission delay � and we call this a �
-path. This is the case with Wu et al. whose algorithm we
wish to compare Algorithm 1 against since their shortest path
procedure is the most efficient known in temporal networks.
Transmission delays are natural when modeling the spread
of information and the time required for spreading is com-
mensurable with the time interval during which the network
is observed.

A � -pa t h i n a l i nk s t r eam i s a pa t h
(t1, u1, u2),… , (tn, un, un+1) such that ti ≥ ti−1 + � for all
1 < i ≤ n and some � ∈ ℝ+.1 We call � the delay and note
that the usual path corresponds to a 0-path. An example �
-path is shown in Fig. 3 from (0, d) to (2, a) with � =

1

2
 . Note

that with this choice of � , the subpath from (1, c) to (2, a) is
the unique path from the former to the latter temporal node.
When 𝛾 > 0 , it is not necessary to iterate over connected com-
ponents, since all nodes of a component do not communicate
with each other, and we can simplify Algorithm 1 and 2 in
order to reduce their numbers of operations. Thus, we present
Algorithm 3 and 4 that are deduced from Algorithm 1 and 2
and assume 𝛾 > 0 . Their correctness and temporal complexi-
ties follow from the same arguments used in Proposition 4.6
and 4.9.

Observe that since paths have delays, we must ensure an
edge appears long enough to be crossed given that delay.

Fig. 3 A �-path (in green) with � =
1

2
 from (0, d) to (2, a) (color fig-

ure online)

1 More generally, we could let � ∶ E → ℝ+ be a function of the edge
to traverse. This was not considered here, but our methods could be
extended for this case.

Social Network Analysis and Mining (2021) 11:51

1 3

Page 9 of 16 51

Proposition 4.10 When 𝛾 > 0 , Algorithm 3 computes the
latencies and sf-metrics from a source event node to all reach-
able event nodes as well as the set of dictionaries Rv , for all
v ∈ V , in at most O

(
|V| + |E�| log |�|

)
 operations.

Proof Correctness follows from the same reasoning as in
Proposition 4.6. For the complexity, we first initialize a dic-
tionary of |V| elements, then we iterate over all edges of E�
and perform logarithmic searches on lists that grow with |�|.

Note that, by the same argument as for Algorithm 1, the
complexity can be lowered to O

(
|V| + |E�|

)
 by using a com-

bination of max and min heaps.
Finally, in Algorithm 3, the dictionaries d and f are imple-

mented such that the keys are nodes and values are pairs (t, k)
such that t is the time value k is computed at that node. For
example, if (t, fv) ∈ f [v] , then the latency from the source to
(t, v) is fv . This enables us to sort dictionaries by time.

We also extended Algorithm 2 to the case of 𝛾 > 0 and
devised Algorithm 4. This method is also guaranteed by the
proof of Algorithm 2.

Proposition 4.11 When 𝛾 > 0 , Algorithm 4 returns the
latencies, sf-metrics and dictionaries Rv between all pairs of
nodes in at most O

(
|V|2 + |V||E�| log |�|

)
 operations.

Proof Correctness follows from Proposition 4.9. For complex-
ity, initialization alone of the dictionaries requires O

(
|V|2

)

operations. Let (t, uv) be an edge of E� . Then, searching in the
dictionaries for each values takes at most O(log |�|) opera-
tions when they are implemented as balanced trees. This is
repeated for all nodes w ∈ V⧵{v} and all edges (t, uv) ∈ E�.

5 Experiments

We present some experiments to highlight the running times
of our algorithms. In the first one, we compare Algorithm 3
with the single-source shortest path method from Wu et al.
Algorithm 3 (SSMD�) acts as a surrogate for Algorithm 1
(SSMD) since Wu et al. designed their method to work on
paths with strictly positive delays. Moreover, these authors
evaluated their method from a small set of source nodes on
large datasets and we follow the same procedure. In a sec-
ond experiment, we compared the running times of our two
methods for null delays on synthetic link streams. We also
compared Algorithm 2 (MSMD) and Algorithm 4 (MSMD�)
on synthetic link streams. Finally, we compared Algorithm 3
and 4 on the same task on some datasets.

Algorithm 2 was inspired by Xuan et al.’s fastest paths
method that does not return distances. Comparing the two
methods would be unfair against ours.

Remark 5.1 (Experimental setup) All experiments were run
on a single machine with 2.6 GHz Intel Core i7 processor and
16 Gb of RAM. All methods were implemented in C++ with
standard libraries, including Wu et al.’s method. We imple-
mented standard approaches to compute connected compo-
nents and all pairs distances in graphs. The full code can be
found online (Simard 2019b).

5.1 Runtime comparison with the literature

Let us compare how Algorithm 3 (SSMD�) fares against Wu
et al.’s shortest path algorithm. This is our comparison with
the literature.

Wu et al. analyzed their method with the framework of
temporal graphs. We translate their temporal complexity with
link stream parameters, upper bounding M with |E�| and dmax
with |�| . Thus, the shortest path algorithm of Wu et al. makes
at most O

(
|V| + |E�| log |�|

)
 operations in the worst case,

which is the same temporal complexity as SSMD�.
We ran experiments on link streams of various sizes, as

measured with |V| , |�| and |E�| . We used the same datasets
as Wu et al. and added some, randomly chose 200 different
source nodes from each and ran both methods one after the
other. The full results (in s) can be found in Table 1. The
running times of Wu et al.’s method are comparable to those
of SSMD� . Our method does more operations, since it must
compute latencies as well and ensure the distances correspond
to the sf-metrics, so this is encouraging and unexpected. All
datasets are heterogenous, which explains the variability in
running times and we have not yet pinpointed any hidden link
stream parameter that would precisely explain this variability,
including the measure used for the visualizations of Fig. 4.

Remark 5.2 (Notes on the datasets used) The datasets are
only used as benchmarks. They all describe discrete tempo-
ral networks and can be found as part of the konect library of
networks (Kunegis 2013). Only the values of the parameters
|V|, |�| and |E�| are extracted in Table 1 since only these were
required for our experiments.

A short description of the datasets used follows in Appen-
dix B. Figure 4 shows the temporal evolution of some network
measures on two of the datasets used: Arxiv-Hepph and Wiki-
conflict. On each, we sampled 0.1% of the dataset to build a
sublink stream. On each sublink stream and on each induced
graph Gt , we evaluated the density of Gt and normalized the
values to [0, 1]. We chose this measure as an indicator of the
temporal evolution of each dataset. It shows how varied the
datasets are. Even though in both cases we observe strong
fluctuations in the density, in the Wikiconflict dataset the den-
sity appears stratified. Meanwhile, in the Arxiv-Hepph dataset
this density is mostly low and takes more distinct values in the
range [0, 0.4], which hints that its connectivity varies more
than in the other dataset. The Wikiconflict therefore seems to

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 10 of 16

have groups of edges of similar sizes appear at regular times,
while in the other dataset there is a less obvious pattern in the
appearances of edges.

Remark 5.3 (Further implementation details) Previous results
(Simard 2019a) showed SSMD� to be unstable on some data-
sets compared with Wu et al. This can be explained by the
data structure used to implement R . Note that Rv[sv] , for any
node v and starting time sv , can grow as O(|�|) which can
be large. Thus, even logarithmic search in this structure can
be costly. Notice also that we only ever need the largest key
of Rv and the smallest distance of Rv[sv] . Thus, we reimple-
mented dictionary R with (max/min)-heaps as explained in
Remark 4.7. This provides constant time access to the larg-
est/smallest element. This is a choice of implementation to

increase the performance of this method and all results pre-
sented here that specifically test the performance of SSMD�
used that implementation. The new method is considerably
faster and is comparable with Wu et al.’s method. We did not
reimplement the latter’s method using heaps because at each
step they remove dominated elements which naturally tends
to make their structures smaller.

Figure 2 shows statistics on the running times and ratios
between Algorithm 3 and Wu et al. Observe that even with
large running times, the ratios

(
SSMD�

Wu et al.

)
 are still decent.

5.2 Comparison between algorithms SSMD
and MSMD

Algorithms SSMD and MSMD were run on a set of randomly
generated link streams of size |V| ranging from 100 to 170,
with increments of 10. Although the link streams are small
in scale, the running times are significant since we compute
the distances from every source to every destination. The link
streams were constructed by generating Erdös-Renyi graphs
G(n, p), with n = |V| and p = 0.7 . Then, on each edge (u, v),
we drew a time instant t ∈ {0, 1,… , 7} uniformly at random
and added both directed edges (t, uv) and (t, vu) to E. In this
case, edges have no duration and the time instants are integers:
this helps ensure the size of � is fixed and small, so the run-
ning times scale only with |V| and |E�|.

Figure 5a shows the running times of each algorithms on
a link stream with a fixed number of nodes. We observe that,
as the number of nodes involved increases, the amount of
time taken by SSMD grows faster than that of MSMD . This
gives clear indication that this latter method is faster than
the former. In terms of scale, the MSMD method manages
a link stream of 170 nodes and about 20,000 edges in less
than 3 s. Its counterpart takes more than 25 min for the same
calculations.

Since MSMD is more scalable than SSMD , we generated a
new set of link streams, again with the same process as before,
with time instants drawn uniformly at random in the set
{0,… , 10} while the duration of an edge (t, uv) is drawn uni-
formly at random in the subset {0,… , 10 − t} . In that case, the
size of � barely varies. We let |V| ∈ {10, 20,… , 190, 200} .
The results are summarized in Fig. 5b. We fitted, with the sta-
tistical software R (R Core Team 2013), a linear model on the
runtime of MSMD as function of |E�| in order to extrapolate
the runtime of this method for larger values of link stream
parameters. Since the number of nodes and event times are
low compared to the number of edges, the trend is linear in
the number of edges. The fit is reasonable and this is sufficient
to illustrate the scaling trend. Extrapolating, we obtain the
values shown with the blue line. The trend does not suggest
the method is at this point scalable to big link streams as in

Fig. 4 Visualization of the temporal evolution of the density on sub-
link streams of two datasets, Arxiv-Hepph and Wikiconflict. Each
sublink stream was constructed by sampling 0.1% of the dataset. On
each sublink stream, we evaluated on each induced graph Gt the den-
sity of Gt . Values are normalized to [0, 1]

Social Network Analysis and Mining (2021) 11:51

1 3

Page 11 of 16 51

general the sizes of V and � would also grow to be much
larger than in this experiment.

5.3 MSMD against MSMD on synthetic link streams
with varying densities

We ran algorithms MSMD and MSMD� side-by-side on syn-
thetic link streams to see how well the latter performs against
the former. It is expected that MSMD� would be faster. How-
ever, instead of looking at the trend on link streams with vary-
ing number of nodes, we investigated this trend against the
density of the stream. Thus, we constructed link streams as
before from graphs G(n, p), while varying the parameter p
instead of n. The density of the resulting link stream varies
with p. The number of nodes is fixed to 200 and edges have
positive integer duration, to allow duration while keeping the
cost of computation low.

Experimentally, the density of each time-induced graph of
the link stream affects the performance of MSMD� against
MSMD . This can be seen in Fig. 6: as the value of p increases,
after a threshold around p ≈ 0.63 , MSMD� takes longer to
complete than MSMD . This suggests that when many edges
appear at the same time, it becomes advantageous to compute
all-pairs distances in the time-induced graphs and reuse them
on each connected components. Note that these do not solve
exactly the same problem since one works with 𝛾 > 0 while
the other does not. However, if the choice of � is a modeling
parameter,2 this can be interesting to take into account. It is
not clear why the running time of MSMD is decreasing for

Table 1 Runtime comparisons
(in s) between SSMD� and Wu
et al.’s method

Datasets with runtime less than 10 s are in bold

Dataset |V| |�| |E�| Wu et al. SSMD� Runtime ratio

facebook-wosn 63731 204914 817035 16.40 12.90 0.8
contact 274 15662 28244 1.00 1.16 1.2
lkml person 337509 624757 1565683 54.20 18.80 0.3
delicious ut 4512099 1583 301186579 5190.00 8740.00 1.7
movielens 16528 34535 95580 2.49 1.20 0.5
dnc 1891 10176 39264 1.12 1.35 1.2
enron 87273 178721 1148072 23.10 22.40 1.0
munmun twitter 530418 175218 4664605 174.00 196.00 1.1
lastfm band 174077 1058994 19150868 103.00 124.00 1.2
elec 7118 90741 103675 3.77 3.43 0.9
epinions-rating 755760 501 13668320 137.00 75.60 0.6
flickr-growth 2302925 134 33140017 1400.00 2180.00 1.6
dblp 12590 30 49759 1.18 0.36 0.3
sociopatterns hyper 113 973 20818 0.28 0.25 0.9
digg 30398 9125 87627 3.67 1.62 0.4
prosper loans 89269 1259 3394979 33.10 27.30 0.8
sociopatterns infect 410 223 17298 0.47 0.37 0.8
delicious ui 25221771 1583 301186579 6950.00 2200.00 0.3
mit 96 33452 1086404 14.30 13.20 0.9
wikiconflict 116836 215982 2917785 37.70 40.80 1.1
slashdot-threads 51083 67327 140778 9.16 6.18 0.7
lastfm song 1084620 1058994 19150868 197.00 91.20 0.5
arxiv-hepph 28093 2337 4596803 56.70 57.90 1.0
youtube-growth 3223585 203 9375374 518.00 299.00 0.6

Table 2 Summary statistics of
running times (in s) between
algorithms SSMD� and Wu
et al. (2014), with Q. standing
for quartile

The ratio goes above 1 only at about the 3rd quartile. Outliers still exist

Method Min 1st Q. Median Mean 3rd Q. Max

SSMD� (s) 0.25 1.55 20.6 588.0 99.4 8740
Wu et al. (s) 0.28 3.38 28.1 622.0 146.0 6950
Ratios 0.31 0.53 0.85 0.84 1.09 1.68

2 The choice of whether � should be positive or null depends on the
application. For example, if one models the interactions in minutes
between individuals that meet face-to-face, then the transmission
delay � between any two individuals is negligible.

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 12 of 16

low probabilities, p ∈ (0, 0.25) . Recall that the connectivity
threshold of G(n, p) is log n

n
 . Evaluating this adjusted threshold

in the form of log |V||�|
|V||�| ≈ 0.035 does not explain why the two

lines intersect.

Remark 5.4 In link streams, whether edges have durations or
not and whether those durations are integers or real numbers
can slow down our methods as durations influence the sizes
of � and E� . Running times with real edge durations can
sometimes be prohibitive, so we focused our experiments on
integer durations.

5.4 Comparing algorithms SSMD and MSMD
on real datasets

Algorithm MSMD� can terminate in reasonable time on some
datasets, as opposed to MSMD . In order to probe this method
further, we tested how long it would take for this method to
terminate on some datasets against SSMD�.

We compared both methods on selected datasets on which
SSMD� took less than 10 s to finish (as observed in Table 1).
This way, we could expect it to finish in a decent amount of
time from all sources. We ran SSMD� from all sources along-
side MSMD� . For the same task, it is faster to run the special-
ized method MSMD� . However, note that both methods could
finish in a short amount of time on real-world datasets, which
is positive. Statistics on the running times of both methods are
summarized in Table 3.

(a)

(b)

Fig. 5 Runtimes (in s) of algorithms SSMD and MSMD on synthetic
link streams. Link streams are generated randomly with fixed seed
(color figure online)

Fig. 6 Running time (in s) of MSMD� (in red) and MSMD (in blue)
on synthetic link streams generated with G(200, p) with varying val-
ues of p. As p increases, so does the density of each induced graphs,

favoring MSMD over MSMD� . Edges have positive integer duration
(color figure online)

Social Network Analysis and Mining (2021) 11:51

1 3

Page 13 of 16 51

6 Conclusion

In this paper, we presented different algorithms to compute
metrics between pairs of event nodes. As opposed to similar
known algorithms, those methods return all metrics at once
in a single pass over the dataset. Moreover, the starting and
arrival times of shortest paths are returned, which is valuable
information to compute, for example, the betweenness central-
ity of temporal nodes.

Algorithm SSMD works from a fixed source and is suit-
able when not all pairwise metrics are required. Our experi-
ments show that SSMD� is comparable to the state-of-the-
art method to compute distances from a source node to all
other nodes. These results improve on previous ones (Simard
2019a) and make use of a more efficient data structure. Even
though some experiments are advantageous to our methods,
we do not claim they are in general faster than the state of the
art. However for the task at hand of computing all metrics
at once on a link stream, we think we can fairly conclude
that our methods are usable in practice. The experiment in
Sect. 5.1 was designed to illustrate if SSMD� could be used
in real-world setting. Thus, comparing it to another short-
est path method is relevant since it does not do significantly
more operations that this type of algorithm. One could surely
implement the shortest path algorithm of Wu et al. to make it
faster than SSMD�.

In practice, MSMD has finished its task faster than its
counterpart on synthetic link streams. Since the link streams
used were smaller than what we would expect from real-
world instances, we extrapolated the running times produced
by MSMD . At this point, scalability is an issue, when � = 0 ,
and we could not expect to run this method on realistic link
streams and obtain results in a reasonable amount the time.
Thus, in order to speed up the computation time, we suggest
studying how to lessen the amount of operations in either
methods by skipping some temporal nodes and extrapolating
the distances. Also, finding ways not to have to recompute

the connected components and the all-pairs distances at every
time would also be helpful in improving both methods.

Both algorithms SSMD� and MSMD� , when 𝛾 > 0 , could
finish their task on some datasets in a decent amount of time.
Algorithm MSMD� took less than 30 s to finish all tasks, even
on datasets of almost 100, 000 edges. Thus, in that case, real-
istic datasets of decent size could be handled by our methods.

In light of our experiments as well as the recent literature
(see Himmel et al. 2019), it would be interesting to have a
lower bound on the complexity of computing our metrics.
Since shortest paths methods seem to be based on the same
arguments as shortest paths algorithms in graphs, it might
also be relevant to deduce a lower bound in terms of the latter.
That is, how much slower is it to compute distances in a link
stream as opposed to computing distances in a graph? Can this
complexity be expressed in terms of natural parameters of the
link stream such as V ,� and E�?

Aside from scalability, another limitation of this study lies
in the ordering of the objective functions we chose to opti-
mize. Namely, we compute lengths of shortest fastest paths. If
one were to require lengths of fastest shortest paths, our meth-
ods would need to be redesigned. Moreover, the multitude of
possible combinations of optimal paths to compute (foremost
paths, shortest foremost paths, etc.) is not all considered in
this work. Brunelli et al. tackled this limitation by building
a more general framework for optimal paths. We believe our
methods can be modified to compute some other types of
paths combining temporal and structural information hierar-
chically, such as shortest foremost paths. In turn, those paths
can be used to compute other centralities than the betweenness
centrality or to investigate different topics such as reachability.
In Algorithm 3, for example, whenever we consider an edge
(t, uv) with u ≠ s , we have access to the last arrival time au
from the source at time su . If we instead considered the first
such arrival time, then we could decide if the path from (su, s)
to (t, v) that involves the edge (t, uv) is restless (see Casteigts
et al. 2020) or not and update the relevant dictionaries accord-
ingly, say of restless reachability triples.

Table 3 Summary statistics of
the running times (in s) between
algorithms SSMD� and MSMD�

In practice, SSMD� is faster on some datasets than its counterpart. However, statistically MSMD� is better
suited to compute all metrics

Method Min 1st Q. Median Mean 3rd Q. Max

SSMD� (s) 1.10 2.89 3.77 48.80 71.0 216.0
MSMD� (s) 0.30 2.16 3.97 12.90 24.6 27.6

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 14 of 16

Algorithms

Social Network Analysis and Mining (2021) 11:51

1 3

Page 15 of 16 51

Datasets

The following datasets were used in the experiments. More
documentation can be found online (Kunegis 2019). Datasets
are part of the KONECT project (Kunegis 2013). Descriptions
below are found in the directories of the datasets.

 1. arxiv-hepph A co-citation network from the website
arXiv arxiv. org of scientific papers. Papers are taken
from the high energy physics phenomenology (hep-ph)
section. Two papers are linked if they are both cited by
another paper, with the timestamp indicating the date of
the latter’s publication.

 2. contact A network of human contacts. It describes
the Haggle network, a project funded by the European
Union. Each edge describes a contact between two per-
sons measured by carried wireless devices.

 3. dblp A citation network. Extracted from the website
dblp. uni- trier. de/ of scientific publications. Nodes are
publications and two publications are linked if one cites
the other.

 4. delicious ui A user-url network from the web-
site https:// del. icio. us (now deprecated). Edges connect
users to the urls they tagged.

 5. delicious ut An interaction network from the same
website. Edges connected users to the tags they used.

 6. digg A communication network. Extracted from the
website digg. com. Edges connect two users when one
replied to the other.

 7. dnc A communication network. Extracted from the
2016 Democratic National Committee email leak of the
american Democratic Party. Edges connect two people
if one sent an email to the other.

 8. elec An online contact network. Represents admin
elections in the English Wikipedia. Edges connect two
users if one voted for or against the other.

 9. enron A communication network. Describes email
exchanges in the former company Enron.

 10. epinions-ratings A ratings network. The web-
site seems deprecated. Each edge connects a user and a
product they rated.

 11. facebook-wosn A social network. Data are extracted
from a portion of the website Facebook faceb ook. com.
Edges connect users that are friends on the website.

 12. flickr-growth A social network. Edges describe
friendship connections on the website flickr. com.

 13. lastfm band An interaction network between users
and bands. From the website last. fm. Edges connect
users to bands they listened to.

 14. lastfm song An interaction network between users
and songs listened. From the same website as above,
edges connect users to songs they listened to.

 15. lkml person An interaction network of people on
the Linux Kernel Mailing List (lkml). Edges connect
people to threads in the mailing list they contributed to.

 16. mit A human contact network. Edges connect 100 stu-
dents when they had contact with each other.

 17. movielens An interaction network. Extracted from
the website http:// movie lens. umn. edu/. Edges connect
users to the tags they used.

 18. munmun twitter An interaction network of users
and tags. Extracted from the website twitt er. com. Edges
connect users to the tags they used in tweets.

 19. prosper loans An interaction network. Extracted
from the website prosp er. com. Edges connect people
(lenders) to other people (borrowers) to whom they lent
money.

 20. slashdot-threads A comunication network.
Extracted from the website https:// slash dot. org/. Edges
connect users when one replied to another.

 21. sociopatterns hyper A human contact network.
Edges represent face-to-face contacts of more than 20 s.

 22. sociopatterns infect A human contact net-
work. Edges represent face-to-face contacts of more
than 20 s.

 23. wikiconflict A network of online contacts.
Extracted from the english Wikipedia https:// en. wikip

http://arxiv.org
http://dblp.uni-trier.de/
https://del.icio.us
http://digg.com
http://facebook.com
http://flickr.com
http://last.fm
http://movielens.umn.edu/
http://twitter.com
http://prosper.com
https://slashdot.org/
https://en.wikipedia.org/wiki/Main_Page

 Social Network Analysis and Mining (2021) 11:51

1 3

 51 Page 16 of 16

edia. org/ wiki/ Main_ Page. Each edge connects users to
other users with whom they are in editing conflicts.

 24. youtube-growth A social network. Extracted from
the website youtu be. com. Edges connect users with their
friends on the platform.

Acknowledgements The authors would like to thank the Professors
Paola Flocchini, Jean-Lou De Carufel and Nicola Santoro for their valu-
able insights.

Funding This work was supported by the Fonds de Recherche Québécois
Nature et Technologies (FRQNT) (Grant No. 197014).

Declarations

Conflicts of interest There are no conflicts of interest.

Code availability Implementations of the four algorithms developed in
this work are available online: Simard (2019b). The datasets used are
also available on the web: Kunegis (2019).

References

Brunelli F, Crescenzi P, Viennot L (2021) On computing Pareto opti-
mal paths in weighted time-dependent networks. Inf Process Lett
168:1–12. https:// doi. org/ 10. 1016/j. ipl. 2020. 106086

Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-var-
ying graphs and dynamic networks. Int J Parallel Emergent Distrib
Syst 27(5):387–408

Casteigts A, Flocchini P, Mans B, Santoro N (2015) Shortest, fastest,
and foremost broadcast in dynamic networks. Int J Found Comput
Sci 26(4):499–522. https:// doi. org/ 10. 1142/ S0129 05411 55002 88

Casteigts A, Himmel AS, Molter H, Zschoche P (2020) Finding tem-
poral paths under waiting time constraints. In: 31st international
symposium on algorithms and computation (ISAAC 2020), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik

Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Ves-
pignani A (2010) Dynamics of person-to-person interactions from
distributed RFID sensor networks. PLoS ONE 5(7):1–9. https:// doi.
org/ 10. 1371/ journ al. pone. 00115 96

Ciaperoni M, Galimberti E, Bonchi F, Cattuto C, Gullo F, Barrat A
(2020) Relevance of temporal cores for epidemic spread in temporal
networks. Sci Rep 10(1):1–15. https:// doi. org/ 10. 1038/ s41598- 020-
69464-3 (arXiv:2003.09377)

Cinelli M, Quattrociocchi W, Galeazzi A, Valensise CM, Brugnoli E,
Schmidt AL, Zola P, Zollo F, Scala A (2020) The covid-19 social
media infodemic. Sci Rep 10(1):1–10

Colson B, Marcotte P, Savard G (2007) An overview of bilevel opti-
mization. Ann Oper Res 153(1):235–256. https:// doi. org/ 10. 1007/
s10479- 007- 0176-2 (arXiv:1011.1669v3)

Ferreira A (2004) Building a reference combinatorial model for
MANETs. IEEE Netw 18(5):24–29. https:// doi. org/ 10. 1109/ MNET.
2004. 13377 32

Himmel AS, Bentert M, Nichterlein A, Niedermeier R (2019) Efficient
computation of optimal temporal walks under waiting-time con-
straints. arXiv:1909.01152

Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–
125. https:// doi. org/ 10. 1016/j. physr ep. 2012. 03. 001

Kempe D, Kleinberg J, Kumar A (2002) Connectivity and inference
problems for temporal networks. J Comput Syst Sci 64(4):820–842.
https:// doi. org/ 10. 1006/ jcss. 2002. 1829

Kunegis J (2013) Konect: the koblenz network collection. In: Proceed-
ings of the 22nd international conference on world wide web. ACM,
pp 1343–1350

Kunegis J (2019) The konect project. http:// konect. cc/. Accessed: 21
Oct 2019

Latapy M, Viard T, Magnien C (2018) Stream graphs and link streams
for the modeling of interactions over time. Soc Netw Anal Min
8(1):61

Li M, Xin J, Wang Z, Liu H (2019) Accelerating minimum temporal
paths query based on dynamic programming. In: International
conference on advanced data mining and applications. Springer,
pp 48–62

Mellor A (2017) The temporal event graph. J Complex Netw 6(4):639–
659. https:// doi. org/ 10. 1093/ comnet/ cnx048

Moinet A, Pastor-Satorras R, Barrat A (2018) Effect of risk perception on
epidemic spreading in temporal networks. Phys Rev E 97:012313.
https:// doi. org/ 10. 1103/ PhysR evE. 97. 012313

R Core Team (2013) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria,
http:// www.R- proje ct. org/

Simard F (2019a) On computing distances and latencies in Link Streams.
In: Proceedings of The 2019 IEEE/ACM international conference
on advances in social networks analysis and mining. ACM, Van-
couver, Canada

Simard F (2019b) SSMD and MSMD repository. https:// bitbu cket. org/
simfr 404/ links treams_ cpp/ src/ master/. accessed: 18 May 2021

Simard F, Magnien C, Latapy M (2021) Computing betweenness central-
ity in link streams. arXiv preprint arXiv:210206543

SocioPatterns (2021) Sociopatterns collaboration. www. socio patte rns.
org. Accessed: 18 May 2021

Stehlé J, Charbonnier F, Picard T, Cattuto C, Barrat A (2013) Gender
homophily from spatial behavior in a primary school: a sociometric
study. Soc Netw 35(4):604–613. https:// doi. org/ 10. 1016/j. socnet.
2013. 08. 003

Tang J, Musolesi M, Mascolo C, Latora V (2010a) Characterising tempo-
ral distance and reachability in mobile and online social networks.
ACM SIGCOMM Comput Commun Rev 40(1):118. https:// doi. org/
10. 1145/ 16723 08. 16723 29

Tang J, Musolesi M, Mascolo C, Latora V, Nicosia V (2010b) Analysing
information flows and key mediators through temporal centrality
metrics. In: Proceedings of the 3rd workshop on social network
systems (SNS ’10). ACM, Paris, France. https:// doi. org/ 10. 1145/
18526 58. 18526 61

Thejaswi S, Gionis A (2020) Restless reachability in temporal graphs.
arXiv preprint arXiv:201008423

Wu H, Cheng J, Huang S, Ke Y, Lu Y, Xu Y (2014) Path problems in
temporal graphs. Proc VLDB Endow 7(9):721–732. https:// doi. org/
10. 14778/ 27329 39. 27329 45

Xuan BB, Ferreira A, Jarry A (2003) Computing shortest, fastest, and
foremost journeys in dynamic networks. Int J Found Comput Sci
14(02):267–285

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://en.wikipedia.org/wiki/Main_Page
http://youtube.com
https://doi.org/10.1016/j.ipl.2020.106086
https://doi.org/10.1142/S0129054115500288
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1038/s41598-020-69464-3
https://doi.org/10.1038/s41598-020-69464-3
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1109/MNET.2004.1337732
https://doi.org/10.1109/MNET.2004.1337732
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1006/jcss.2002.1829
http://konect.cc/
https://doi.org/10.1093/comnet/cnx048
https://doi.org/10.1103/PhysRevE.97.012313
http://www.R-project.org/
https://bitbucket.org/simfr404/linkstreams_cpp/src/master/
https://bitbucket.org/simfr404/linkstreams_cpp/src/master/
http://www.sociopatterns.org
http://www.sociopatterns.org
https://doi.org/10.1016/j.socnet.2013.08.003
https://doi.org/10.1016/j.socnet.2013.08.003
https://doi.org/10.1145/1672308.1672329
https://doi.org/10.1145/1672308.1672329
https://doi.org/10.1145/1852658.1852661
https://doi.org/10.1145/1852658.1852661
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/2732939.2732945

	Evaluating metrics in link streams
	Abstract
	1 Introduction
	1.1 Shortest fastest paths
	1.2 Contributions and impact

	2 Background
	3 Related work
	4 Multiple-targets shortest fastest paths algorithms
	4.1 Two simple lemmas
	4.2 A single-source method
	4.3 A multiple-sources sf-metrics method
	4.4 Shortest paths with delays

	5 Experiments
	5.1 Runtime comparison with the literature
	5.2 Comparison between algorithms and
	5.3 against on synthetic link streams with varying densities
	5.4 Comparing algorithms and on real datasets

	6 Conclusion
	Acknowledgements
	References

