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Retrotransposons have played a central role in human genome evolution.

The accumulation of heritable L1, Alu and SVA retrotransposon insertions

continues to generate structural variation within and between populations,

and can result in spontaneous genetic disease. Recent works have reported

somatic L1 retrotransposition in tumours, which in some cases may con-

tribute to oncogenesis. Intriguingly, L1 mobilization appears to occur

almost exclusively in cancers of epithelial cell origin. In this review, we dis-

cuss how L1 retrotransposition could potentially trigger neoplastic trans-

formation, based on the established correlation between L1 activity and

cellular plasticity, and the proven capacity of L1-mediated insertional

mutagenesis to decisively alter gene expression and functional output.

Introduction

Mobile genetic elements (MEs) are found in nearly all

eukaryotic genomes. MEs can be divided into two

major classes, transposons and retrotransposons.

Transposons use a ‘cut-and-paste’ process to relocate

in genomic DNA, whereas retrotransposons mobilize

through an RNA intermediate in a ‘copy-and-paste’

mechanism termed retrotransposition. ME sequences

account for at least 45% of human DNA [1], with

some estimates ranging as high as 66% [2], mainly due

to the activity of the long interspersed element 1

(LINE-1 or L1) retrotransposon family. L1 is present

in all mammals and, in humans, it is the only retro-

transposon that remains capable of autonomous mobi-

lization [3,4]. A retrotransposition-competent L1 is

~ 6 kb in length [5,6]. The core L1 sequence comprises

a bicistronic ORF that encodes two proteins, ORF1p

and ORF2p, which are essential for L1 mobilization.

ORF1p is a 40 kDa protein with nucleic acid binding

activity [7,8] and ORF2p is a 150 kDa protein with

demonstrated endonuclease and reverse transcriptase

activities [9,10]. The L1 5′-UTR harbours an internal

promoter [11], as well as an antisense promoter of

unclear function [12]. New L1 insertions are typically

flanked by target-site duplications, a hallmark of the

L1 integration process [13].

L1 retrotransposition begins with the transcription

of a full-length mRNA from the L1 internal promoter.

This mRNA is transported to the cytoplasm and trans-

lated, giving rise to the L1-encoded proteins. ORF1p

and ORF2p bind to their encoding L1 mRNA in a

phenomenon termed cis preference, forming the L1

ribonucleoprotein particle [7,14–18]. The L1 ribonu-

cleoprotein particle gains access to the nucleus by a

mechanism that is not completely understood, but can
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occur independently of nuclear envelope breakdown

during cell division [19]. Inside the nucleus, L1 integra-

tion occurs by a mechanism termed target-site primed

reverse transcription [20]. During target-site primed

reverse transcription, ORF2p endonuclease activity

produces a single-stranded nick in genomic DNA,

exposing a free 3′ hydroxyl residue that serves as a pri-

mer from which the ORF2p reverse transcriptase activ-

ity synthesizes a cDNA copy of its associated L1

mRNA [9,16,21]. Despite the marked cis preference of

L1 proteins for their encoding mRNA [16], other cellu-

lar RNAs can be mobilized in trans by the L1 enzy-

matic machinery. These sequences include the non-

autonomous retrotransposons Alu and SVA, as well as

protein-coding mRNAs, the reverse transcription of

which gives rise to processed pseudogenes [14,22–24].
Thus, L1 has played a pivotal role in human genome

evolution.

Of ~ 500 000 L1 copies in the human genome, the

vast majority have been rendered immobile by 5′ trun-
cation, internal deletions and other mutations [1]. As a

consequence, only 80–100 retrotransposition-competent

L1s, as well as an estimated 2000–3000 Alu and < 100

SVA copies, are found per individual [25–27]. These ele-
ments continue to drive pervasive genetic variation in

human populations [28–34]. Spontaneous and inherited

occurrences of insertional mutagenesis mediated by L1

have been observed in > 100 diseases, including diabe-

tes, haemophilia and cancer [4,35–37]. Presumably to

limit deleterious mobilization events, eukaryotic cells

have developed several defence mechanisms that affect

various stages of the retrotransposition process (Fig. 1).

Foremost among these is the methylation of retrotrans-

poson promoters to enforce transcriptional repression,

as seen in numerous spatiotemporal and environmental

contexts in which methylation of the canonical L1 pro-

moter is inversely correlated with its expression [38–40].
Numerous epigenetic modifiers participate in retro-

transposon silencing, including the DNA methyltrans-

ferase-like protein Dnmt3L, which is critical for

Dnmt3A-mediated methylation of retroelements in pri-

mordial germ cells [41,42]. Suppression of retrotranspo-

sition is also reinforced in germ cells by small RNAs,

including the Piwi-interacting RNA silencing pathway

[43,44]. Interestingly, abrogated retrotransposon

promoter methylation due to methyltransferase and

Piwi-interacting RNA inactivation has been described

in association with spermatogenic disorders, illustrating

the evolutionary importance of these suppression mech-

anisms [41,45]. Piwi-interacting RNAs, along with other

small RNAs, including repeat-associated small interfer-

ing RNAs and micro-RNAs, also act to degrade retro-

transposon transcripts via RNA interference [46–51].

Insights gained from human cancer cells [52], as well as

other eukaryotes, suggest that RNA interference is a

highly conserved defence against retrotransposition,

particularly in germ cells [50,53–55].
Epigenetic and post-transcriptional suppression of

retrotransposition are complemented by host factors

that target L1 target-site primed reverse transcription

intermediates during the generation of new insertions.

The exonuclease Trex1, for instance, metabolizes

reverse transcribed retrotransposon DNA [56]. Numer-

ous studies have reported restriction of L1 mobiliza-

tion in cultured cells by members of the APOBEC3

(A3) family of cytidine deaminases [57–63], although

deaminase-dependent and -independent modes of

action likely play roles in retroelement restriction by

different A3 factors. Notably, two studies recently

reported a pan-cancer APOBEC3 mutagenesis signa-

ture [64,65], indicating that APOBEC3 deaminases can

target genomic DNA and suggesting a role for APO-

BEC3-mediated deamination in the accumulation of

mutations during oncogenesis. Thus, paradoxically,

APOBEC3 activity might protect cells from potentially

oncogenic retrotransposition events, yet exact a muta-

genic toll of its own if not tightly regulated. Another

factor, the putative RNA helicase MOV10, has been
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Fig. 1. L1 retrotransposition and silencing pathways. L1

mobilization requires the key steps of transcription, mRNA export

to the cytoplasm, translation, ribonucleoprotein particle formation,

entry into the nucleus and, finally, integration. The Piwi-induced

methylation silencing pathway involves a selective amplification

cycle fuelled by Piwi-mediated cleavage of L1 transcripts. The

repeat-associated small interfering RNA degradation pathway is

regulated by the generation of siRNAs from dsRNAs by Dicer and

the fragmentation of L1 RNAs by AGO family proteins. L1

integration is also inhibited by several host factors, including

members of the APOBEC3 family. Proteins and RNAs implicated in

L1-silencing pathways are represented in blue. L1 RNAs and

proteins are represented in pink.
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demonstrated to restrict L1 retrotransposition in

cultured cells [66–68]. MOV10 associates with the key

RNA-induced silencing complex component AGO2

and the L1 ribonucleoprotein particle, and may

thereby degrade, or block the translation of, L1

mRNAs [69]. This relationship, along with the evolu-

tionary conservation of RNA interference in germ

cells, underlines how host genome suppression of ret-

rotransposons gains efficacy through redundant orga-

nization, but also vulnerability due to interdependence.

Therefore, the absence or reduction of at least some

retrotransposition defence mechanisms post fertiliza-

tion, such as Piwi-interacting RNAs [70], may dispro-

portionately accentuate somatic cell retrotransposition,

a view supported by fewer occurrences of L1 retro-

transposition in gametes compared with soma [71–73].
It follows that L1-mediated mutagenesis may con-

tribute meaningfully to cancer, a disease driven by

mutations in somatic cells; indeed, the idea that retro-

transposition could often be involved in tumorigenesis

is not new [74–76]. Numerous cancers exhibit pro-

nounced L1 activation [32,38,77–85]. Nonetheless, a

range of key issues remain unresolved, including the

most obvious question of whether L1 mobilization

causes cancer, or vice versa. Here, we summarize some

of what is known of L1 activity during oncogenesis

and tumour progression, and propose an explanation

for why L1 retrotransposition appears to be a common

feature of epithelial cancers.

Environmental triggers common to L1
activity and oncogenesis

Cancer encompasses a broad group of more than 200

diseases that involve the uncontrolled growth of cells

leading to tumour formation, as well as several other

common hallmarks [86,87]. At the molecular level,

cancer is a complex disease attributed to the accumula-

tion of multiple risk factors, from genetic predisposi-

tion to environmental factors such as diet, lifestyle and

exposure to toxic compounds [88]. Epidemiological

twin studies suggest that environment influences cancer

aetiology far more decisively than genetics [89,90]. For

instance, the contribution of environmental factors to

sporadic cancers ranges from 58 to 82%, versus the

highest genetic contribution of 27–42% for colorectal,

breast and prostate cancers [89]. Interestingly, inher-

ited risk far exceeds the frequency of mutations

already reported in cancer genes, suggesting that other

contributing mechanisms or types of genetic alteration,

such as rare variants and retrotransposition events

occurring in noncoding genomic regions, may contrib-

ute to cancer development.

Differentiating those mutations that cause oncogene-

sis (‘drivers’) versus those mutations accumulating in a

deregulated genomic environment during the course of

oncogenesis (‘passengers’) is a long-standing challenge

in cancer genomics. Furthermore, L1 insertional muta-

genesis is only one among a constellation of different

types of genetic aberrations that frequently underpin

cancer. It is nevertheless intriguing that L1 insertional

mutagenesis occurs in tumours [76], cancer cell lines

[91–93] and during development [71,72,94]. Somatic L1

retrotransposition can occur in both dividing and non-

dividing cells [19], generating mosaicism and, poten-

tially, tumorigenic mutations. L1 mRNAs are present

in differentiated tissues such as brain, kidney, liver and

heart [77,78], and L1 mobilization has, to date, been

identified in liver and brain tissue [80,95,96]. Given the

substantial, predominantly deleterious effects of intra-

genic L1 insertions upon host gene expression [79,97],

L1 insertions may be more likely, on a per mutation

basis, to have an impact on tumorigenesis than other

genetic aberrations observed in cancer.

Several carcinogenic environmental factors [98] have

been demonstrated to increase ME activity in cultured

cells [99]. For instance, benzopyrenes have been identi-

fied as a risk factor for lung, colorectal and breast can-

cer [100–102], and have been demonstrated to increase

L1 mobilization in HeLa cells [103]. Nickel exposure is

a risk factor for lung and breast cancer [104,105], and

has likewise been shown to induce L1 mobilization

[106]. Tumours often show increased levels of free rad-

icals involved in oxidative stress [107]; again, oxidative

stress has been shown to increase L1 mobilization [83].

Oxidative stress and DNA damage occurring as part

of senescence can increase chromosomal instability

and retrotransposon activity [108], thereby contribut-

ing to genomic mosaicism associated with cancer

development [109,110]. Hence, if we take as given that

retrotransposition is a stochastic process, and that

most somatic cells present a basal L1 activity that has

evaded silencing [77,78], it is plausible that environ-

mental factors increase the probability of a somatic L1

insertion affecting an oncogenic locus, thereby trigger-

ing neoplastic transformation.

Mapping retrotransposition in cancer
genomes

Despite the large effect size of many intragenic L1

insertions, their relative importance to oncogenesis ver-

sus the cornucopia of other mutations usually

observed in a tumour is unclear. Cancer genome

sequencing typically reveals a host of somatic cell

mutations, including tens or hundreds of thousands of
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single nucleotide variants, as well as insertions, dele-

tions, translocations, rearrangements and other more

exotic mutations, all found within a given tumour

[111]. Are a few additional L1 insertions important in

this context? One route to address this question is to

map the locations of L1 insertions in cancer genomes

and ascertain which protein-coding genes are affected

by mutations, following the same logic developed for

transposon mutagenesis screens in mouse models of

cancer [112]. The first success in mapping a bona fide

somatic L1 insertion in a tumour occurred > 20 years

ago, with the discovery by Miki et al. of an exonic L1,

flanked by target-site duplications and integrated in

the APC gene of a colorectal cancer patient [76].

Because APC is the pre-eminent tumour suppressor

gene in colorectal cancer caused by familial adenoma-

tous polyposis [113,114], it is reasonable to conclude

that, in this case, a single L1 insertion was sufficient to

drive oncogenesis.

Spurred by this paradigm, and aided by the advent

of high-throughput sequencing, several exemplar strat-

egies have been developed in recent years to map

endogenous somatic retrotransposition events in

tumours (for detailed reviews see [115,116]). The first

of these methods, presented by Iskow et al., digested

genomic DNA using restriction enzymes that recognize

the 3′-end of L1 and Alu and linked adapters to the

resultant fragments to obtain retrotransposon libraries

by PCR. Sequencing of these libraries revealed nine

de novo L1 insertions in lung tumours [32]. More

recently, Lee et al. used a computational method to

analyse paired-end whole-genome sequence data, from

tumour and matching blood, searching for paired-end-

reads mapping to unique genome locations and a dis-

tal ME. Using this strategy, they identified 194 de novo

ME insertions in colorectal, ovarian and prostate

tumours [79]. Newly detected somatic insertions were

located preferentially in tumour suppressor genes,

where integration of an intronic L1 typically inhibited

transcription, as expected [79,97]. Similarly, Solyom

et al. analysed colorectal tumours and matching tissues

by hemi-nested PCR coupled to sequencing (L1-seq)

[29] and detected 69 de novo L1 insertions, including in

the introns of genes previously reported to be involved

in cancer [81].

More recently, we identified 12 de novo L1 insertions

in a cohort of hepatocellular carcinoma patients using

retrotransposon capture sequencing, a hybridization-

based approach to enrich DNA for recent L1, Alu and

SVA insertions, followed by deep sequencing [80,95].

Interestingly, one somatic L1 insertion was shown to

activate a putative oncogene through ablation of a

negative feedback loop [80]. This model might explain

why expression increases for at least some genes har-

bouring tumour-specific L1 insertions [79]. Retrotrans-

poson capture sequencing also revealed a validated

somatic L1 insertion in nontumour liver, as well as

germline L1 and Alu insertions in the tumour suppres-

sor gene MCC that would, by definition, precede

tumorigenesis [80,117].

As these works demonstrate, cancer is arguably the

most promising immediate context in which to assess

the phenotypic effects of somatic retrotransposition

in vivo. In other tissues, such as the brain, the majority

of mosaicism due to L1 mobilization is thought to

occur late in differentiation [94], meaning that each

individual insertion is present in a handful of cells and

necessitating single cell or deep targeted sequencing to

detect somatic L1 insertions [95,96]. By contrast, some

tumour cells containing new L1 insertions are likely to

undergo clonal expansion, meaning that the mutations

they contain can reach sufficient abundance to be

detected even via standard whole-genome sequencing

[79]. Extensive cancer gene catalogues [118] somewhat

simplify the process of linking mutations to tumorigen-

esis, and these predictions can be validated in vitro

and in vivo using cancer cell lines and animal models,

respectively. Nonetheless, tumours do present chal-

lenges in retrotransposon mapping. Cellular heteroge-

neity can obscure subclonal mutations that may have

been important in oncogenesis, but not tumour

growth. Another issue is that wholesale genetic aberra-

tion is commonplace in cancer genomes, leading to dif-

ficulties in distinguishing retrotransposition from other

structural variation involving retrotransposons, such

as rearrangements. As we have observed, this latter

problem is surmountable through stringent parameters

in calling de novo insertions, and yet can still require

extensive validation via PCR and capillary sequencing

[80]. Despite these challenges, and the numerous unan-

swered questions remaining in the area, the recent

studies discussed above have nevertheless demon-

strated that: (a) ME activation can reduce the tumour

suppressor capacity of somatic cells, and (b) oncogene-

sis can be driven by individual ME insertions.

Do cancer stem cells promote L1
mobilization in epithelial tumours?

In-depth analysis of multiple cancer types has, to date,

revealed somatic L1 retrotransposition only in cancers

of epithelial origin [32,76,79–81]. One explanation for

this observation is that epithelial cells are demonstra-

bly more ‘plastic’ than other differentiated potential

tumour progenitors. Epithelial cells can be trans-

formed to yield cancer stem cells [119] and can also be

66 FEBS Journal 281 (2014) 63–73 ª 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS

L1 retrotransposons and cancer P. E. Carreira et al.



reprogrammed into induced pluripotent stem cells via

deliberate activation of a mesenchymal to epithelial

transition [120,121]. Interestingly, metastasis is more

prevalent in epithelial cancers than in other tumour

aetiologies and is thought to involve cells that have

lost epithelial features and acquired a migratory phe-

notype [122] via an epithelial to mesenchymal transi-

tion, the reverse process of mesenchymal to epithelial

transition [123]. Thus, to speculate, the basal plasticity

of some epithelial cells may endow tumours with

greater aggressiveness and evolutionary flexibility

(Fig. 2), based on the provision of cellular plasticity

by cancer stem cells resident in epithelial tumours

[124].

The question of how a cell turns into a cancer stem

cell in vivo remains unresolved. Two likely possibilities

are that cancer stem cells are naturally reprogrammed

from either resident tissue stem cells or from differenti-

ated cells (Fig. 3). In the first case, a stem cell might

suffer an oncogenic mutation or ‘lesion’ that yields a

tumour cell rather than a normal differentiated cell

[125]. In the second case, an oncogenic mutation might

cause a differentiated cell to reprogramme towards a

tumour cell-like state [126]. Given that differentiated

epithelial cells are sufficiently plastic to be reprogram-

mable and that, to date, only epithelial tumours have

been demonstrated to accommodate L1 mobilization,

it is tempting to conclude that these cancers are pri-

marily caused by reprogrammed differentiated cells,

rather than resident tissue stem cell populations.

Although, to our knowledge, L1 activity has not been

assessed in cancer stem cells, it is established that

numerous other stem cell types, from embryonic stem

cells to neural progenitor cells, are permissive for L1

mobilization [71,94]. Indeed, directed reprogramming

of epithelial cells in vitro to obtain induced pluripotent

stem cells activates L1 mobilization [127]. Thus,

although the relationships between cancer stem cells,

epithelial cells and L1 mobilization are somewhat cir-

cumstantial, it is reasonable to propose that the plastic-

ity of epithelial tumours explains their specific support

of L1 mobilization, increasing the probability that can-

cer stem cells contain oncogenic L1 driver mutations

or are, at the very least, permissive of L1 activity.

Conclusions

A clear correlation has been established between L1

mobilization and cancer. However, determining how

frequently L1 activity is a cause rather than a conse-

quence of oncogenesis presents a difficult challenge

that will require extensive study. L1 mobilization and

cancer are both heavily influenced by environment,

and it is clear that tumours often contain de novo L1

insertions, some of which map to cancer genes. Yet,

most of the pathways leading to L1 activation in can-

cer remain unknown. For instance, are the key tran-

scription factors known to regulate L1 expression,

such as SOX2, RUNX3 and YY1 [128–130] perturbed
by other mutations, enabling L1 activation? Or, from
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Fig. 2. Hypotheses for L1 involvement in tumorigenesis and

cancer progression. (A) Environmental factors initially cause cells to

change the methylation status of the L1 promoter, activating full-

length L1 transcription. (B) This is followed by de novo L1

retrotransposition into an oncogenic region, resulting in

tumorigenesis. (C) Once the tumour is established, the canonical

L1 promoter is increasingly hypomethylated, potentially activating

the antisense promoter and nearby genes. Moreover, L1 promoter

hypomethylation appears to be correlated with an epithelial to

mesenchymal transition that could eventually lead to metastasis.
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Fig. 3. Schematic representation of tumorigenesis in epithelial

cancers. A stem cell undergoes differentiation, giving rise to

normal tissue. If mutation of an oncogenic region occurs, a normal

stem cell can turn into a cancer stem cell. This cancer stem cell

can also be generated from a differentiated cell via a mesenchymal

to epithelial transition. Once established, cancer stem cells can

differentiate into the various cell types that form a tumour.

FEBS Journal 281 (2014) 63–73 ª 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS 67

P. E. Carreira et al. L1 retrotransposons and cancer



another perspective, are retrotransposons simply de-

repressed by abrogation of genome-wide surveillance

mechanisms, such as DNA methylation, in tumour

cells? Although critical information is lacking,

particularly experimental evidence of L1 activity in

cancer progenitor cells, insights gained from pluripo-

tent and other highly plastic cells suggest that retro-

transposons opportunistically exploit any weakness or

alteration in the cellular systems required for their sup-

pression [94,127]. This, combined with the recognition

that epithelial cancers specifically support L1 mobiliza-

tion, leads to a plausible model in which L1 activation

is due to epigenetic or other perturbations of retro-

transposon suppression by cancer stem cells.

Even if found to rarely drive oncogenesis, L1 activ-

ity may be useful as a diagnostic tool for malignancy

and metastasis. Various studies suggest that detectable

levels of L1 mRNA and proteins are associated with

poor cancer prognosis [84,131–134], whereas L1 pro-

moter hypomethylation can indicate problematic gen-

ome-wide epigenetic deregulation [135–137]. From a

clinical perspective, it would also be useful to estab-

lish whether all tumour cells from a given neoplasm,

or just a subset of cells, present high L1 activity, and

whether this heterogeneity assists tumour cell evolu-

tion in response to chemotherapy or radiotherapy.

Finally, it is unknown whether blocking L1 mobiliza-

tion, for example, using reverse transcriptase inhibi-

tors [19,138], would in any way affect cancer

progression or prognosis. In this regard, and despite

perhaps being coincidental, it is interesting that can-

cer is not thought to occur in the naked mole rat,

one of the few mammals that does not maintain

active MEs within its genome [139,140]. A key experi-

ment might, therefore, be to inhibit L1 retrotransposi-

tion, potentially in an established animal model of

cancer, to assess the contribution of L1 to oncogene-

sis, tumour growth and metastasis. Such in vivo

approaches would complement future, larger scale

surveys of retrotransposition in human tumours based

on high-throughput sequencing and, potentially, go

further in elucidating the origins and importance of

L1 activity in cancer.
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