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Abstract: Nanotechnology has enabled tremendous breakthroughs in the development of materials
and, nowadays, is well established in various economic fields. Among the various nanomaterials,
TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability,
high photocatalytic activity, and favorable price, which make them useful in the production of paints,
plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical
finishing processes to impart various protective functional properties to the fibers for the production
of high-tech textile products with high added value. Such applications contribute to the overall
consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2

NPs on human health and the environment, and debates regarding whether the extent of the benefits
gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs
exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and
in vivo studies—are briefly described, considering the molecular interactions with human health and
the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of
TiO2 NPs are discussed, along with relevant risk management strategies.

Keywords: TiO2; titanium dioxide; human health; environment; toxicity; oxidative stress; biocom-
patibility; risk management

1. Introduction

TiO2 is one of the most abundant and widely used metal oxide nanomaterial in the
world [1,2]. As an n-type semiconductor, with a band gap energy of 3.2–3.35 eV, depending
on its crystal phase, TiO2 acts as an effective photocatalyst during the photocatalytic process
for surface functionalization [3–6]. It has three crystalline structures: anatase, rutile, and
brookite. Anatase is the most common type and rutile is the most stable form, while brookite
is the rarest [7]. There is also amorphous TiO2, which is a non-crystalline form. TiO2 exists
in various nanostructures, such as nanoparticles, nanotubes, nanorods and nanowires,
nanofilms, nanosheets, and nanocoatings, with remarkable photocatalytic activity, which
attract scientists to develop potential technological applications in multidisciplinary fields
for industrial production [8].

TiO2 is widely used in food, paints, plastics, printing inks, papers, and biomedical
and cosmetic products. Due to its unique properties, TiO2 is also advantageously used
in textiles. For example, when applied to textile fibers, it confers various functionalities
such as UV protection, photocatalytic self-cleaning and antimicrobial activity, electrical
conductivity, and antistatic properties, as well as increased thermal stability. Moreover,
it can also be used for solar energy conversion in the production of electronic textiles or
wearable electronics. However, when tailoring its desired functionality, TiO2 is usually
deposited on the surface of textile fibers, but due to its fairly poor adhesion to the fibers, a
certain amount of TiO2 washes away, peels off, or wears off during the product’s lifetime.
Therefore, such continuous leaching of TiO2 into the environment results in a potential
threat to human health and the ecosystem.
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Extensive use of TiO2 NPs reasonably raises significant concerns due to their potential
nanotoxicity, induced by oxidative stress, which is influenced by ROS (Reactive Oxygen
Species) formation on the surface of TiO2 NPs in the presence of UV light [9–12]. After
the penetration of TiO2 NPs into the human body, inflammation, cytotoxicity, genotoxicity,
immunotoxicity, and neurotoxicity may occur. Such nanotoxicity can damage the liver, kid-
neys, lungs, and skin. Special attention must be paid to production workers, in particular,
who are in daily contact with high concentrations of TiO2 NPs. For instance, it has been
proven that TiO2 NPs smaller than 20 nm cause a higher inflammatory response in human
cells [13]. Furthermore, TiO2 NPs also pose certain damage to end users and researchers
and, at lower concentrations, TiO2 NPs act as immunomodulatory agents, inducing inflam-
matory responses through specific interactions with immune system cells [14,15].

Undoubtedly, TiO2 is released into most ecosystems, including in the agricultural
field, where its potential effects on soil properties, soil microflora, and plants are yet to be
investigated. However, TiO2

′s potential nanotoxicity to the aquatic ecosystem is currently
under study, and has thus far revealed that TiO2 NPs negatively affect the suppression
of the immune system of fish and invertebrates. Despite this, more research is needed to
address the bioaccumulation profile of TiO2 and its associated biomagnification in the food
web. To date, controversial results have been found when studying the toxicity of TiO2
NPs, which may be due to different particle sizes, doses, culture media, or test methods
used [7,16]. Recently, green nanotechnology has been adopted by researchers to ensure
the biocompatible and environmentally friendly use of TiO2 NPs by overcoming their
drawbacks.

Due to the widespread use of TiO2, exposure to NPs by ingestion, inhalation, or
sorption has become virtually inevitable. In the last five years, reviews have been published
on the effects of TiO2 NPs in living organisms, focusing either on the toxicology of TiO2
NPs [1,2,11,17–23], safety concerns in various applications [24–28] and related impact on
human health [28–33], or their effects on water/soil/environmental quality [34–38]. Such
review studies are necessary to conclusively determine the environmental and human
effects of TiO2 NPs. The purpose of this paper is to review recent advances in the potential
health and environmental effects of TiO2 NPs in order to contribute to the establishment
of a scientific basis for the safe application of TiO2 NP and to promote the sustainable
development of nanotechnology. Accordingly, the main exposure modes of TiO2 NPs, their
potential toxicity mechanisms on human cells through various signaling pathways along
with the negotiable toxicity, the health effects of exposure to TiO2 NPs, the biocompatibility,
and the environmental effects of TiO2 NPs are discussed in detail.

2. Modes of Exposure
2.1. Inhalation

Inhalation is the major route of nanoparticle penetration into the body [33,39]. When
TiO2 NPs are inhaled, they are transported to various lung tissues, capillaries, airways,
and alveoli and translocated to the heart, liver, nervous system, etc. [13]. Depending
on the duration and concentration of inhalation, TiO2 NPs undergo short- and/or long-
term clearance from bodily compartments. By inhalation, finer particles, such as anatase
TiO2 NPs, have a more toxic effect than the comparatively coarser rutile form [40]. For a
short-term, single-cycle inhalation threshold, a value of 3.5 mg/m3 is assumed for spray
applications. For repeated inhalation, a threshold of 17 mg/m3 is assumed for an 8-h
workday. In reality, however, the actual threshold is likely to be even higher. Nevertheless,
it was shown that an inhalation concentration of up to 35 mg/m3 does not lead to chronic
pulmonary overload [40].

2.2. Oral Route

TiO2 NPs can enter the blood via the oral route as they are used in foods, personal care
products, sunscreens, and toothpaste. TiO2 NPs remain in the major organs for a long time
and are eventually excreted in the stool. Absorbed TiO2 NPs in the liver, spleen, kidney,
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and lung tissues are responsible for possible nephrotoxicity and liver damage [41]. Even
after the prolonged release of NPs, they can affect living organisms in the environment via
biological pathways [42].

2.3. Dermal Route

Human skin has unique barrier properties that act against the penetration of TiO2
NPs into the skin. Several studies have found that TiO2 NPs cannot penetrate through
the human dermis, even when their particle size is smaller than 100 nm [43]. Moreover,
other studies have revealed that the TiO2 NPs that do manage to penetrate the skin do not
exhibit toxicity under certain conditions [44].

2.4. Injection

TiO2 NPs can be developed as a highly efficient photothermal, medicinal, and syner-
gistic agent to repair/remove diseased tissues such as cancer both in vitro and in vivo with
negligible toxic properties, tissue damage, and kidney/liver dysfunction [45,46]. After
injection of TiO2 NPs, endothelial cells can be disrupted, and they can proliferate and
migrate despite the induction of toxicity and immunogenicity. It has been shown that TiO2
NPs injected into the blood during photothermal cancer therapy enrich the cancer tissue
by diffusing, engulfing the cancer cells, and eventually killing them completely [47–49].

3. Toxicity of TiO2 NPs

There is a lack of information on the potential toxicity of TiO2 NPs. Indeed, despite
numerous studies in this field, it is difficult to find separate studies using the same TiO2
NPs with the same experimental protocol to compare the results obtained. Nevertheless,
the existing data support the potential toxicity of TiO2 NPs in humans, model vertebrates
and invertebrates, plants, algae, and microorganisms. The mechanism of toxicity of TiO2
NPs to organisms can be outlined as follows: (i) production of reactive oxygen species
(ROS) and formation of electron-hole pairs in the presence of light; (ii) binding of TiO2
NPs to the cell membrane via electrostatic interactions, resulting in cell wall damage and
peroxidation of lipids in the cell membrane; and (iii) binding of TiO2 NPs to intracellular
organelles and biological macromolecules [50].

3.1. Cytotoxicity

It is well known that ROS (i.e., superoxide (O2
•−), hydrogen peroxide (H2O2), and the

hydroxyl radical (OH−)) are produced by aerobic organisms within the cell and are nor-
mally in equilibrium with antioxidant molecules (Figure 1a) [51]. The imbalance between
ROS and antioxidants (AOX) caused by the excessive production of ROS or the depletion
of antioxidant molecules leads to the occurrence of oxidative stress (Figure 1b,c) [51].

Nanomaterials 2021, 11, x FOR PEER REVIEW 3 of 20 
 

 

2.2. Oral Route 
TiO2 NPs can enter the blood via the oral route as they are used in foods, personal 

care products, sunscreens, and toothpaste. TiO2 NPs remain in the major organs for a long 
time and are eventually excreted in the stool. Absorbed TiO2 NPs in the liver, spleen, kid-
ney, and lung tissues are responsible for possible nephrotoxicity and liver damage [41]. 
Even after the prolonged release of NPs, they can affect living organisms in the environ-
ment via biological pathways [42]. 

2.3. Dermal Route 
Human skin has unique barrier properties that act against the penetration of TiO2 

NPs into the skin. Several studies have found that TiO2 NPs cannot penetrate through the 
human dermis, even when their particle size is smaller than 100 nm [43]. Moreover, other 
studies have revealed that the TiO2 NPs that do manage to penetrate the skin do not ex-
hibit toxicity under certain conditions [44]. 

2.4. Injection 
TiO2 NPs can be developed as a highly efficient photothermal, medicinal, and syner-

gistic agent to repair/remove diseased tissues such as cancer both in vitro and in vivo with 
negligible toxic properties, tissue damage, and kidney/liver dysfunction [45,46]. After in-
jection of TiO2 NPs, endothelial cells can be disrupted, and they can proliferate and mi-
grate despite the induction of toxicity and immunogenicity. It has been shown that TiO2 
NPs injected into the blood during photothermal cancer therapy enrich the cancer tissue 
by diffusing, engulfing the cancer cells, and eventually killing them completely [47–49]. 

3. Toxicity of TiO2 NPs 
There is a lack of information on the potential toxicity of TiO2 NPs. Indeed, despite 

numerous studies in this field, it is difficult to find separate studies using the same TiO2 
NPs with the same experimental protocol to compare the results obtained. Nevertheless, 
the existing data support the potential toxicity of TiO2 NPs in humans, model vertebrates 
and invertebrates, plants, algae, and microorganisms. The mechanism of toxicity of TiO2 
NPs to organisms can be outlined as follows: (i) production of reactive oxygen species 
(ROS) and formation of electron-hole pairs in the presence of light; (ii) binding of TiO2 
NPs to the cell membrane via electrostatic interactions, resulting in cell wall damage and 
peroxidation of lipids in the cell membrane; and (iii) binding of TiO2 NPs to intracellular 
organelles and biological macromolecules [50]. 

3.1. Cytotoxicity 
It is well known that ROS (i.e., superoxide (O2•-), hydrogen peroxide (H2O2), and the 

hydroxyl radical (OH-)) are produced by aerobic organisms within the cell and are nor-
mally in equilibrium with antioxidant molecules (Figure 1a) [51]. The imbalance between 
ROS and antioxidants (AOX) caused by the excessive production of ROS or the depletion 
of antioxidant molecules leads to the occurrence of oxidative stress (Figure 1b,c) [51]. 

 
Figure 1. Equilibrium of ROS and antioxidants (AOX) (a) and their disequilibrium causing oxida-
tive stress, either by an excess of ROS (b) or a deficiency of AOX (c). 
Figure 1. Equilibrium of ROS and antioxidants (AOX) (a) and their disequilibrium causing oxidative
stress, either by an excess of ROS (b) or a deficiency of AOX (c).

As for the negative biological effects, oxidative stress is the most important process
involved in the formation of TiO2 NPs-induced ROS [52]. High TiO2 concentrations cause
greater oxidative stress, which correlates with the increase in lipid peroxidation at the
cell membrane after TiO2 NPs adsorption on the cell membrane. TiO2 NPs-induced ROS
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and lipid peroxidation damage the integrity of the cell wall and membrane, resulting in
increased permeability [53], which allows TiO2 NPs to enter the cell. In addition to free
diffusion, TiO2 NPs can also enter the cell through the process of endocytosis. While
particles larger than 500 nm can be removed by phagocytes [50], smaller particles can be
engulfed by a cell membrane vesicle and taken further into the cell. Accordingly, TiO2
NPs with a size of 25 nm and less have been taken up into human keratinocytes [54],
as well as lung cells [52,55], lymphocytes [56], macrophages [57], keratinocytes [58], and
hepatocytes [59] after endocytosis. It is also interesting to note the penetration ability of
TiO2 particles with a size of 200 nm into red blood cells, which were chosen as a model for
non-phagocytic cells. The results demonstrated the ability of the particles to penetrate the
red blood cell membrane by a mechanism other than phagocytosis and endocytosis [60]. In
this case, the penetration mechanism remained unexplained.

Upon entrance of TiO2 NP into the cell, the internalized TiO2 NPs are transported
to lysosomes, where they generate lysosomal stress and release cytosol that reacts with
cellular components, resulting in DNA damage, DNA rearrangement, altered gene ex-
pression, oxidative stress, and inflammation (Figure 2) [28,56,61–63]. TiO2 NPs impair
micromolecular functions by protein adsorption, blocking signaling pathways, and binding
to DNA structure [64,65]. Undoubtedly, such damage affects cell viability [66] and is dose
and time dependent [67,68].
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It should also be noted that the response of cells in the presence of TiO2 NPs is complex.
Thus, the presence of TiO2 NPs can modulate different cell fates, including necrosis and
apoptosis, which are regular cell death pathways, or autophagy, which leads to either
cytoprotective mechanisms or cell death (Figure 3) [69]. TiO2 NP-induced autophagy can
be exploited in new therapeutic pathway treatment of various diseases (see Section 6).
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3.2. Genotoxicity

The genotoxicity of TiO2 NPs has not yet been clarified as scientists do not have
sufficient evidence of genotoxicity [70,71]. Genotoxicity refers to the ability of TiO2 NPs
to disrupt genetic information by causing breaks, lesions, deletions, mis-segregation, or
non-disjunction in the DNA, leading to gene mutations. In vitro testing methods, such
as mammalian chromosomal aberration tests, cellular gene mutation tests and bacterial
reverse mutation tests, are performed to measure genotoxicity [72,73]. In contrast, the
in vivo comet assay and the in vivo micronuclei/chromosome aberration assay evaluate
in vivo genotoxicity [74]. The genotoxic effect of TiO2 NPs on cells is mainly studied
through the circulatory or respiratory system. Despite the crystallinity of TiO2 NPs, their
genotoxicity mostly depends on their particle size. Smaller TiO2 NPs possess a stronger
genotoxic effect than larger ones, as they easily penetrate into the nucleus and cytoplasm of
the cell [74]. Larger agglomerations of TiO2 NPs cause DNA damage [75]. Several studies
have shown the genotoxic and cytotoxic effects of TiO2 NPs on human amniotic epithelial
cells [76], human lung fibroblasts [77], human lymphocytes [78], and human hepatoma
HepG2 cells [79]. In vitro studies of cell-induced genotoxicity caused by TiO2 NPs due to
DNA breakage and gene mutations are shown in Figure 4 [22].
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Genotoxicity occurs via direct or indirect genotoxicity mechanisms. Namely, TiO2 NPs
can enter the nucleus, inducing direct DNA damage through direct contact with DNA and
chromosome, while indirect genotoxicity of TiO2 NPs results from the increased lysosomal
release of DNases, the formation of nanoaggregates that can extrude nucleus or by ROS
accumulation. Moreover, TiO2 NPs can also negatively influence the repair process of DNA.
In vitro studies showed the genotoxicity of TiO2 NPs during short-term exposure, which
may be triggered by smaller particle sizes and mixed phases of TiO2 NPs [22].

Research has provided contradictory results regarding TiO2 NPs’ genotoxicity [7,80].
Several studies found TiO2 NPs to have no genotoxic effect [7,57,80,81]. Brandão et al.
examined TiO2 NP-induced genotoxicity in human lung, liver, glial, and neuron cells [82].
They found no genotoxicity, while TiO2 NPs were successfully internalized by the experi-
mental cells.

4. Health Effects of Exposure to TiO2 NPs
4.1. Immune System

The immune system defends the body against foreign antigens. If nanoparticles are
recognized as foreign substances, they are eliminated by the immune system. If, on the
other hand, the foreign substances are not recognized as a threat, they are either ignored
or tolerated by the immune system [83]. The effects of TiO2 NPs on immune function are
poorly documented. Underlying molecular mechanism by which TiO2 NPs influence the
immune cell was studied in relation to TLRs, which are a subfamily of pattern recognition
receptors, placed strategically on the cell surface and endosome of primary immune cell
macrophages [84].TiO2-induced immunotoxicity was proven, which occurred through
the activation of several receptors, which further activated specific signaling pathways
to reduce the antioxidants through the formation of ROS. Upon increased ROS exposure,
the mitochondrial membrane potential (∆ψm) reduced, ultimately leading to apoptotic
cell death, and inducing immunotoxicity through immune redox imbalance (Figure 5).
However, in vivo experiments are essential to further validate TiO2 NPs influence on the
immune system.
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4.2. Neural System

TiO2 NPs can enter the brain regions by translocation across the blood–brain barrier
or thenose–brain barrier, and progeny across the placental barrier, which may be the reason
for the dysfunction and potential risks to the central nervous system [32,85–87]. Long-term
exposure to TiO2 NPs can cause damages to the neurons and glial cells (U373), which
may subsequently lead to neurotoxicity [32,88], also at low doses. In Figure 6, it is shown
that the oral ingestion of TiO2 NPs can affect brain activities via increased oxidative stress,
decreased antioxidant enzyme activity, and increased nitric oxide (NO) and ROS release
(Figure 6) [89]. TiO2 NPs thus induced a neurotoxic damage accompanied by the increase
in degenerated and apoptotic neurons in cerebral cortex.
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4.3. Cardiovascular System

TiO2 NPs of 100 nm significantly reduce mitochondrial ‘dehydrogenase activity’ in hu-
man lymphocyte cells [81]. Mitochondria-mediated apoptosis-based cell death due to DNA
damage is induced by TiO2 NPs. When TiO2 NPs react with hemoglobin, they can weaken
red blood cell oxygen transport. Kongseng et al. investigated the cytotoxic effects of TiO2
NPs on human blood cells, namely peripheral blood mononuclear cells (PBMCs). TiO2 NPs
incubated for 24 h significantly suppressed cell viability and increased the formation of toxic
mediators (Figure 7) [10]. At high TiO2 NP concentrations (≥ 25 µg mL−1), cell apoptosis
and the ‘proinflammatory cytokine secretion’ of PBMCs increased due to oxidative stress
caused by ROS. The effect of TiO2 NPs and bulk material in PBMCs, neopterin formation
and tryptophan degradation was studied by Becker et al. [90]. Neopterin production was
increased in both unstimulated and stimulated PBMCs, while tryptophan breakdown was
suppressed, thus suggesting that the total effect of TiO2 NPs was strongly pro-inflammatory.
Namely, in human body fluids, such response is detected in diseases such as infections and
cancer, and is also parallel to the course of atherogenesis and neurodegeneration [90].

In contrast, no significant DNA damage caused to human peripheral blood lympho-
cytes treated with TiO2 NPs was observed by an alkaline assay. Only extremely higher
concentrations (100 µg) can show the genotoxicity of TiO2 [91].

Very little research has been completed on the effect of TiO2 NPs on the cardiovascular
system. Researchers suspect that deposited TiO2 NPs in the heart may lead to inflammatory
responses, system malfunction, and cardiac damage. Depending on the type and duration
of exposure, ultrafine TiO2 NPs could lead to an increase in heart rate, blood pressure, and
cardiac muscle damage [32].
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4.4. Respiratory System

The lungs are the main target system of environmental air pollution via TiO2 NPs [92].
TiO2-induced human lung epithelial cell injury (A549) and alveolar lung inflammation
have been reported after inhalation in several studies [93–95]. These phenomena lead to
lung dysfunction, as well as irreversible changes to the cells, resulting in fibrosis and tumor
development. The lung toxicity and inflammatory effects are related to the properties
of TiO2 NPs, such as their size, shape, crystallinity, agglomeration, and surface coating
mode [96]. At this point it should be noted that the cytotoxicity of TiO2 NPs increased in
the following order: amorphous > anatase > anatase/rutile; thus, amorphous TiO2 NPs
possessed greater toxic effect than anatase/rutile TiO2 NPs [95]. Fresegna et al. studied
the cellular responses of human alveolar A549 and bronchial BEAS-2B cells to measure
the cytotoxic and inflammatory effects of TiO2 NPs in anatase and rutile forms [7]. They
found that anatase TiO2 NPs exerted greater cytotoxicity on bronchial cells compared to
rutile TiO2 NPs. On the other hand, a higher level of genotoxicity was observed on alveolar
and bronchial cells treated with rutile TiO2 compared to anatase TiO2. When TiO2 NPs
are pre-irradiated, they have a greater cytotoxic effect on human lung cells compared to
non-irradiated TiO2 NPs [93].

4.5. Digestive System

Oral ingestion of TiO2 NPs causes them to enter the digestive system. The blood
passes through the stomach and also passes through the liver. Significant concentrations
of TiO2 NPs can lead to liver dysfunction, liver cell damage and even liver failure, hep-
atocyte dysfunction, superficial staining of cytoplasm, and osteoporosis after repeated
exposure [40,92]. However, these results, carried out in mice or rats, are controversial, as
no toxicity was observed in other studies.

4.6. Urinary System

The kidneys are one of the major organs that filter the blood, remove metabolic wastes,
control the body’s extracellular fluid balance and electrolyte composition, and return the
purified blood to the body. Chen et al. demonstrated an association between TiO2 NPs and
kidney toxicity, suggesting that the kidney may be a major target or organ of exposure to
nano-TiO2 via various routes into the body [92]. When cultured embryonic kidney cells
were incubated with TiO2 NPs, no significant induction of DNA damage was observed. In
this case, only the highest concentration of TiO2 NPs, equivalent to 100 µg/mL, elicited a
significant genotoxic response, but it was concluded that such a high concentration of TiO2
is not environmentally relevant [91]. However, further studies on renal toxicity in humans
due to exposure to TiO2 NPs need to be conducted.
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4.7. Reproductive System

Based on the research conducted to date, the toxicity of TiO2 NPs to the reproductive
system such as testes, ovaries, placenta, and fetal tissues in humans is unknown. TiO2 NPs
cause adverse effects on hatching and affect reproduction in zebrafish, as well as pregnancy
difficulties such as nanoparticle spread to fetal brain, fetal liver, and placenta in mice [13].
However, the research data are not sufficient to conclude the development of toxicity in the
reproductive system of mammals, especially humans.

4.8. Dermal System

The penetration of TiO2 NPs through human skin has not been found in most stud-
ies [97–99]. TiO2 NPs do not cause ROS formation, cellular glutathione content, nor apopto-
sis when applied to human epidermal (A431) and keratinocytic (HaCaT) skin cells [100,101].
TiO2 NPs cause dermal toxicity only when they pass through healthy or damaged skin
after long-term exposure [40]. However, the opposite phenomenon has been observed in
several studies. Wright et al. showed that TiO2 NPs induce superoxide formation, caspase,
and cell apoptosis in human keratinocyte cells (HaCaTs) in a dose-dependent manner. This
causes cytotoxicity in HaCaT cells at 10−4–10−5 mol/L [100]. In fact, human skin is not only
exposed to TiO2 NPs, but also external chemicals or stressors, such as UV light [102], which
also damage human dermal fibroblasts. The Scientific Committee on Consumer Safety
(SCCS) therefore suggested that TiO2 NPs should not be used in sunscreen formulations
with high photocatalytic activity [1].

5. TiO2 NPs in the Environment (Ecotoxicity)

Ecotoxicity occurs when biological, physical, and chemical stressors affect living organ-
isms in the ecosystem through altered biochemistry, physiology, and cellular interactions.
The ecotoxic adverse effects of TiO2 NPs have been observed in water, aquatic animals,
zebrafish gills, food, and aquatic environments [67]. TiO2 NPs influence the bacterial
colonies in soil, reducing microbial biomass and diversity, thereby having a negative effect
by changing the bacterial composition of the ecosystem [103,104]. In addition, terrestrial
plants collect TiO2 NPs from the soil and store them in stems, leaves, and fruits, which
promotes germination and root expansion [105,106].

5.1. TiO2 NPs in the Plant and Soil Environment

After the use of TiO2 NPs in various products, this inorganic nanomaterial is mostly
abandoned, and a large quantity of TiO2 NPs is distributed to the environment, reaching
the air, soil, water, and living organisms [54]. Figure 8 represents the use, release pathways,
distribution, and interaction of TiO2 NPs to plants and the surrounding environment. TiO2
NPs used in pigments, food additives, and personal care products are released into the soil
(13.8%), water (18.5%), and air (2.2%). Therefore, plants come into direct contact with TiO2
NPs through the soil, water, and air.
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After the entry of TiO2 NPs via several pathways, soil properties—such as soil en-
zymes, microbial communities, nutritional elements, and pH—affect their behavior, mo-
bility, and bioavailability, thereby determining the fate of TiO2 NPs. The interconnected
soil properties/factors, such as soil type, pH, ionic strength, and organic matter, affect the
transport of TiO2 NPs by changing their zeta potential, aggregation, surface charge, and
van der Waals force [108,109]. The existence of microbes in the soil is vitally important
for the decomposition and recycling of organic material. As a result, TiO2 NPs may alter
the microbial population, diversity, and activity by changing the soil properties [103,110].
Low concentrations of TiO2 NPs also increase urea activity [111]. On the other hand, at
extremely higher concentrations (1000 mg/L), TiO2 NPs decrease urea activity [112,113],
affect the level of bacterial nitrogen, and reduce catalase, phosphatase, invertase, and
peroxidase activities [103]. Reports suggests that TiO2 NPs also disrupt the gene expression
of bacteria, resulting in decreasing nitrogen fixation and methane oxidation, which are
essential for the decomposition of proteins and organic pollutants [81].

The interaction between plants and TiO2 NPs depends on their particle size, crystal
phase, and surface coating [107]. Smaller TiO2 NPs (less than 30 nm) can enter into
plant cells by reducing the size of the pores and the flow of water in corn [114] and
wheat [115]. Investigations show that TiO2 NPs of 12, 22, and 25 nm can be translocated
from the roots to the leaves [115]. The antioxidant stress is interrupted by TiO2 NPs in
duckweed [116] and tomato [117]. TiO2 NPs also interrupt different parameters in raceme
elm [118], onion [119], soybean [120], rice, spinach [121], and parsley [122]. As TiO2
NPs show photocatalytic activity under light irradiation, they can alter photosynthesis,
metabolism, and gene expression within plants. Some investigations reported negative
effects caused by TiO2 NPs on plant growth, whereas it was concluded that TiO2 NPs may
cause some sensitive plant growth-promoting bacteria to disappear from soil. Accordingly,
such impairment of the soil bacterial community composition may further affect ecosystem
functioning [123,124].

5.2. TiO2 NPs in the Aquatic Environment

The significantly increased leakage of TiO2 NPs into surface and marine water envi-
ronments has a great impact on aquatic ecosystems. The related studies have been mainly
concentrated in determining the behavior of TiO2 NP in marine environments, focusing
mostly on marine plankton and benthos, with comparable contribution of papers, i.e.,
42.1% and 44.7%, respectively, as well as in marine fish, with the smallest share of the
research, i.e., 13.2% [125]. As TiO2 NPs are very reactive, they follow different transforma-
tion processes when they are released into the aquatic ecosystem. These transformation
processes involve physical (agglomeration, aggregation, and sedimentation) interactions
with TiO2 (adsorption), chemical (photochemical) interactions, and biological (biomodifica-
tion) interactions. The ability of TiO2 NPs to enter in the aquatic organisms is worrying,
as it leads to bioaccumulation in their cellular tissue. Accordingly, NPs negatively affect
environmental food webs in three different major ecosystems—freshwater, marine, and
terrestrial [24,126]. Bearing in mind that mammalians are at the top of the ecological food
chain, the ecotoxicity induced by TiO2 NPs in the environment is easily converted into
cytotoxicity in humans (Figure 9) [24].

Phytoplankton is the most dominant factor in marine ecosystems and the food
web [127]. The interaction of TiO2 NPs with marine phytoplankton has therefore been inves-
tigated [127,128]. In an aquatic environment, TiO2 NPs may be adsorbed or diffused by the
phytoplankton surface. TiO2 NP-mediated ROS may be diffused by the cell wall when the
TiO2–plankton complex generates ‘ligand-to-metal charge transfer reactions’ [126]. After
the aggregation and settling of TiO2 in marine environments, there is still a small fraction of
TiO2 NP nanoparticles in the water column that may be hazardous to the living organisms
in that water column. Thus, at higher TiO2 concentrations (>/20 mg/L), TiO2 NPs can
significantly reduce P. tricornutum growth, one of the most widely used model organisms
used in marine ecotoxicology studies [127]. Miller et al. demonstrated that, at low UV
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levels, TiO2 NPs’ photocatalytic activity can induce toxicity in marine phytoplankton [128].
However, in the absence of UV light, no effects were observed.
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The toxicity of TiO2 NPs in marine mussels has been investigated in several stud-
ies [38,129–134]. Due to the filtrating behavior and bioaccumulation tendency of bivalve
mollusks, they accumulate various pollutants, such as microalgae, sediments, bacteria, and
contaminants, within their tissues [38]. However, no acute TiO2 NP toxicity was found in
marine abalone at TiO2 NP concentrations from 0.1 to 10.0 mg/L [135]. In spite of the ab-
sence of toxicity, minor oxidative stress was induced. In another study, the combined effect
of TiO2 NPs and ocean acidification was assessed in mussels [136]. A low pH increases
the toxicity of TiO2 NPs and the impairment of feeding and metabolism was observed in
mussels at different pH and concentrations.

In a different study, the TiO2 NP–fish interaction was examined at different TiO2 NP
concentrations and exposure conditions [137]. TiO2 NPs of 0, 1, 10, and 100 mg/L were
applied to fish for 96 h, resulting in no mortality or sublethal effects. Very few studies
associated with TiO2 NPs have been conducted on fish. As such, more studies need to be
conducted in order to understand the potentially cytotoxic effects of TiO2 NPs on fish.

Moreover, in aquatic environments, TiO2 NPs can interact with heavy metals (Cu, Zn,
Cd, As, etc.) and toxic organics, resulting in the formation of a harmful environment that
can alter the bioavailability of aquatic organisms [38,138,139]. If TiO2 NPs are exposed to
arsenic (As), this can increase arsenic accumulation in aquatic animals and the human food
web [139]. However, TiO2 NP–Cd interactions do not result in toxicity in Mediterranean
mussels [140]. The immunotoxicity, genotoxicity, and neurotoxicity of TiO2 NPs in marine
living organisms were reported by several researchers, with varying results depending on
the particle size, exposure duration, exposure type, and stress factors [38,134,141–145].

6. Biocompatibility of TiO2 NPs

The potential toxicity of the TiO2 NPs discussed above does not suggest that they are
unsafe for humans or the environment. Depending on the size and shape of the nanoparti-
cles, TiO2 NPs may be safe, due to their very low toxicity. When it comes to the issue of
skin permeation, long-term skin exposure to TiO2 NPs can be harmful to humans if they
overdose, which is almost impossible in everyday life [146]. Biocompatibility refers to the
testing of TiO2 NPs for cytotoxicity, genotoxicity, immunotoxicity, systemic toxicity, hemo-
compatibility, pyrogenicity, and implantation, evaluated by ISO, ISO/TR 10993-22:2017
via in vitro and in vivo studies [47]. The evaluation of the toxicity and biocompatibility of
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TiO2 NPs is crucial to understanding the deleterious biological responses of the properties
of TiO2 NPs, their functionalities, and their contact surfaces (Figure 10a).
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In terms of the biocompatibility of TiO2 NPs, they are used in drug carrier biosensing,
implants, and antibacterial activity [148]. Due to the spherical shape of TiO2, TiO2–cell
interactions, TiO2

′s biocompatibility, excellent drug release properties, and lower toxicity
(than Al2O3 and SiO2) [148–150], TiO2 NPs are used in antitumor treatments (Figure 10b).
Due to the cytotoxic ROS (O2

−, OH−, H2O2)-based interaction between TiO2 NPs and spe-
cific cancer cell membranes, surface-functionalized biocompatible TiO2 NPs have recently
been used for targeted cancer therapy [48]. TiO2 NPs have also been used in the biomedical
field in photothermal therapy (PTT), photodynamic therapy (PDT), and sonodynamic
therapy (SDT) for cancer treatment via the targeted, controlled, stimulus-driven delivery
and release of cytotoxic anti-cancer agents [148]. Due to their low phototoxicity, biocom-
patibility and stable structure, TiO2 NPs have potential applications in phototherapy for
the treatment of cancer cells [49,151]. When TiO2 NPs are exposed to light, an oxidative
radical (ROS) is generated, which subsequently destroys the cell and cellular components,
such as the lipids, proteins, carbohydrates, and nucleic acids in cancer cells [147,152].

Furthermore, several authors have reported that the toxicity of TiO2 NPs arises due to
a ‘particle effect’ rather than a ‘chemical effect’ [40]. However, further studies are required
to assess the nature, mechanisms, and effects of the toxicity of TiO2 NPs on humans and
the surrounding environment.

7. Risk Management
7.1. Risk Following Oral Exposure

Considering the published studies, TiO2 NPs have no acute toxic effects after oral
exposure. There are insufficient data on the repeated-dose toxicity of TiO2 NPs, so there is
not believed to be any significant risk from oral exposure.

7.2. Risk Following Dermal Exposure

Based on the current data, short-term dermal exposure to TiO2 NPs has very little or
no toxic effect on healthy skin. Further studies on long-term dermal exposure, as well as
on damaged skin, are required in order to evaluate TiO2 NPs’ nanotoxicity on the skin [40].

7.3. Risk Following Inhalation

It is well established that smaller TiO2 NPs are more toxic than comparatively coarser
TiO2 NPs. Anatase TiO2 is more toxic than rutile TiO2, with its crystalline structure. In
terms of inhalation, particle size, surface area, crystalline structure, agglomeration, and
exposure, time plays a crucial role in the toxicity of TiO2 NPs. Inhalation is a major problem
in workplaces due to high concentrations of TiO2 NPs, as well as the fact that TiO2 NPs
enter the body mainly through respiration.
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The establishment of risk management strategies is therefore crucial (Figure 11), par-
ticularly in relation to short-/long-term exposure, as well as the frequency and level of
exposure; however, such strategies have not yet been developed. Regulations and legal-
ization for controlling TiO2 NPs and other engineered NPs (ENPs) are unsure, living the
interpretation of the scientific data challenging to the government, agencies, industry, and
consumers. Recently, suggestions for the safe handling of TiO2 NPs and other engineered
NPs (ENPs) were proposed by Besha et al. [153], highlighting the mitigation approaches to
curtail the possible hazard effects of ENPs.
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8. Conclusions and Future of TiO2 NPs in Textile Applications

TiO2 NPs are important photocatalysts that are implemented in various fields of appli-
cation. The toxicity of TiO2 NPs to human health and the environment is still controversial.
TiO2 NPs are classified as possibly carcinogenic to humans by the International Agency for
Research on Cancer (IARC), and as a chemical risk to humans by the Workplace Hazardous
Materials Information System (WHMIS) (in group D2A). At lower TiO2 NP concentrations,
recent studies have found that TiO2 NPs are almost non-toxic, as no remarkable toxicity
was observed [99,154,155]. However, TiO2/textile composites, for example, distinguished
by remarkable functional properties [156], have no adverse effects on human skin, as super-
oxide and hydroxyl radicals are not able to damage human cells from the outside as they
cannot enter the inner layer of the human skin [155,157]. As TiO2/rGO-coated cotton fabric
is biocompatible, it does not cause cell membrane damage and cell proliferation, as textiles
coated with TiO2 NPs do not exhibit cytotoxicity over 24 h of incubation [158]. With the
exception of the other previously mentioned study, to the best of our current knowledge,
no experiments have been conducted with TiO2 NP-modified textiles on human skin. Con-
sidering the toxicity and ecotoxic pathways described in in vivo and in vitro studies, TiO2
NPs are the safer option when compared to other metal oxide nanomaterials [148]. The
nanotoxicity and contradictive biocompatibility of TiO2 NPs should be further investigated
by researchers, whereas studies on long-term or accelerated effects of TiO2 need to be
carried out in order to estimate precise implications of TiO2 NPs for human health and the
surrounding environment. Therefore, careful consideration should be given to the benefits
of TiO2, and the associated potential risks based on its intended use. Moreover, mitigating
the toxicity of TiO2 NPs transferred from consumer products to the environment requires
appropriate strategies and regulatory frameworks to protect humans and the environment.
Accordingly, the establishment of international standard methods for the exact evaluation
of risk–benefit assessments is a prerequisite to allowing the safe use of TiO2-functionalized
materials.
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