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Traffic target tracking is a core task in intelligent transportation system because it is useful for scene understanding and vehicle
autonomous driving. Most state-of-the-art (SOTA) multiple object tracking (MOT) methods adopt a two-step procedure: object
detection followed by data association. *e object detection has made great progress with the development of deep learning.
However, the data association still heavily depends on hand crafted constraints, such as appearance, shape, and motion, which
need to be elaborately trained for a special object. In this study, a spatial-temporal encoder-decoder affinity network is proposed
for multiple traffic targets tracking, aiming to utilize the power of deep learning to learn a robust spatial-temporal affinity feature
of the detections and tracklets for data association. *e proposed spatial-temporal affinity network contains a two-stage
transformer encoder module to encode the features of the detections and the tracked targets at the image level and the tracklet
level, aiming to capture the spatial correlation and temporal history information. *en, a spatial transformer decoder module is
designed to compute the association affinity, where the results from the two-stage transformer encoder module are fed back to
fully capture and encode the spatial and temporal information from the detections and the tracklets of the tracked targets. *us,
efficient affinity computation can be applied to perform data association in online tracking. To validate the effectiveness of the
proposed method, three popular multiple traffic target tracking datasets, KITTI, UA-DETRAC, and VisDrone, are used for
evaluation. On the KITTI dataset, the proposed method is compared with 15 SOTA methods and achieves 86.9% multiple object
tracking accuracy (MOTA) and 85.71% multiple object tracking precision (MOTP). On the UA-DETRAC dataset, 12 SOTA
methods are used to compare with the proposed method, and the proposed method achieves 20.82% MOTA and 35.65% MOTP,
respectively. On the VisDrone dataset, the proposed method is compared with 10 SOTA trackers and achieves 40.5% MOTA and
74.1% MOTP, respectively. All those experimental results show that the proposed method is competitive to the state-of-the-art
methods by obtaining superior tracking performance.

1. Introduction

Traffic target tracking in dynamic traffic scenes is a fun-
damental problem in intelligent transportation, particularly
for vehicle autonomous driving to perceive the directions of
other vehicles and pedestrians [1]. It is not only useful for
information sharing between vehicles and users, but also
helpful for realizing data interaction in intelligent trans-
portation system. *e goal of traffic target tracking is to
follow the trajectories of vehicles or pedestrians as theymove

in video sequences. In recent years, vision-based multiple
vehicle tracking is widely used in autonomous driving,
electronic police, checkpoint monitoring, and road moni-
toring [2, 3].

With the development of deep-learning, the multiple
objects tracking (MOT) also benefits from the representa-
tional power of deep neural network. It is a competitive
choice for appearance modelling in MOT to extract complex
and abstract features. Since pedestrians in videos have
discriminative appearances with different colors and types of
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cloth, and the motion follows the social force model that
typically uses the first or second order motion to predict the
object states, the deep learning-based multiple pedestrian
tracking algorithms achieve good performances. Different
from the pedestrians in videos, the vehicles often have
similar appearance with limited shape and color variation. In
addition, the motion often changes drastically with sudden
acceleration or brakes. Hence, the deep leaning-based
multiple vehicles tracking algorithms tend to perform worse
than multiple pedestrian tracking algorithms.*is motivates
researchers to not only simply rely on the deep neural
network to learn rich representation of input, but also pay
more attention on how to fully exploit deep learning in both
association affinity computation and data association
process.

*e state-of-the-art MOT approaches conform to the
tracking-by-detection framework, which includes two core
steps: (1) object detection in video sequences and (2) data
association between detections over video sequences to form
long trajectories. TraditionalMOTmethods which follow the
tracking-by-detection framework often use publicly avail-
able detections and mainly focus on how to construct a
robust data association module to gain tracking perfor-
mance. For data association, association affinity computa-
tion between detections is calculated by multiple cues, such
as appearance, location, and topology [4]. *ese methods
mainly pay attention to spatial or appearance features in two
adjacent frames, ignoring the features of temporal variations
from the history trajectory in consecutive frames.

Recently, with the help of the transformer’s powerful
self-attention mechanism for features encoding [5], the 2D
tracking can achieve amazing performance. *e self-atten-
tion and position mechanism in transformer model can
effectively encode the correlation of tracked objects. *e
corresponding position information is also recorded, which
is useful to handle the issues such as occlusion and disap-
pearance of the tracked objects. Hence, the content-adaptive
property and position encoder ability of transformer motive
us to introduce it into MOT, aiming to fully capture and
encode the spatial and temporal information from the

detections and the tracklets of tracked targets in MOT task.
However, transformer model lacks the properties of trans-
lation invariance and local correlation, which are two key
inherent properties of convolution neural network (CNN).
*e limited receptive field of CNN makes it difficult to
capture global information, while the transformer canmodel
long-range dependencies. *erefore, it is a good choice to
combine CNN and transformer together, so that the network
can inherit the advantages of CNN and transformer and
capture global and local features at large.

Motived by the ideal performance of transformer’s
powerful self-attention mechanism for feature encoding, a
spatial-temporal encoder-decoder affinity network for
multiple traffic target tracking is proposed in this study. As
shown in Figure 1, a CNN feature extractor (Resnet-50) is
first used to learn abstract and low resolution features from
the detections images. *en, a spatial-temporal encoder-
decoder affinity network is designed to process and aggre-
gate the spatial and temporal information of the tracked
objects in different frames. *e spatial-temporal encoder-
decoder affinity network mainly consists of two parts: the
transformer-based spatial-temporal two-stage encoder
subnetwork and the spatial transformer decoder subnetwork
for association affinity computation. In the two-stage en-
coder subnetwork, the feature maps of candidate detections
and the tracked targets captured by CNN feature extractor
are encoded separately to capture the spatial correlation and
temporal discriminative history features at the image level
and tracklet level. In the spatial transformer decoder asso-
ciation network, the results from the two-stage transformer
encoder subnetwork are fed back as keys to guide the as-
sociation computation for the attention weights of the object
query and the tracklet query.*is is useful for fully capturing
and encoding the spatial and temporal information from the
detections and the tracklets of tracked targets. After
achieving the assignment association matrix between the
candidate detections and the existing tracklets, the final
tracking results are achieved by performing the Hungarian
algorithm to solve the association problem between the
detections and the tracked objects.
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Figure 1: Framework of the proposed method.
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In summary, the main contributions of the proposed
method are as follows:

(1) A cascade association network, consisting of a
transformer-based spatial-temporal two-stage en-
coder subnetwork and a spatial transformer decoder
data association subnetwork, is designed for online
multi-traffic target tracking.

(2) *e two-stage transformer encoder framework is
designed to encode candidate detections and the
tracked targets to capture the spatial correlation and
temporal history trajectories features at the image
level and tracklet level, respectively.

(3) A spatial transformer decoder association network is
designed for data association in online tracking,
where the results from the two-stage transformer
encoder subnetwork are fed back as keys to guide the
association computation for the attention weights of
the object query and the tracklet query, aiming to
fully capture and encode the spatial and temporal
information from the detections and the tracklets of
tracked targets.

2. Related Works

With the representational power of deep neural network, the
deep-learning-based MOT method has shown significant
improvement in extracting complex and abstract features. In
this section, we mainly present some relevant literature
regarding deep-learning-based MOT algorithms.

*e state-of-the-art MOT methods that follow the
tracking-by-detection framework often divide the MOT into
two procedures: object detection by detectors in each frame
and data association to link the detections in consecutive
frames to generate the trajectories. In tracking-by-detection
MOT, with the detections provided by a predefined detector,
data association plays a key role in improving the tracking
performance. *e function of association affinity is to
correctly associate tracked target with detections and it is
always calculated by multiple cues such as appearance, lo-
cation, and topology. With the powerful representational
ability of deep neural network, many researchers exploit
deep neural network for appearance modelling. Liu et al. [6]
used a Siamese network to construct multi-level similarity
model for thermal infrared object tracking. Scheidegger et al.
[7] adopted a deep neural network to train detection and to
estimate the distance between the objects for multi-object
tracking. It is useful for eliminating ambiguous features in
appearance modelling. Yuan et al. [8] proposed a self-su-
pervised learning-based tracker by devising deep correlation
framework for feature extraction, which is helpful for
gaining the feature representational ability and reducing the
overfitting risk. In [9], a metric learning model is introduced
into correlation filters framework, which is useful for solving
the fixed scale and noise interference for visual tracking.
*ough the above deep-learning-based tracking methods
can achieve good performances, directly using deep neural
network for appearance modelling in multiple vehicle
tracking may limit the tracking performance since vehicles

are often have similar appearances. In our study, the deep
neural network is not only used for context feature ex-
traction, but also used to guide data association between the
detections and the tracked objects.

Several data association methods were presented to
improve the MOT performance in recent studies. Bea and
Yoon [10] introduced transfer learning into a revised Sia-
mese network to learn discriminative deep appearance
features for robust tracking. Schulter et al. [11] designed a
network-flow-graph-based data association model via
backpropagation for multiple object tracking. Li et al. [12]
regarded the MOT as a graph optimization problem and
designed appearance and motion graph networks as solu-
tion. He et al. [13] proposed a general undirected graph
model to solve the association problem via graph matching
between tracklet and detection graphs. Muresan et al. [14]
devised a robust data association method for pedestrian
tracking in thermal images, where five Siamese networks
were used to construct a data-driven and appearance-based
association score for tracking. *e existing data association
methods in MOTmainly rely on a graph-based optimization
or network flow to achieve the association cost between the
detections and the tracklets. *ese methods always focus on
the local relationship by static graphs and ignore the history
tracklets information, making it difficult for tracker survival
in severe occlusion. In our study, these problems are
addressed by designing a two-stage transformer encoder
model to encode history trajectories and the detection in-
formation in tracklet level and image level.

Recently, inspired by its remarkable success in natural
language processing (NLP), transformer modules are trans-
planted from the NLP to computer vision. *is module is a
self-attention-based architecture with the ability to handle
long sequence data, in which the attentionmechanism is a key
idea and plays an important role in the transformermodel [5].
*e transformer module has wide applications in image
classification, object detection, pose estimation, person re-
identification, action recognition, object tracking, and other
computer vision areas. Following the success of transformer
modules introduced in detection and tracking tasks, Xu et al.
[15] proposed a transformer-based architecture for multi-
object tracking, in which dense queries were introduced in a
double-decoder network to robustly infer the heatmap for the
tracked targets. Meinhardt et al. [16] proposed an encoder-
decoder transformer framework for MOT, which achieved
state-of-the-art performance. In [17], a powerful transformer
network is adopted for 3D single object tracking, which uses
the transformer module to compute attention weights for
features. All these methods gain tracking performance via
transformer attention mechanism. In the present study, we
propose a spatial-temporal encoder-decoder affinity network
for multiple traffic target tracking, in which a transformer-
based spatial-temporal two-stage encoder model is designed
to extract context information from the detections and the
tracklets. *us, the proposed method introduces the long
history trajectory information into the feature encoder and
decoder procedures with self-attention and position mech-
anism in transformer model, which is useful in handling the
occlusion in online tracking.
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3. Proposed Network

3.1. Problem Formulation. Figure 1 shows the proposed
MOT tracking, which follows the tracking-by-detection
framework. A detection set Dt � D1

t , · · · , DN
t  is provided

by a predefined detector in online tracking at each frame t.
*e linked detections from frames 1 to t − 1 formulate a
tracklet set T t−1 � T

j
t−1 

Mt−1

j�1 . *en, the online MOT per-
forms data association between the detection set Dt and the
tracklet set T t−1 in frame t to achieve the final trajectories
T t � T

j
t 

Mt

j�1. *e last detection on one trajectory is the
tracked object. In the algorithm, the online MOT aims to
match the current detections and the tracked objects in each
frame t. With Nt detection Dt � D1

t , · · · , D
Nt

t  and Mt−1
tracklets T t−1 � T

j
t−1 

Mt−1

j�1 , the algorithm first uses the
convolutional neural network (CNN) to extract the visual
feature of the Nt candidate detections. *en, the spatial
transformer encoder module is used to encode the detec-
tions at the image level. *e temporal transformer encoder
module is used to extract the discriminative information
from the tracklets of the tracked objects at the tracklet level.
Finally, the spatial transformer decoder module is devised to
compute assignment association matrix for correctly asso-
ciating the candidate detections and the existing tracklets.
*e final tracking results are achieved by performing the
Hungarian algorithm to solve the association problem be-
tween the detections and the tracked objects.

For each tracklet T
j
t−1 ∈ T t−1 in frame t, the best can-

didate detection is determined by finding theDi
t tomaximize

the association affinity A(T
j
t−1, Di

t), where A(·) denotes the
affinity score between the tracklet and the candidate de-
tection. By considering all tracklets and the detections in
frame t, the association can be regarded as an optimization
problem and is expressed as follows:

max

Nt

i�1


Mt−1

j�1
βij

t A T
j
t−1, D

i
t , (1)

where βij
t ∈ 0, 1{ },∀i � 1, · · · , Nt; j � 1, · · · , Mt−1 denotes

the association between detection Dt � D1
t , · · · , D

Nt

t  and
tracklets T t−1 � T

j
t−1 

Mt−1

j�1 in frame t. If the detection Di
t is

associated with tracklet T
j
t−1, β

ij
t � 1; otherwise, βij

t � 0.

3.2. Two-Stage Transformer Encoder Model. Benefiting from
the good performance of a CNN-based transformer
framework [18], we first utilize a CNN named Resnet-50
backbone as a feature extractor. Figure 1 shows the CNN
backbone; the first three blocks are adopted to extract feature
maps for candidate detections at each frame. *en, the two-
stage transformer encoder framework is used to encode the
feature maps of the detections and the tracklets. In the first
stage, the spatial-transformer encoder module is used to
encode the spatial image information, which deals with the
patch tokens at the image level. In the second stage, the
temporal transformer encoder module is used to encode the
history trajectory information, which processes the image
tokens at the tracklet level. *e transformer follows a query-

key encoder-decoder framework, in which the encoder
generates keys and the decoder inputs task-specific queries
[19]. *e transformer consists of multi-head self-attention
(MHA) layers and feed-forward network. If the input key
and query are the same, the MHA is called self-attention;
otherwise, it is called cross-attention. After performing the
two-stage transformer encoder module, the keys for decoder
can be achieved. *en, the features maps extracted by CNN
for detections are regarded as the object query, and the
detection features from the existing tracklets are concate-
nated to form the tracklet query. Both object query and
tracklet query serve as the input for the decoder module.*e
assignment association matrix used to associate the candi-
date detections and the existing tracklets is generated by
performing the spatial transformer decoder module. Finally,
the Hungarian algorithm [20] is used to solve the association
problem between the detections and the tracked objects.

3.2.1. Image-Level Feature Extraction with the Spatial
Transformer Encoder Module. After the CNN backbone
(Resnet-50) is used to extract features maps for each detection
at frame t, the corresponding feature maps εt � f Di

t 
i�1,···,Nt

for the detection set are formed. *en, the spatial transformer
encoder module (STE) is utilized to extract detections features
at image level. For each featuremapf Di

t  of detectionDi
t with

size H × W generated from Resnet-50, it is first divided into
small patches xi

t. *en, these spatial patches are fed into the
spatial-transformer module to learn discriminative represen-
tation in spatial dimension at the image level.

With the small patches in each frame, the general vision
transformer [5] is followed to perform the feature encoder
among all spatial patches. First, the spatial patches xi

t are
flattened into one-dimension tokens and are then embedded
through a linear embedding layer as follows:

z0 � x
1
t E; x

2
t E; · · · x

i
tE; · · · x

N
t E  + Epos, (2)

where the output z0 refers to spatial embedded feature with
positional embedding, xi

t ∈ R
N×(p2 ·C) is the spatial patches,

(p, p) is the size of each spatial patch, N � H × W/p2 is
number of the patches, and C denotes the dimension of
spatial embedding. E ∈ Rp2×C is a linear projection matrix,
and Epos ∈ R(N+1)×C is the position embedding.

Subsequently, the spatial embedded feature z0 is fed to
the transformer encoder module as follows:

zl
′ � MHA LN zl−1( (  + zl−1, l � 1, 2, · · · , L, (3)

zl � MLP LN zl
′( (  + zl
′, l � 1, 2, · · · , L, (4)

Y
de
key � LN zL( . (5)

*e transformer encoder module comprises multi-head self-
attention function (MHA) in equation (3) and the multi-
layer perceptron blocks (MLP) in (4) with L layers, as shown
in Figure 2. Layer normalization operator LN is applied
before every block. For layer of l� 1, the (3) is initialized by
the spatial embedded feature z0, which is computed in (2).
By performing the MHA for z0 in (3), the output of MHA z1′
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is fed to MLP in (4). *en, the output of the MLP z1 acts as
the input of MHA in (3) for next time iteration. After it-
eration L times of MHA and MLP in (3) and (4), the final
output is the concatenation of h attention head results. Yde

key
in (5) with normalization operator (LN) is the key for the
decoder module to guide computation the association af-
finity matrix for correctly associating the candidate detec-
tions and the existing tracklets.

3.2.2. Tracklet-Level Feature Extraction with Temporal
Transformer EncoderModule. Since the tracklets of the same
object are closer than those of different identities in con-
secutive frames, the history tracklets of the tracked target
may provide efficient temporal features to solve the occlu-
sion or object disappear issues. Hence, to fully exploit the
temporal information of the tracked objects in different
frames for association affinity computation, a temporal
transformer encoder (TTE) module is devised to encode the
features of the tracked target in tracklet level. After per-
forming the STE module to encode the detections at each
individual frame in image level, the output of the spatial
transformer zL is encoded and flattened as a vector z. For
the t − th frame, the existing tracklet set T t−1 � T

j
t−1 

Mt−1

j�1
is formulated by linking detections from frames 1 to t − 1.
By concatenating the spatial feature vectors εt−T,

εt−T+1, · · · , εt−1} of the tracked target tracklets from the
past t − 1 frames, the input Ξt−1 � εt−T, εt−T+1, · · · ,

εt−1},Ξ ∈ R(t− 1)×p2 ·C for the temporal transformer module is
achieved, where εt−1 � zi

k 
i�1,···,Nk

k�1,···,t−1, k is the frame index, and

Nk is the number of the detections in frame k. *e temporal
positional embedding ETpos ∈ R(t− 1)×C is first performed to
maintain the frame position information. *en, the tem-
poral embedded feature Ξt−1 is fed to the TTEmodule, which
has the same architecture with STE module and consists of
MHA and MLP blocks. *e output of the TTE module Ytr

key
is the key for the decoder module to construct the associ-
ation affinity matrix for correctly associating the candidate
detections and the existing tracklets.

3.3. Spatial Transformer Decoder Module for Computing
Association Affinity Matrix. *e proposed spatial trans-
former decoder (STD) module used for constructing as-
sociation affinity matrix is shown in Figure 3. First, the
feature maps εt and Ξt−1 extracted for detections and
tracklets by the Resnet-50 network are used as the object
queries and tracklet queries. *en, the keys for STD are
achieved by feeding back the results of Yde

key and Ytr
key from

the two-stage transformer encoder module, which is de-
scribed in Section 3.2. With the queries and keys, the STD
module is used to generate the assignment matrix At to
correctly associate the detections and the tracklets at each
frame t. *e STD module first uses the MHA to encode the
object queries and tracklet queries, respectively. *en, the
attention weighted object queries and tracklet queries are
represented as Fde

att ∈ R
Nt×1×C and Ftr

att ∈ R
(t−1)×Mt− 1×C. *is

process is similar to that of the encoder in Section 3.2. For
the data association of the Nt detections and the Mt−1
tracked objects in frame t, if the number of detections Nt is
larger than Mt−1, the virtual source is introduced to address
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the case that initiates the detections to new tracklets in
frame t, and the number of virtual sources is
Mv � Nt − Mt−1. After adding the virtual source, a new
tracklet embedding Ftr′

att ∈ R
(t−1)×(Mt− 1+Mv)×C is formed.

*en, multihead cross attention is performed for Ftr′
att and

Fde
att. Next, multi-layer perceptron and normalization layer

follows to generate the output tensor RNt×(Mt−1+Mv)×C,
which denotes the matching between the tracklets and the
detections. Finally, the output of the spatial transformer
decoder goes through linear and softmax layers to generate
the assignment matrix At ∈ RNt×(Mt−1+Mv).

3.4. Data Association. After achieving the assignment matrix
At ∈ RNt×(Mt−1+Mv) for the detections and existing tracklets at
each frame t, the Hungarian algorithm [20] is used to solve
the association problem between the detections and the
tracked objects. *is is done by maximizing the affinities
between the current frame detections and the detections al-
ready assigned to the tracked targets in previous frames. With
the data association, the final tracking results are achieved by
solving the maximizing problem in (1). *e unmatched de-
tections in each frame are stored as a nonmatched detection
set, which is used to initiate new targets or to recover oc-
clusion. Similarly, the unmatched tracklets are remained as a
nonassociated tracklet set, which is regarded as the cases that
the tracked objects exit the scene or are occluded. *e cor-
responding visual features and bounding boxes of the un-
matched detections and unassociated tracklets are all stored
for next frame data association. Finally, a new tracklet is born
when the detection in nonmatched detection set is associated
with other detections in five consecutive frames. Otherwise,
the detection is removed when it is not association with any
detection or the tracklet exceed five frames. A tracklet is killed
in nonassociated tracklet set if the number of frames for its
tracklet is not associated with any detection exceeding five
consecutive frames.

3.5.LossFunction. When training the proposed network, the
cross-entropy loss is taken as the loss function to optimize
the network. For the Nt detection and Mt−1 tracklets at each
frame t in each training iteration, the cross-entropy loss ℓ is
defined as follows:

ℓ � −
1

Nt



Nt

i�1
yilog ai(  +

λ
Mt−1



Mt−1

j�1
yjlog

1

1 + e
− aj
′ 

+
λ

Mt−1


Mt−1

j�1
1 − yj log

e
− aj
′

1 + e
−aj
′

⎛⎝ ⎞⎠,

(6)

where yi and yj are IDs of the detections and the tracklets in
frame t, ai is the row element of At, and aNt

� aj
′ , λ is a

weighting coefficient.

4. Experiments and Results

4.1. Datasets. To validate the performance of the proposed
method, experiments were conducted on three vehicle

tracking datasets, namely, KITTI, UA-DETRAC, and Vis-
Drone2018. *e KITTI dataset contains of 21 training se-
quences and 29 test sequences with more than 19,000 frames
[21]. *e UA-DETRAC dataset comprises real-world traffic
scenes, which includes 60 training and 40 test challenging
videos with over 140,000 frames [22]. *e VisDrone2018
dataset contains 56 training, 7 validation, and 16 test videos
with 5 different categories (car, bus, truck, van, and pe-
destrian) and 33,366 frames [23].

All those three datasets are challenging in multiple ve-
hicles tracking as they contain large variations in scale, il-
lumination, occlusion, background clutter of scenes, and
various type of vehicles. To make a fair comparison with
several state-of-the-art (SOTA) multiple object tracking
methods, the publicly available detections [23–25] that are
recommended by the KITTI, UA-DETRAC, and Vis-
Drone2018 datasets are used in multi-object tracking.

4.2. Parameter Settings and Implementation Details. *e
proposed method is implemented using python language in
PyTorch framework, and the network is trained on anNvidia
GTX 2080Ti GPU. *e pubic available detections are
cropped and resized into 128 ∗ 64 pixels and are then fed
into the feature extractor (Resnet-50) to generate the feature
maps f ·{ }. *en the features f ·{ } go through a 1 ∗ 1 con-
volution layer and are flattened to form patch tokens for
two-stage transformer encoder module as described in
Section 3.2. *e temporal length of tracklets T is five in the
temporal transformer encoder module, and the feature
embedding dimension C is 1024. *e STE module and TTE
module have same architecture design. *e MHA block has
eight heads and MLP has two layers. Adam optimizer in [26]
with an initial learning rate 1e-4 is used in training. *e
learning rate drops by a factor of 10 at 100 epochs, and the
training lasts 180 epochs. *e other hyper-parameter setting
and training strategy is following ViT [27].

For quantitative evaluation, the metrics defined in
[28, 29] are adopted. *ese metrics are multiple object
tracking precision (MOTP)↑, multiple object tracking ac-
curacy (MOTA)↑, fragment (FG)↓, ID-switch (IDs)↓, false
positive (FP) ↓, false negative (FN) ↓and the mostly-tracked
(MT) ↑, mostly-lost (ML) ↓metrics. For metrics with (↑), the
higher values denote better performance. For metrics with
(↓), the lower values are better.

4.3. Ablation Studies. To better explore the effectiveness of
the proposed method, ablation studies are carried out to
analyse the effect of each component. Here, the KITTI
training set is split into a training set with 10 sequences and a
validation set with 11 sequences. *e ablation analysis is
performed on the validation set.

First, to know how the temporal length of tracklets T in
the temporal transformer encoder model influences the
tracking performance, we set T � 1, 10, and 15, respectively
(the default setting in this paper is T � 5). It can be seen from
the evaluation results in Table 1, when T � 10 and 15, the
MOTA values are 3.9% and 3.7% higher than the values
when T � 1, respectively. T � 1 indicates that only current
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tracked object is associated with the detections, and no
temporal history trajectory information is introduced in the
encoder stage. As shown in Table 1, the tracking perfor-
mances of other methods when T � 10 and 15 are worse
than those our method with T � 5. A higher T means not
only more trajectory information is involved, but also the
complexity for data association is increased. Additionally, as
defined in data association, a tracked object will be killed if it
is not updatedmore than five consecutive frames. Hence, the
strategy of increasing number of T does not gain tracking
performance; this is consistent with the results in Table 1.

To further analyze the influence of the object queries
and track queries for improving the performance of the
proposed method, object queries and track queries are
separately performed in ablation studies and are defined
as P1 and P2 trackers, respectively. From the results
shown in Table 2, when only the object query is used as
input of spatial transform decoder model, the data as-
sociation is implemented among the object queries and
the detection bounding boxes. *us, the P1 tracker ach-
ieves 84.3% MOTA, which is inferior to that of P2 tracker.
*is is due to the fact that, in the P1 tracker, no history
trajectory information is used to guide the data associa-
tion in consecutive frames. When the tracked object
moves in a small area, the model can correctly associate
the detections and the tracked objects. Otherwise, the
tracked objects move through a wide area, and this model
fails to associate. In the P2 tracker, only the tracker query
is used as input of the spatial transform decoder model.
*en the data association is performed among the track
queries and the detections; the P2 tracker achieves 86.5%
MOTA.With the history tracklets information introduced
in data association, it is able to associate the objects moved
in a wide area. However, the low FN indicates that various
objects are missed. *e is caused by the fact that the P2
model can only track the objects belonging to the set of
tracklets; it ignores the new born ones. With the default
setting, the proposed method achieves 88.4% MOTA. By
combining the object queries and track queries in our
work, all of the above cases can be addressed with the help
of two-stage transformed encoder model and spatial
transform decoder model.

4.4. Comparison with the State-of-the-Art Trackers

4.4.1. Evaluation on KITTI Dataset. Table 3 shows the
tracking result of the proposed method compared with the
15 SOTA trackers on KITTI-car testing sequences. *e 15
SOTA trackers include six offline trackers and nine online
ones. *e results demonstrate that the proposed tracking
method achieves competitive performance among all
online and offline trackers, with the highest MOTA value of
86.9% and MT value of 83.1%. *e relatively higher metrics
of MOTA and MT and the lower metrics of the ML, IDS,
and FG demonstrate that the proposed method can ef-
fectively track the vehicles with fewer false negatives
proving the good robustness of the proposed model. *e
proposed method encodes the spatial correlation and
temporal history trajectories information at the image level
and tracklet level, which effectively extract context infor-
mation from the tracklets and detections. Furthermore, the
image-level and tracklet-level information from the two-
stage transformer encoder module is fed back to guide
association affinity matrix computation in spatial trans-
former decoder module. *is is useful for using historical
tracklets information to handle the occlusion in online
tracking.

Figure 4 shows typical vehicle tracking results of the
proposed method in handling the occlusion on the KITTI
dataset. Each row in Figure 4 shows the tracked vehicles
from the same sequence. *e tracked vehicles are iden-
tified by different color bounding boxes and the identity
numbers for the tracked targets are only used for refer-
ence. From the 0014 sequence in Figure 4(a), the identity 1
with 90-degree scale changes and the vehicle with identity
1 undergoes occlusion from partial to full. When identity
1 is fully occluded by identity 2 in frame 584, only the
latter is tracked. However, when the full occlusion dis-
appears, the proposed method correctly tracks each of
them. In 0015 and 0017 sequences, the vehicles with
identity number 1 both suffer from occlusion, scale, and
illumination changes. When the full occlusion occurs in
frames 581 and 119 of sequences 0015 and 0017, the
proposed method can only track the vehicles with identity
number 2 in both sequences. When the occlusion dis-
appears, the proposed method can successfully associate
the occluded vehicle to its previous trajectory in frames
594 and 123 of sequences 0015 and 0017, respectively.
*ese three tracking examples show that the proposed
method can effectively tackle the challenges, such as oc-
clusion, scale, and illumination changes, demonstrating
its robustness.

4.4.2. Evaluation on UA-DETRACDataset. Table 4 presents
the quantitative tracking and comparison results of the
proposed method with other 9 SOTA trackers on UA-
DETRAC dataset. It is seen from Table 4 that the eval-
uation metrics are heavily influenced by the detectors.
When the proposed tracker is tested on CompACT de-
tector, the value of MOTA is 20.14%. For the RCNN
detector, the MOTA value is 20.82%. Similar results are

Table 1: Different lengths of tracklets for temporal transformer
encoder model on KITTI validation.

Method FP↓ (%) FN↓ (%) MOTA↑ (%)
T � 1-tracker 8.9 10.1 83.2
T � 10-tracker 5.3 5.8 87.1
T � 15-tracker 5.5 6.1 86.9
Ours 5.2 5.9 88.4

Table 2: Different input queries for spatial transformer decoder
model on KITTI validation set.

Method FP↓ (%) FN↓ (%) MOTA↑ (%)
P1-tracker 7.9 9.4 84.3
P2-tracker 6.4 7.1 86.5
Ours 5.2 5.9 88.4
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Table 3: KITTI dataset evaluation results.

Dataset Method Setting MT↑ (%) ML↓ (%) IDS↓ FG↓ MOTA↑ (%) MOTP↑ (%)

KITTI Car

MCMOT_CPD [30] Offline 52.31 11.69 228 536 78.90 82.13
DSK [31] Offline 60 8.31 296 868 76.15 83.42

Complexer-YOLO [32] Online 58 5.08 1186 2092 75.7 78.46
NOMT [33] Offline 41.08 25.23 31 207 66.6 78.17

LP_SSVM [34] Offline 35.54 21.26 62 539 61.77 76.93
CEM [35] Offline 20 31.54 125 396 51.94 77.11
RMOT [36] Online 21.69 31.859 209 727 52.42 75.18

ODAMOT [37] Online 27.08 15.54 389 1274 59.23 75.45
SCEA [38] Online 26.92 26.62 104 448 57.03 78.84
CIWT [39] Online 13.75 34.71 112 901 43.37 71.44
FAMNet [40] Online 51.38 8.92 123 713 77.08 78.79

SASN-MCF [41] Online 58 7.85 443 975 70.06 82.65
MASS [42] Online 74 2.92 353 516 84.64 85.36
SAMT [43] Online 62.77 6.00 198 294 83.64 85.89

CenterTrack [24] Online 82.15 2.46 254 227 88.83 84.97
Ours Online 83.1 2.9 271 254 86.90 85.71

(a)

(b)

(c)

Figure 4: Tracking examples of the proposed method on KITTI dataset. (a) Sequence 0014. (b) Sequence 0015. (c) Sequence 0017.

Table 4: UA-DETRAC dataset evaluation results.

Dataset Method Setting Detector MT↑ (%) ML↓ (%) IDS↓ FG↓ MOTA↑ (%) MOTP↑ (%)

UA-DETRAC

GOG [44] Offline CompACT 13.90 19.90 3334.6 3172.4 14.20 37.00
H2T [45] Offline CompACT 14.8 19.4 852.2 1117.2 12.40 35.7
IHTLS [46] Offline CompACT 13.8 19.9 953.6 3556.9 11.10 36.8
DCT [47] Offline CompACT 6.7 29.3 141.4 132.4 10.80 37.1
DCT [47] Offline R-CNN 10.1 22.8 758.7 742.9 11.7 38.0
CEM [34] Offline CompACT 3 35.3 267.9 352.3 5.10 35.2
CMOT [48] Online CompACT 16.1 18.6 285.3 1516.8 12.60 36.1
IOU [49] Online CompACT 14.8 19.7 2308.1 3250.4 16.10 37.0
IOU [49] Online R-CNN 13.8 20.7 5029.4 5795.7 16.00 38.3

V-IOUT [50] Online CompACT 17.4 18.8 363.8 1123.5 17.7 36.4
FAMNET [40] Online CompACT 17.1 18.2 617 970.2 19.80 36.7

Ours Online CompACT 17.6 18.1 518.2 1546.8 20.14 34.37
Ours Online R-CNN 18.9 17.6 463.4 1450.6 20.82 35.65
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obtained for the DCT and IOU trackers as shown in
Table 4. *ese results further validate that the tracking
performance is heavily affected by the quality of detec-
tions. Additionally, since UA-DETRAC is a challenging
dataset in real-world traffic scenes with various traffic
crossing, serious occlusion, and different weather

conditions, the detections provided by predefined de-
tectors have poor quality, resulting in the MOT metrics,
such as MOTA, MOTP, and MT, to be generally inferior
to the KITTI datasets for all trackers. Despite this, the
overall performance of our tracker is superior to that of
other trackers, as shown in Table 4.

(a)

(b)

Figure 5: Tracking examples of the proposed method from UA-DETRAC dataset. (a) Sequence MVI_40853. (b) Sequence MVI_40763.
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Figure 5 shows the typical tracking results of the pro-
posed method on the UA-DETRAC. Similar to Figure 4,
each row in Figure 5 shows the tracked vehicles from the
same sequence and are identified by different color
bounding boxes. Identity numbers are used for reference.
From the MVI_40853 sequence, identity 2 is occluded by
identity 1, from partial to full. When identity 2 is partially
occluded by identity 1 in frame 381, the proposed method
can correctly track each one. However, the full occlusion
occurs in frame 423, in which only identity 1 is tracked.
When the occlusion disappears in frame 463, the proposed
method can correctly reidentify identities 1 and 2. Sequence
MVI_40763 is a night-time traffic scene. As shown in
Figure 5(b), the tracked vehicles are heavily affected by
reflected light. Identity 1 is occluded by identity 2 from
frames 410 to 442. When the full occlusion happens in frame
449, identity 1 cannot be tracked. A similar phenomenon
occurs for identities 2 and 3. When the former is fully
occluded by the latter, only identity 3 is tracked. In frame
463, when identity 2 is redetected, the proposed method can
successfully associate this vehicle to its previous trajectory.
*ese examples show that the proposed method can handle
the occlusion and successfully reidentify the occluded target,
validating its robustness.

4.4.3. Evaluation on VisDrone2018 Dataset. To further
evaluate the effectiveness of the proposed method, we
conduct experiment on VisDrone2018 dataset, which is also
a challenging MOT dataset captured from different cities
under various weather and lighting conditions. Vis-
Drone2018 dataset mainly focuses on pedestrian, car, van,
bus, and truck. Table 5 presents the comparison results of the
proposed method with other 10 SOTA trackers on Vis-
Drone2018 dataset. As shown in Table 5, the proposed
tracker has superior tracking performance to other trackers,
with 40.5% MOTA. *e relatively higher metrics of MOTA
and MT and the lower metrics of the ML, IDS, and FG
demonstrate the proposed method can effectively track the
objects with fewer false negatives, which further validate the
effectiveness of the proposed spatial-temporal encoder-de-
coder affinity network designed for MOT. With the two-
stage transformer encoder module, the spatial correlation
and temporal history trajectories features at the image level
and the tracklet level are fully captured, which is useful for

eliminating track errors caused by occlusion. Furthermore,
the self-attention and position mechanism in transformer
model further help the proposed network to focus on more
important features by computing attention weights for
object query and tracklet query and to feed the results into
the spatial transformer decoder module for association af-
finity computation, which is beneficial to gain the tracking
performance.

4.5. Run-Time Performance. *e speed of the trackers is
evaluated on the UA-DETRAC dataset and VisDrone
dataset by frame per second (FPS). *e run-time perfor-
mance of the proposed method and other state-of-the-art
trackers are compared in Tables 6 and 7.*e run-time for the
proposed method is measured on Intel Core i7 16GHz PC,
which is without code optimization and parallel program-
ming. It is seen from Tables 6 and 7 that the run-time
performance of the tracker in our method is above the
average of all the listed state-of-the-art trackers. Despite this,
the speed is insufficient for real-time application. Real-time
MOT considering both the validation and speed should be
paid more attention to in the future.

4.6. Limitation and Future Research. Although the proposed
method can be correctly tracking multiple vehicles online, it
still needs to be improved until it can be used in real ap-
plications. Firstly, the proposed method uses an offline
predefined detector to provide the detections; it is not
trained for a given traffic video, which may limit the vehicles
tracking performance. Hence, how to design a customization
object detector and adaptively introduced it into MOT is one
of the important directions for our future work. Secondly,
the proposed method mainly focuses on how to exploit the
powerful representation ability and attention mechanism of
deep neural network to model the spatial and temporal
relationship of the tracklets and the detections; no extra
motion information has been introduced in data association.
*e motion model learned from data can be used to predict
trajectory of the tracked object, which is essential for ac-
complish track association in situation such as occlusion and
tracked objects with similar appearance. *erefore, how to
design a unified framework to efficiently construct data
association model to make different features (appearance

Table 5: VisDrone2018 dataset evaluation results.

Dataset Method Setting MT↑ ML↓ IDS↓ FG↓ MOTA↑ (%) MOTP↑ (%)

VisDrone2018

H2T [45] Offline 214 494 1269 2035 32.2 73.3
IHTLS [46] Offline 245 446 1435 2662 36.5 74.8
GOG [44] Offline 244 496 1114 2012 38.4 75.1
CEM [35] Offline 105 752 1002 1858 5.1 72.3
CMOT [48] Online 282 435 789 2257 31.5 73.3
SCTrack [51] Online 211 550 798 2042 35.8 75.6
TBD [52] Online 302 419 1834 2307 35.6 74.1

V-IOUT [50] Online 297 514 265 1380 40.2 74.9
Ctrack [53] Online 369 375 1376 2190 30.8 73.3
FRMOT [23] Online 254 463 1043 2534 33.1 73.0

Ours Online 319 451 779 2090 40.5 74.1
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model, motion model) from the tracklets and the detections
be compatible with each other is another work that needs to
be done in future. *irdly, although the proposed method is
online tracking, the run time is only 8.3 FPS, which is slow
for the real-time application. *erefore, real-time MOT
should be paid more attention to in our future work. Ad-
ditionally, in real urban traffic scenarios, the traffic con-
gestion will cause serious occlusion or object disappear issue.
Recent development reidentification (Re-ID) model is a
good way to solve the occlusion and the target disappeared
in surveillance video. *erefore, how to efficiently embed
Re-ID model into MOT framework for better solving the
occlusion or tracked target disappeared issue is another issue
that needs to be solved in the future.

5. Conclusion

In this study, we have explored a spatial-temporal en-
coder-decoder affinity network for multiple vehicle
tracking. To fully exploit the spatial and temporal in-
formation of the tracked objects in different frames for
association affinity computation, a two-stage transformer
encoder module is devised to encode candidate detections
and the tracked targets for capturing the spatial corre-
lation and temporal history trajectories features at the
image level and tracklet level. With the two-stage
transformer encoder module, the proposed method can
effectively learn the features by leveraging the superiority
of the transformer models, where the self-attention and
position mechanism focus on more important features by
computing attention weights for object query and tracklet
query. Moreover, instead of exploiting the spatial and
temporal features separately in computing association
affinity, a spatial transformer decoder module is designed
to compute the association affinity with the feedback
results from the two-stage transformer encoder module.
*is is useful for fully capturing and encoding the spatial
and temporal information from the detections and the
tracklets of tracked targets. *e experimental results
compared with state-of-the-art tracker on three bench-
mark vehicle tracking datasets including KITTI, UA-
DETRAC and VisDrone2018 demonstrate that the pro-
posed method has good tracking performances with
higher MOTA, MTand lower ML, IDs metrics, validating
the effectiveness of the proposed method. We hope that
our work will encourage more investigations of exploiting

the transformer’s powerful attention mechanism for
further improving performance of multiple object
tracking.
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