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Abstract: The lack of new drugs and resistance to existing drugs are serious problems in gastric
cancer(GC) treatment. The research found polyphenols possess anti-Helicobacter pylori(Hp) and antitu-
mor activities and may be used in the research and development of drugs for cancer prevention and
treatment. However, polyphenols are affected by their chemical structures and physical properties,
which leads to relatively low bioavailability and bioactivity in vivo. The intestinal flora can improve
the absorption, utilization, and biological activity of polyphenols, whereas polyphenol compounds
can increase the richness of the intestinal flora, reduce the activity of carcinogenic bacteria, stabilize
the proportion of core flora, and maintain homeostasis of the intestinal microenvironment. Our
review summarizes the gastrointestinal flora-mediated mechanisms of polyphenol against GC.
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1. Introduction

According to the Global Cancer Epidemiology Statistics (GLOBOCAN) in 2020 world-
wide [1], gastric cancer (GC) remains important cancer worldwide and is responsible
for over one million new cases and an estimated 769,000 deaths (equating to 1 in every
13 deaths globally), ranking fifth for incidence and fourth for mortality globally. Consid-
ering the new cases of and deaths due to GC, China ranks third worldwide. According
to data from China [2], the five-year survival rate for most early GCs after radical endo-
scopic therapy is more than 90, but the 5-year survival rate is still less than 30% even after
comprehensive treatment-based surgery [3]. Achieving early diagnosis and treatment is a
key part of the global GC prevention and control work. However, most areas with a high
incidence of GC in the world still lack a mature prevention and control system for gastric
cancer. More than 50% of the patients were at the advanced stage of GC at the time of
initial diagnosis, so they lost the chance of radical surgery, and thus, they could only adopt
a comprehensive treatment scheme based on anti-tumor drugs [4]. A recent meta-analysis
showed that third-line therapy (TLT) is effective and safe in the treatment of advanced or
metastatic GC, such as overall survival (OS), progression-free survival (PFS) and disease
control rate (DCR) [5]. Chemotherapy, in the dominant position, has a relatively wide
application scope. Fluorouracil plus platinum is the first line regimen, but the benefit of
chemotherapy alone is limited, and the Median Survival Time (MS) is only 8 months, so
chemotherapy is recommended combined with targeted therapy [6]. Targeted therapy
is in targeting human epidermal growth factor receptor-2 (HER-2), vascular endothelial
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growth factor receptor (VEGF), tyrosine kinase inhibitor (TKI), and so on [7]. As early as
2010, the ToGA trial established the first-line treatment for patients with advanced GC
who were HER-2 positive with trastuzumab combined with chemotherapy [8]. With the
development of research on HER-2-targeted therapy for advanced GC, in January 2021, the
Food and Drug Administration (FDA) of the United States approved trastuzumab deruxte-
can (T-Dxd) for the treatment of unresectable, locally advanced, or metastatic GC, which
previously received a trastuzumab regimen, thus further perfecting the targeted treatment
of GC. However, the population suitable for targeted therapy is relatively limited, and the
therapeutic effect is also different among individuals [9]. With the in-depth study of the
tumor immune microenvironment (TME), the efficacy of immunotherapy represented by
immune checkpoint inhibitors (ICIs) has been clear, especially in GC, with high expression
of programmed death protein-1 (PD-1), programmed death ligand-1 (PD-L1), EB virus
infection (EBV) and microsatellite instability (MSI), where the curative effect of ICIs is the
most significant. The therapeutic effects of genomic stable type (GS) and chromosome
unstable type need to be further studied [10]. However, ICIs work only against specific
immune checkpoints (cell-surface molecules) and are almost ineffective in patients with low
immune checkpoint expression levels [11]. However, with the continuous improvement
in antineoplastic drug treatment for GC, the problem of tumor drug resistance has obvi-
ously not been improved [12]. Therefore, development of new drugs and complimentary
medicine is essential, and plant polyphenols have been reported to have a good anti-cancer
effect, which has attracted the wide attention of researchers.

Polyphenols are secondary metabolites from plants, widely present in foods and bev-
erages with plant origins (e.g., fruits, vegetables, grains, soy, tea, and wine) [13]. Results
of epidemiological research and meta-analyses implied that a polyphenol-rich diet has
a protective effect against tumor, cardiovascular disease, diabetes mellitus, osteoporosis,
and neurodegenerative diseases [14,15]. Polyphenols and polyphenol subclasses intake
may reduce GC risk [16]. In addition, several literature findings have suggested that di-
etary polyphenols inhibit proliferation, induce apoptosis and reduce drug resistance in
GC cells [17]. However, polyphenols’ function is affected by many factors, both intrinsic
and extrinsic. For example, the gastrointestinal flora plays significant roles in the pro-
cess of polyphenol absorption and metabolism. Most natural polyphenolic compounds
must be absorbed and utilized under the action of specific intestinal flora, and phenolic
metabolites can have activities that are not found in the original compounds [18]. On the
contrary, polyphenols have a regulatory effect on the intestinal flora. They function as
prebiotics by providing substrates required for microbial metabolism and interacting with
microbial-related enzymes, enhancing beneficial flora growth, inhibiting carcinogenic flora
proliferation, and maintaining the homeostasis of the intestinal microenvironment [19].
Therefore, our review concentrates on the anti-GC mechanisms of polyphenols mediated
by gastrointestinal flora.

2. Polyphenol Anti-GC Mechanism

Previous studies have indicated polyphenols’ chemopreventive effect as antioxidant,
antiproliferative, antibacterial, apoptosis-promoting compounds, and their role in regulat-
ing signaling pathways that prevent or reverse tumor differentiation. This includes two
main aspects: polyphenols directly inhibit the occurrence of GC, and polyphenols eliminate
GC risk factors, such as the infection by Helicobacter pylori (Hp).

2.1. Direct Protective Effect of Polyphenols
2.1.1. Polyphenols Protect against DNA Damage

Polyphenols have the same average reduction potential as vitamin E and are consid-
ered to be the richest antioxidants in the daily diet [20,21]. The biological activity depends
on chemical structure, including the hydroxylation position of a single compound and
the substitution of specific hydroxyl groups. The presence of hydroxyl groups makes
polyphenols excellent hydrogen-bond donors [22]. Polyphenols have a high affinity for
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proteins and DNA, which promotes antioxidant properties and anti-free radical-mediated
anti-DNA damage effects [23]. For example, curcumin inhibits GC growth by generating
many reactive oxygen species, leading to the depletion of mitochondrial DNA content and
DNA polymerase, altering the bioenergetics of the cells [24]. The mechanism is mainly
regulated by the p53-p21/Gadd45a cyclin/CDK Rb/E2f-dnmt1 axis in damaged DNA
repair [24]. Furthermore, studies have shown that curcumin analogs target topoisomerase II
in human cancer cells, thus directly blocking the activity of topoisomerase II, and the chain
in the DNA chain cannot be reconnected, leading to cancer cell apoptosis [25]. However,
a Peng et al. study showed that polyphenols seemed to only have an antioxidant effect
but did not repair the oxidized cells. This conclusion needs to be confirmed by more
studies [26].

2.1.2. Apoptosis of Tumor Cells Induced by Polyphenols

Polyphenols have great potential for cancer prevention through the induction of apop-
tosis [27]. Natural polyphenols promote GC cell apoptosis by regulating target kinases.
Researchers found that terminal ascorbic acids can activate the p38 MAPK-c-Jun-terminal
kinase (JNK) pathway and promote apoptosis of GC cells [28]. Otherwise, phenolic com-
pounds in the Begonia fruit extract inhibit the tumor cells’ growth, mainly by increasing
the expression of Bcl-2 and Bcl-xL, and inhibiting Bax and Bak expression [29]. Similarly,
curcumin significantly downregulate the expression level of Bcl-2, CDK4, and cyclin D1
in cells and tissues, thereby inhibiting SGC-7901 GC cell proliferation and inducing cell
apoptosis [30]. It also regulates the proliferation, autophagy, and apoptosis of GC cells by
affecting the PI3K and p53 signaling pathways [31]. Kaempferol activates IRE1-JNK-CHOP
signaling pathway from cytoplasm to nucleus and inhibits epigenetic changes mediated
by G9a (HDAC/G9a axis), thus activating autophagic death of GC cells [32]. Pectolina
rigenin may lead to cell cycle arrest, autophagy and apoptosis in G2/M phase of GC cells
by downregulating PI3K/AKT/mTOR pathway [33]. Resveratrol promotes cell apoptosis
and against proliferation by combining with PIM-1 and inhibiting its catalytic activity [34].
The anti-apoptosis effect of polyphenols may be related to the inhibition of the activation
of NF-κB involved in Notch and Wnt pathways [35]. Ho et al. indicated that gallic acid’s
inhibitory effect on GC cells might connect with the NF-κB activity [36]. Curcumin inhibits
the growth and promotes apoptosis of GC cells by the Wnt/-catenin pathway [37].

2.1.3. Tumor Metastasis Inhibition and Invasion

Epithelial-mesenchymal transition (EMT) is vital for tumor cells to achieve metastatic
ability and invasiveness. After EMT, patients with GC are more likely to develop resis-
tance to various therapeutic drugs, which worsens their clinical outcomes. For example,
resveratrol regulates EMT by interfering with the hedgehog pathway inhibiting the GC
invasion and metastasis [38]. In addition, resveratrol can regulate the PTEN/Akt pathway
to inhibit EMT of GC cells [39]. Lignin-like sauchinone downregulate the PI3K/Akt and
Smad2/3 pathways to prevent TGF-β1-relevant EMT [40]. Luteolin reverses EMT and
inhibits GC progression by restraining the Notch pathway [41]. Plant polyphenols reduce
tumor metastasis and invasion by regulating the EMT pathway. Recent studies have shown
that resveratrol may also prevent IL-6-induced GC metastasis through downregulating
the activation of the Raf/MAPK pathway [42]. Pagliara et al. reported that the lemon
peel polyphenol extract inhibits the invasiveness of GC cells by decreasing the MM9/2
expression level [43]. Polyphenolic compounds inhibit tumor metastasis and invasion
through other mechanisms. For example, curcumin may inhibit liver metastasis in primary
GC by inhibiting the CD1/CXCR4-related pathway [44] and HMGB1/VEGF-D pathway
GC [45].

2.1.4. Tumor Metastasis Inhibition and Invasion

Chemotherapeutic drug resistance has become a problem in GC. Studies have reported
that compared with simple chemotherapy drug treatment group, the polyphenol-containing
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drug combined with chemotherapy increased the effect of GC chemotherapy [46]. The
combination of oxaliplatin and rutin reduces the toxicity effects of chemotherapeutics and
improves chemotherapy effect; the combination of luteolin and oxaliplatin can change
the cell cycle ratio of SGC-7901 cells [47]. Baicalein promotes apoptosis and autophagy
of GC cells through the Akt/mTOR and Nrf2/keap 1 pathway to improve sensitivity to
cisplatin, and its effect is more intense than that of cisplatin or baicalein alone [48]. Similarly,
cisplatin combined with avicularin significantly induces tumor cell apoptosis and reduces
proliferation [17]. Cisplatin and resveratrol synergize the antitumor effect through endo-
plasmic reticulum stress-induced apoptosis and G2/M phase arrest [49]. The concentration
and expression of angiogenesis-related factors are significantly downregulated after the
combined treatment of quercetin and irinotecan, which may enhance the curative effect of
irinotecan on the human GC cells [50]. Troxerutin inhibits STAT3/NF- B and Bcl-2 pathways
to enhance the therapeutic function of 5- fluorouracil (5-FU) on GC [51]. The combination
of 5-FU and catechin shows a better cytotoxic effect on tumor cells, and promotes the
apoptosis of GC cells through reactive oxygen species [52]. Flavonoids can promote au-
tophagy, inhibit EMT, block cell cycle and target ERK1/2/MAP pathway, showing selective
anti-proliferation activity of adriamycin-resistant GC cells [53]. Rosmarinic acid combined
with targeted therapy for GC has an excellent anticancer effect [54]. In addition, some
polyphenol compounds, such as flavonoid polyphenols, have shown a more substantial
anticancer effect than chemotherapeutic drugs [48]. Studies have shown that silibinin has
significant cytotoxic activity on gastric adenocarcinoma cells (CI50: 60.17 ± 0.95 µg/mL)
with a higher selectivity index compared with cisplatin. After metabolization silibinin
showed an increase of cytotoxicity with a CI50 six-fold decrease (10.46 ± 0.25) [55].

3. Polyphenols Protect Indirectly from GC by Inhibiting Hp

Hp is considered the most critical member of the gastric microbiota, and its infection
is a risk bacterium factor for GC [56]. Therefore, eradication of the infection is important
for GC prevention and treatment. Because Hp can invade and colonize the gastric mucosa,
its eradication has become a problem worldwide, but most antibiotics are not active in the
acidic gastric environment. Therefore, new antibacterial compounds are actively being
explored. Natural polyphenols and their secondary metabolites inhibit Hp activity. Based
on Hp pathogenic factors, the mechanism of action of polyphenols against the bacterium
mainly includes the following.

3.1. Restriction of Hp Colonization through Urease Inhibition

Urease is considered as one of the virulence factors of Hp and a necessary condition
for infection. The apple polyphenol improves the chronic gastrointestinal effects caused by
Hp through inhibiting urease effect [57]. Paulo et al. reported that resveratrol and red wine
inhibit the growth of Hp through downregulating urease activity [58]. Procyanidins also
have inhibitory effect against Hp urease, which is significantly related to the molecular size
of procyanidins [59].

3.2. Inhibitory Effect of Bacterial Sialic Acid-Specific Adhesin and Downregulation on Expression
of Inducible Cytidine Deaminase

Hp is parasitic on the human gastric mucosa and causes inflammation, atrophic
gastritis, and GC. Adhesion is an essential component of the pathogen invasion and is a key
event in the establishment of infection. Studies have indicated that polyphenols decrease the
adhesion between Hp and the gastric mucosa, reduce the Hp-related inflammatory response,
and reduce the incidence of Hp-associated GC. Additionally, 3.9 g/mL flavonoids inhibit
approximately 90% of Hp growth by inhibiting adhesion [60]. In addition, in Hp-infected
gastric epithelial cells, the activation of NF-κB can promote the abnormal expression of
inducible cytidine deaminase, which is considered as one of the key mechanisms of Hp
-related GC. Therefore, the inhibitory effect of NF-κB downregulates AID expression and
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plays a protective role. Curcumin may downregulate AID induced by inhibiting the NF-κB
pathway and combat Hp-related gastric carcinogenesis [61].

3.3. Inhibition of the Release of Inflammatory Cytokines

IL-8 is the key cytokines involved in Hp-related inflammatory response. Torres et al.
synthesized epicatechin semisynthetic derivatives from avocado peel and observed their
adhesion to human GC cells and the induction of the proinflammatory release of IL-8 [62].
The study found that at 700 g/mL, the Hp adhesion rate to human stomach adenocarcinoma
cells was less than 20% The production rate of IL-8 was less than 10%, indicating that epi-
catechin has anti-inflammatory functions on Hp-infected GC. The resveratrol pretreatment
significantly inhibits Hp-induced IL-8 secretion and reactive oxygen species production [61].
The inhibitory function of resveratrol and epicatechin on IL-8 is probably related to their
inhibitory activity on the NF-κB pathway, which downregulates the expression level of IL-8.
Research has found that Walnut polyphenol extracts prevent Hp-related tumor growth by
inhibiting STAT3 phosphorylation and nuclear translocation in gastric mucosal cells [63],
and reversing precancerous atrophic gastritis [64]. Nobiletin has been confirmed to inhibit
Hp infection and prevent Hp-mediated GC [65]. Notably, silymarin has 100% inhibitory
effect on cytokines and NO related to Hp infection [55].

3.4. Inhibition of the Cytotoxic Activities of Hp Vacuolar Protein A (Vac A) and Cytotoxic
Associated Protein A (Cag A)

Vac A and Cag A have important impacts in Hp pathogenesis. Infection with Vac
A+ strain leads to vacuolization and apoptosis, whereas Cag A+ strain infection leads
to severe gastritis and GC. Kaempferol plays anti-inflammatory and anti-cancer roles
by decreasing the translocation of Cag A and Vac A [66]. In addition, the degree of
gastric damage is quantitatively determined in mice, which tips that high-molecular-
weight catechin-polymerized hop bud leaf extract (HBT) inhibits the activity of Vac A
in vivo. Additionally, HBT can inhibit the activity and absorption of Vac A, while inhibiting
Vac A-induced vacuolation of sensitive cells to inhibit the occurrence of gastric ulcer and
inflammation [67]. Black rice extract, with anthocyanin as the main component, can also
impede mRNA and protein levels of Cag A and Vac A [68]. Mahady et al. proved that
resveratrol inhibits the Cag A+ Hp growth [69]. Animal studies have further confirmed
that polyphenols limit damage to the gastric epithelium in mice model infected with Hp
or treated by Vac A toxin [70]. Similarly, curcumin has an obvious inhibitory function
on the activity of Cag A+ Hp [71]. All in all, polyphenols exert a variety of biological
activities inhibiting the appearance of GC directly and indirectly, and have a protective
impact by regulating gastrointestinal flora, such as Hp. Indeed, there is an extremely close
relationship between polyphenols and intestinal microbes, which is closely related to the
occurrence of GC. Importantly, gastrointestinal flora involves in the complete metabolic
process of polyphenols, which significantly improves the absorption, utilization, and
biological activity of polyphenols. In addition, polyphenols have a strong regulatory effect
on the intestinal flora, thereby triggering an increase in the body beneficial bacteria to
prevent GC occurrence.

4. Intestinal Flora Promotes the Transformation and Absorption of Polyphenols and
Regulates Their Biological Activity
4.1. Absorption and Metabolism of Polyphenols in Gastrointestinal Tract

Studies have verified it is not natural polyphenols that ultimately make effects on
cells and tissues, which is due to the transformation of their structure and activity in the
process of absorption and utilization. Most dietary polyphenols exist in food as esters,
glycosides or polymers, which cannot be used directly and must be absorbed after the
action of gastrointestinal flora and enzymes. In the past, the biological community generally
believed that polyphenols’ digestion and metabolism mainly occurred in the small intestine.
However, recent research on the morphology of polyphenols and gastrointestinal organisms
have led to a new understanding of their absorption and metabolism. Figure 1 shows the
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absorption and metabolism of the ingested polyphenols in the body. Dietary polyphenols
are divided into free and conjugated polyphenols [72]. It is estimated that only 5–10% of
free phenols with a simple structure, such as aglycons, flavonol monomers or dimers, and
some polyphenol sugars, are absorbed by small intestine cells [73]. Some free phenols are
transformed into metabolites available for resident microorganisms to produce biomass.
These metabolites may even be more bioactive than their precursors. These simple phenols
undergo phase I and II reactions in intestinal cells and hepatocytes, such as methylation,
glucuronidation, and sulfated derivatives, to produce many water-soluble metabolites
released into blood and various organs, and finally discharged from the urine. Almost
90–95% of dietary phenols cannot be absorbed by small intestine cells [74]. Conjugated
phenols, such as oligomeric and polymerized phenols with a molecular weight of nearly
40 kDa, enter the colon. Only a few are absorbed by colon cells. Most participate in
the catabolism of the intestinal flora, enter the enterohepatic circulation, and are finally
absorbed and utilized by the human body, thus promoting health [75].
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4.2. Intestinal Flora Regulates Biotransformation and Activity of Polyphenols

Intestinal flora has irreplaceable impacts on the complete metabolism of polyphe-
nol glycosides. Polyphenols decompose into small-molecule metabolites absorbed and
distributed in various tissues by intestinal microorganisms. Studies have reported that
differences in intestinal flora affect biological functions of polyphenols [76]. The regulatory
function of polyphenols is mainly reflected in the following aspects: (1) intestinal microor-
ganisms secrete enzymes promote the transformation of polyphenols from conjugated to
unconjugated [77]; (2) intestinal flora directly promotes the decomposition of free polyphe-
nols into more active and easily absorbed molecules, which are absorbed into the intestinal
liver circulation through intestinal mucosal cells; (3) through the depolymerization of in-
testinal microbial enzymes, phenol metabolites are excreted through the bile duct and some
are reabsorbed; (4) through microbial metabolism, small phenolic metabolites with higher
absorbability, utilization, and biological activity than precursor compounds, and some even
have broader natural characteristics than original polyphenols [78]; (5) intestinal flora has
specificity for the metabolic degradation of polyphenols. Different types of polyphenols
can be absorbed by different flora. If there is no particular flora in the intestine, even if
some polyphenols are ingested, they are not biologically active. Table 1 lists representative
studies on the impact of the intestinal flora on polyphenol conversion and absorption.
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Table 1. The effect of intestinal flora on transformation and absorption of polyphenol.

Research Type Polyphenol Effects of Intestinal Flora on Polyphenols Reference

In vitro Flavonoid
Probiotic rhamnosidase promotes hydrolysis of
hesperidin and Narcissus, but Naringin only is

hydrolyzed by fungal rhamnosidase.
[79]

In vitro Flavonoid Intestinal flora helps Formonoside produce two
metabolites (6′-o-malonyl Formonoside, 6′-o-malonyl). [80]

In vitro Flavonoid
Escherichia coli converts daidzein into equol by

microbial enzymes (ORF-1 enzyme, ORF-2 enzyme,
ORF-3 enzyme).

[81]

In vivo Querceti Plasma quercetin metabolites concentration is positively
correlated with Enterobacteriaceae count. [82]

In vivo Procyanidine Lactobacillus Casei-01 transforms procyanidine into
3-o-flavan and improves its antioxidant capacity. [83]

In vivo and In vitro Lignans (SDG)
SDG is deglycosylated to ring-opening isolarch oleoresin
(SECO); matairesinol and anhydrosecoi-solariciresinol

(AHS) are new intermediates.
[84]

In vivo and In vitro Trans-Resveratrol

Slackia Equolifaciens and Adlercreutzia Equolifaciens
transforms dihydroresveratrol into new

trans-resveratrol metabolites
(3,4’-dihydroxy-trans-stilbene, 3,4’-dihydroxy-biphenyl).

[85]

4.3. Regulation of Polyphenols on the Intestinal Flora

The intestinal flora and the human body constitute the intestinal microecosystem and
are closely related to health. The proportion of beneficial bacteria in the intestines of healthy
people is 70%, whereas that of patients with cancer is only 10%. As shown in Table 2, stud-
ies including vitro fermentation models, animal models and clinical trials, have revealed
polyphenols and metabolites’ regulatory functions on intestinal flora. Polyphenols selec-
tively promote the proliferation of beneficial intestinal flora, inhibit pathogenic bacteria,
reduce their virulence through prebiotic effects, regulate the composition of intestinal flora,
enrich the diversity of intestinal flora, and promote intestinal microenvironment homeosta-
sis [86]. The regulatory effect of polyphenols on gut microbiota might be affected to their
structure, concentration, and microbial species. The reported mechanisms of polyphenols
and intestinal flora are as follows: (1) polyphenol metabolites provide metabolic substrates
for microbial growth and (2) polyphenols affect the activity of enzymes related to microbial
growth. The specific impact may be as follows: (1) They affect the type and quantity of
enzymes in the intestine by changing the type and content of gut microbiota and (2) chelat-
ing metal ions in the body. Some microbial enzyme systems with metal ions as coenzymes
lose their activity due to the lack of auxiliary groups. Additionally, polyphenols and iron
binding inhibit the heme group production in some aerobic microorganisms, which af-
fects the microorganism and its enzymatic system. (3) They directly inhibit the activity
of some intestinal microbial enzymes. For example, studies have shown that condensed
tannins can inhibit the activity of bacterial extracellular enzymes, such as endoglucanase,
which is mainly achieved by the combination of polyphenols and enzyme protein molecules.
(4) There may be action on microbial cell membranes: the hydroxyl structure of polyphenols
can combine with the bacterial cell membrane to inhibit bacteria and (5) influence microbial
adhesion. For example, procyanidins B1 and B2 significantly increase the adhesion ability
of Lactobacillus spp. In a word, polyphenols regulate intestinal flora, promote the growth
of intestinal probiotics, inhibit pathogenic bacteria, inhibit carcinogenic enzymes activity in
the microbiota, and reduce the probability of carcinogenesis.
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Table 2. The regulation of polyphenols and polyphenol-rich extracts on intestinal flora.

Study Type Polyphenol Regulation of Polyphenols on Intestinal Flora Reference

In vitro Cocoa phenol Increases production of Bifidobacteria and Lactobacillus. [87]

In vitro Areca seed polyphenol Increases intestinal flora species diversity and changes
Proteobacteria and Firmicutes relative abundance ratio. [88]

In vitro Tea polyphenol Improves Bacteroidetes and Firmicutes relative
abundance and reduces their ratio. [89]

Animal experiment Cocoa phenol Decreases Bacteroides, Clostridium, and Staphylococcus
proportion. [90]

Animal experiment Pomegranate phenol Reduces inflammatory markers (iNOS,
cyclooxygenase-2, ptges, and PGE-2). [91]

Animal experiment Apple polyphenol Promotes Lactobacillus and Bifidobacterium. [92]

Animal experiment (mouse) Cranberry polyphenol Increases intestinal mucin degrading bacteria
(Akkermansia muciniphila). [93]

Animal experiment (mouse) Grape polyphenol Increases Akkermansia Muciniphila and decreases
Firmicutes and Bacteroidetes. [94]

Animal experiment (mouse) Resveratrol Inhibites Enterococcus faecalis, and promotes
Lactobacillus and Bifidobacteriums. [95]

Animal experiment (mouse) Tea polyphenol Increases Bacteroidetes and Proteus and decreases
Firmicutes. [96]

Animal experiment (mouse) Tea polyphenol Promotes Bifidobacterium. [97]

Animal experiment (mouse) Grape-seed
polyphenol

Promotes Lactobacillus, Bacteroides and
Bifidobacterium, inhibites Barnes, Ehrlich Shigella and

Ekman.
[98]

Clinical study (RCT) Red wine polyphenol Promotes Enterococcus, Prevotellas, Bacteroides,
Bifidobacteria, Bacteroides, and Eubacterium. [99]

Clinical study (RCT) Total polyphenols Increases fiber fermentation and butyrate-producing
bacterias. [100]

Clinical study (RCT) hesperidin and
naringin

Increases the production of short-chain fatty acids, and
reduces ammonia nitrogen. [101]

5. Gut Microbiome and GC Treatment

The intestinal microbiome is closely related to GC, which influences the curative effect
of different treatment strategies for GC, including surgery, chemotherapy, radiotherapy,
and immunotherapy. Intestinal probiotics regulate the homeostasis of intestinal microbiota
and maintain the intestinal barrier and immune state, which is beneficial to the recovery
and improvement of post-operative prognosis [102]. In chemotherapy, intestinal flora
can enhance efficacy, reduce drug resistance and reduce adverse events. Intestinal flora
interaction promotes inflammation and provides inflammatory mediators for the treat-
ment of oxaliplatin, cisplatin and CpG oligonucleotides. Research in mice has shown
that antibiotic-treated mice (which killed the gut microbiome) did not respond as well to
platinum chemotherapy or CpG-oligonucleotide immunotherapy as mice with intact gut
microbes [103]. Other studies have reported that regulating the microbiome through nutri-
tion or probiotic supplements can reduce chemotherapy toxicity and subsequent adverse
events in mice and humans [104]. Additionally, research demonstrated that intestinal flora
improves chemoresistance. For instance, Fusobacterium nucleatum regulating the molecu-
lar network of Toll-like receptors, microRNAs, and autophagy control the chemotherapy
resistance of colorectal cancer clinically, biologically and mechanically [105]. Similarly, Fu-
sobacterium nucleatum promotes chemoresistance of oxaliplatin by activating autophagy
in tumor cells [106]. In radiotherapy, fecal flora transplantation (FMT) improves the sur-
vival rate of irradiated animals, gastrointestinal function, and intestinal epithelial integrity,
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and prevents radiation-induced toxicity. Moreover, intestinal microbiological disorders
may become a potential biomarker for the prediction and prevention of radiation-induced
bowel disease or other complications in the future [107]. In immunotherapy, the effect
of intestinal microorganisms on the therapeutic efficacy and toxicity of immune check-
point inhibitors (ICIs) has also been explored to a great extent [108]. Although the exact
mechanism is unclear, Gopalakrishnan et al. showed that intestinal microflora remotely
controls the central role of lymphocyte and myeloid cell regulation [109]. The release
of lipopolysaccharide (LPS) from intestinal microorganisms stimulates innate immunity
through TLR4 pathway, thus promoting anti-tumor CD8+ T cell immune response [110].
Certain bacteria, such as Bacteroidetes thetaiotaomicron and Faecali bacterium prausnitzii,
have been reported to enhance the effectiveness of checkpoint inhibitors [111]. Hp is rec-
ognized as a pathogenic factor in gastric cancer, but recently, researchers have found that
Hp influences gastric cancer immunotherapy. Liu et al. demonstrated that 59.3% of Hp+
GC patients expressed PD-L1, suggesting that Hp might imply anti-PD-1/PD-L1 therapy
efficacy [112]. Wu et al. proved that PD-L1 expression in primary human gastric epithelial
cells is strongly enhanced by Hp, and significantly induces T cell apoptosis to enhance the
efficacy of immune checkpoint inhibitors [113]. Finally, in a recent study (DELIVER test:
UMIN000030850), Bacterial genome analysis of 501 patients with advanced GC treated with
nivolumab showed that Odoribacter and Veillonella were associated with tumor response
to nivolumab, and GC-specific intestinal microflora may predict the response to ICIs [114].
In all, the role of gastrointestinal microflora in GC treatment needs to be further clarified in
multicenter prospective studies to identify specific bacterial species and pathways, as well
as changes in microbiota associated with the progression of GC.

6. Summary and Challenge

As natural plant compounds, dietary polyphenols have great potential for chemical
prevention and therapy of GC. Polyphenols are anti-inflammatory, antibacterial, antioxi-
dant, and anti-proliferative compounds that induce apoptosis or autophagy, inhibit EMT,
cause the hindering of angiogenesis and metastasis, enhance chemotherapy sensitivity, and
regulate gastrointestinal flora to play a protective role against GC [41,115,116].

Currently, although much progress has been made in understanding the anti-GC mech-
anism related to polyphenols, the details are still unclear as to how dietary polyphenols
affect these mechanisms. Polyphenols act as localized small-molecule inhibitors in signal
transduction and block their protein–protein interactions or their interactions with DNA,
in particular the disruption of multimeric forms of transcription factors such as c-jun/c-fos
(Activator Protein-1; AP-1) [117], c-myc/max, nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) [118] and β-catenin/T cell factor (Tcf), thus having an anti-
tumor effect. The development of polyphenol drugs, such as polyphenol transcription
factor inhibitors, has significant clinical application value [119]. Additionally, as mentioned
above, human topoisomerase may serve as a potential molecular target of polyphenol
compounds, which can inhibit enzyme activity and ultimately prevent the growth of cancer
cells [120]. In the future, we can develop polyphenol compounds as cancer cell topoiso-
merase inhibitors, providing more possibilities for anticancer drugs. However, polyphenols,
as natural compounds, have low bioavailability in our bodies. More attention should be
paid to how to deliver higher concentrations of polyphenols to target organs to improve
their absorption and utilization. The existing polyphenol nano-drug delivery technology
may have great potential in this regard [121]. In fact, studies have demonstrated that
polyphenols can provide a powerful environment for tumor immunotherapy by regulating
the tumor immune microenvironment (TME) [122]. Conversely, there are indications that
polyphenols may also play harmful roles [123], which means we should choose carefully
when immunotherapy is used [124]. Future studies focused on precise immunotherapeutic
protocols and well-defined cell and animal models will probably help us explore new ways
to fight cancer. Importantly, studies have reported that the polyphenol compound naringin
cannot be hydrolyzed by rhamnosidase in probiotics but can be hydrolyzed by fungal rham-



Curr. Oncol. 2022, 29 5256

nosidases, which indicates that intestinal fungi have a specific effect on the catabolism of
polyphenols [79]. Similarly, studies have reported the effect of polyphenols on fungi [125],
but the interaction mechanism between polyphenols and fungi still needs to be further
studied. What is the interaction between intestinal fungi and intestinal bacteria in the
anti-GC activity of polyphenols? What are the potential connections between polyphenols,
intestinal bacteria, and intestinal fungi? In the future, more basic and clinical research will
be required to understand the interaction mechanisms among polyphenols, GC and other
influencing factors.
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