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Citrus Huanglongbing (HLB) is the most devastating citrus disease in the 

world. Candidatus Liberibacter asiaticus (Las) is the prevalent HLB pathogen, 

which is yet to be cultivated. A recent study demonstrates that Las does not 

contain pathogenicity factors that are directly responsible for HLB symptoms. 

Instead, Las triggers systemic and chronic immune responses, representing 

a pathogen-triggered immune disease. Importantly, overproduction of 

reactive oxygen species (ROS) causes systemic cell death of phloem tissues, 

thus causing HLB symptoms. Because Las resides in the phloem tissues, it 

is expected that phloem cell might recognize outer membrane proteins, 

outer membrane vesicle (OMV) proteins and extracellular proteins of Las to 

contribute to the immune responses. Because Las has not been cultivated, 

we used Liberibacter crescens (Lcr) as a surrogate to identify proteins in the OM 

fraction, OMV proteins and extracellular proteins by liquid chromatography 

with tandem mass spectrometry (LC–MS/MS). We observed OMVs of Lcr under 

scanning electron microscope, representing the first experimental evidence 

that Liberibacter can deliver proteins to the extracellular compartment. 

In addition, we  also further analyzed LC–MS/MS data using bioinformatic 

tools. Our study provides valuable information regarding the biology of Ca. 

Liberibacter species and identifies many putative proteins that may interact 

with host proteins in the phloem tissues.
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Introduction

Citrus Huanglongbing (HLB, also known as citrus greening) 
is the most devastating citrus disease worldwide. It is caused by 
phloem-colonizing bacteria Ca. L. asiaticus (Las), Ca. L. africanus 
(Laf) and Ca. L. americanus (Lam, syn. Ca. L. psyllaurous; Hansen 
et al., 2008; Liefting et al., 2009) with Las being the most prevalent. 
HLB remains the No. 1 challenge for citrus growers despite some 
progress in HLB management including three-pronged 
management (Yuan et  al., 2021; Alquézar et  al., 2022), plant 
defense inducers (Li et al., 2019), antimicrobials (Akula et al., 
2011; Li et al., 2019, 2021), heat treatment Thapa et al., 2021), 
microbiome manipulation (Riera et al., 2017), growth hormones 
(Canales et al., 2016; Tang and Vashisth, 2020), and enhanced 
nutrition programs (Stansly et al., 2014). Owing to the inability to 
culture the HLB pathogens in vitro, the pathogenicity mechanism 
of HLB remains poorly understood (da Graça et al., 2022; Pandey 
et al., 2022). Las lacks homologs of known pathogenicity factors 
that are directly responsible for causing plant disease symptoms 
(Ma et al., 2022). The pathogenicity factors including vir genes 
from closely related Agrobacterium and Rhizobium pathogens 
(Chilton et al., 1982; Kuzmanović et al., 2018) were not identified 
in Las. Las does not contain type II, III, and IV secretion systems 
that are commonly involved in bacterial virulence (Duan et al., 
2009; Thapa et  al., 2020). Other virulence factors including 
Sec-dependent effectors (SDE) were discovered in Las and 
proposed to activate disease symptoms (Pitino et al., 2016; Clark 
et al., 2018; Pang et al., 2020), but none of the SDEs cause HLB 
symptoms when overexpressed in plants (Ma et al., 2022). Prior 
work also suggested that Las causes HLB symptoms by phloem 
blockage resulting from deposition of callose and other phloem 
proteins (Kim et al., 2009; Achor et al., 2010, 2020; Koh et al., 
2012), root decay (Johnson et al., 2014), chloroplast disruption 
due to excessive starch accumulation in plastids (Gonzalez et al., 
2012), metabolic burden (Vasconcelos et al., 2021). However, these 
observations seem to be the consequence of Las infection, rather 
than the root cause of HLB disease. It has been recently reported 
that HLB is a pathogen-triggered immune disease (Ma et  al., 
2022). Las infection stimulates systemic and chronic immune 
response in phloem tissues and HLB disease symptoms are caused 
by systemic cell death of those tissues. This response is instigated 
primarily through excessive and chronic reactive oxygen species 
(ROS) production.

Las resides inside the phloem tissues. It is possible that 
citrus phloem cells might recognize Las via typical pathogen-
associated molecular patterns (PAMPs) including LPS, 
peptidoglycan, and flagellin to trigger immune responses. It was 
reported that Las encodes a flagellin containing a conserved 22 
amino acid domain (flg22) that induces immune response (Zou 
et  al., 2012) and Citrus species contains functional FLS2 
responding to flg22 (Shi et al., 2016). In addition, phloem cells 
might active the immune responses by recognizing Las proteins 
on the cell surface, i.e., outer membrane proteins (OMPs), and 
those which are easily released into the phloem tissues, such as 

proteins contained in outer membrane vesicles, and putative 
secreted proteins.

OMPs consist of two kinds of proteins: integral outer 
membrane proteins and peripheral lipoproteins, and together they 
comprise approximately 2 to 3% of the bacterial proteins 
(E-komon et al., 2012; Majewski et al., 2018; Hermansen et al., 
2022). Typical integral OMPs have a β-barrel fold and can range 
in size from 8 to 36 strands with short loops between strands on 
the periplasmic side and large, extended loops on the extracellular 
side (Fairman et al., 2011; Doyle and Bernstein, 2019). Larger 
β-barrels were also found, for example, secretin stInvG from 
Salmonella enterica and secretin ecGspdD from Escherichia coli 
K12 have 60-stranded β-barrel structure (Worrall et al., 2016; Yan 
et al., 2017). Most OMPs contain an even number of β-strands 
arranged in an antiparallel pattern (Fairman et  al., 2011). So 
β-strand structure can be used as an analysis target to identify 
OMPs. Typical lipoproteins have a protein domain located in the 
periplasm and a lipid part anchored to the inner leaflet of outer 
membrane. However, many lipoproteins are surfaced-exposed 
because they can be assembled in complexes with β-barrel proteins 
like LptE/LptD or RcsF/OMP in Escherichia coli (Konovalova and 
Silhavy, 2015). Importantly, some OMPs are known to induce 
immune responses. For instance, bacterial pathogens produce 
lipoproteins were found to induce apoptosis in THP-1 monocytic 
cells through human Toll-like receptor–2 (hTLR2; Aliprantis 
et al., 1999).

OMPs are synthesized by ribosomes in the cytoplasm and 
transferred into the periplasm by passage through the SecYEG 
translocon in the inner membrane. OMPs are in unfolded 
conformations during this stage. Then the OMP precursors 
interact with periplasmic chaperones to prevent misfolding and 
can be delivered to the β-barrel assembly machinery (BAM) to 
be inserted into the outer membrane (Rollauer et al., 2015). OMPs 
fulfill multiple functions including nutrient uptake, waste export, 
cell adhesion, and cell communication. Outer membrane proteins 
such as lipoproteins have been known to activate immune 
responses in mammalian cells (Hashimoto et al., 2006).

Outer membrane vesicles (OMVs) are spherical membrane-
bound structures released from the envelopes of Gram-negative 
bacteria, ~20–250 nm in diameter. It is postulated that OMVs are 
produced from the regions of outer membrane where covalent 
crosslinks between the outer membrane and peptidoglycan 
decrease (Schwechheimer and Kuehn, 2015). Bacteria can use 
OMVs to secrete virulence factors into surroundings. OMVs from 
plant pathogens were reported to induce reactive oxygen species 
burst and defense-related marker gene expression in Arabidopsis 
thaliana (Bahar et al., 2016). OMVs from Xanthomonas campestris 
pv. vesicatoria, the causal agent of bacterial spot disease in tomato 
and pepper, contain virulence-associated xylanases and protease 
(Solé et  al., 2015). Bacterial OMVs can also deliver 
lipopolysaccharide (LPS) into host cell cytosol to activate 
caspase-11 and immune response (Vanaja et al., 2016).

In this study, we aimed to investigate proteins of the outer 
membrane fraction, OMV proteins, and putative secreted proteins 
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of Ca. Liberibacter. Because only Liberibacter crescens (Lcr) is 
cultured in artificial media and Lcr is of high similarity with other 
species in the Liberibacter genus (Leonard et al., 2012), Lcr BT-1 
was used as a surrogate to achieve our goal. Specifically, the 16S 
rRNA gene of Lcr BT-1 shares 94.7% sequence similarity with the 
16S rRNA genes of Lam and Las, 94.0% similarity with Lso, and 
93.4% similarity with Laf (Fagen et al., 2014a). The genome size of 
Lcr is 1.5 MB, which is slightly larger than the ~ 1.2 MB genome of 
Lam, Las, Lso and Laf (Duan et al., 2009; Lin et al., 2011, 2015; 
Leonard et al., 2012; Wulff et al., 2014), but the predicted functions 
encoded by their genomes do not have substantial difference 
(Fagen et al., 2014b). The shared average nucleotide identity (ANI) 
between Lcr BT-1 and Las is 77.4% (Fagen et al., 2014a). Las and 
Lcr encodes 1,183 and 1,380 genes, respectively, with 70% of Las 
genes having homologs in Lcr (Fagen et al., 2014b). Owing to their 
similarity, Lcr has been used as a surrogate to investigate the 
biology of Las (Lai et al., 2016; Jain et al., 2019; Sena-Vélez et al., 
2019). In this study, proteins of the outer membrane fraction, 
OMVs, and extracellular fraction of Lcr BT-1 were extracted and 
the proteins in these samples were identified by liquid 
chromatography with tandem mass spectrometry (LC–MS/MS). 
We used bioinformatic tools to further analyze the LC–MS/MS 
data. It is anticipated that the information learned from Lcr will 
shed light on Las and other Ca. Liberibacter species.

Materials and methods

Bacterial strain and culture conditions

Liberibacter crescens BT-1was cultured in Basal Medium 7 
(BM7) medium consisting of 2 g alpha-ketoglutarate, 10 g N-(2-
Acetamido)-2-aminoethanesulfonic acid (ACES) buffer, 3.75 g 
KOH, 150 ml of fetal bovine serum (Gibco) and 300 ml of 
TMN-FH insect medium (Sigma) per litter, adjusted to pH 6.5 
(Cruz-Munoz et al., 2019). Bacterial culture was grown at 250 rpm 
and 28°C. The cultures were routinely tested by PCR 
(Supplementary Table 1; Jain et al., 2019).

Isolation of Lcr BT-1 outer membrane 
fraction

Gram-negative bacteria have two cell membranes with 
different structures, the cytoplasmic membrane is a phospholipid 
bilayer while the outer membrane contains phospholipids in the 
inner leaflet and glycolipids in the outer leaflet (Kleanthous and 
Armitage, 2015). 0.5% N-Lauroylsarcosine sodium (Sarkosyl) 
solubilizes cytoplasmic membrane but not the outer membrane of 
E. coli (Filip et al., 1973). Thus, the Sarkosyl solution was used to 
extract the outer membrane fraction of Lcr. Outer membrane 
isolation was conducted as described previously (Davise, 1991; 
Foreman et al., 2010) with modifications. Lcr BT-1 was grown for 
7 days for collection at OD600 = 0.35. Bacterial cells were collected 

by centrifugation at 5,000 × g for 30 min at 4°C and stored at 
–70°C in membrane buffer (50 mM sodium phosphate buffer at 
pH 7.0, 7.5% glycerol, 50 mM NaCl). Then cells were thawed on 
ice and protease inhibitor cocktail (Roche) was added to the 
solution. The cells were disrupted using 240 × 5 s of sonication 
(Misonix Sonicator 3,000 Ultrasonic Cell Disruptor) on ice. Then 
the sonicated cell slurry was centrifuged at 11,000 × g for 10 min 
at 4°C to remove unbroken cells. The cell envelope was precipitated 
by ultracentrifugation of 50,000 × g for 60 min at 4°C in a Beckman 
75 Ti rotor, then resuspended in 0.5% (w/v) Sarkosyl for 20 min at 
room temperature to selectively solubilize the cytoplasmic 
membrane. Another 50,000 × g ultracentrifugation to precipitate 
the remaining outer membrane for 60 min at 4°C. The pellet was 
washed in 20 mM Tris–HCl (pH 7.2) buffer and centrifuged at 
50,000 × g for 60 min at 4°C. Finally, the outer membrane was 
resuspended in 20 mM Tris–HCl (pH 7.2) buffer.

Isolation of Lcr BT-1 outer membrane 
vesicle and extracellular proteins

For extraction of outer membrane vesicles and extracellular 
proteins, Lcr BT-1 was first grown in BM7 medium for 7 days for 
collection at OD600 = 0.35. Lcr cells were collected by centrifugation 
at 700 × g for 20 min. The pellet was washed using serum-free BM7 
medium (BM7 medium without fetal bovine serum) and 
centrifuged at 700 × g for 20 min for three times. The bacterial cells 
were then resuspended in serum-free BM7 medium to avoid the 
interfere on imaging and grown for 2 days.

Outer membrane vesicles (OMVs) were isolated using 
ExoBacteria™ OMV Isolation Kit (System Biosciences) according 
to the manufacturer’s protocol. The kit used an ion-exchange 
chromatography system to extract OMVs. Briefly, bacterial culture 
was centrifuged at 5,000 × g for 20 min at 4°C the supernatant was 
centrifuged again at 5,000 × g for 20 min at 4°C to remove cell 
debris. The supernatant was then filtered through 0.45 μm filter 
and 0.22 μm filter. At the same time, OMV binding resin was 
loaded to column the column was equilibrated by flowing through 
10 ml binding buffer. Then the bacterial supernatant was added to 
the column and cap was put on the column. After 30 min 
incubation on a rotating rack at 4°C, the column was put onto a 
rack and the bottom and cap of the bottom was removed. After 
supernatant flowed through the column, the resin was washed 
with 15 ml Binding buffer three times. Then the resin was 
incubated with OMV elution buffer for 2 min and the elution 
buffer was collected in a fresh microcentrifuge tube. OMV 
samples were then resuspended in 20 mM Tris–HCl (pH 7.2) 
buffer after acetone precipitation.

Extracellular proteins of Lcr BT-1 were isolated using the 
trichloroacetic acid (TCA) precipitation method (Koontz, 2014). 
Lcr cells from serum-free BM7 medium were centrifuged at 
5,000 × g for 30 min at 4°C and the supernatant was filtered 
through a 0.22 μm filter. The 10% of culture volume of TCA was 
added to the filtered supernatant and the solution was kept on ice 
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for 30 min. Then the samples were centrifuged at 10,000 × g for 
15 min at 4°C. The supernatant was carefully removed, and the 
pellet was washed with ice-cold acetone. The samples were 
centrifuged at 10,000 × g at 4°C for another 5 min and removed the 
supernatant. When the pellet dried the samples were resuspended 
into 20 mM Tris–HCl (pH 7.2) buffer.

In-solution digestion

Outer membrane fraction, outer membrane vesicle and 
extracellular protein samples were collected for LC–MS/MS 
analysis. Each type of samples had three biological replicates. Urea 
was added to protein samples to a final concentration of 1 M to 
increase the solubility of proteins. Five microliters (μl) of 200 mM 
dithiothreitol (DTT) solution were added to solution samples and 
they were heated up to 95°C for 5 min and incubated at 55°C for 
additional 45 min. Then the proteins were alkylated by adding 4 μl 
of 1 M chloroacetamide (CAA) solution and incubated at 25°C for 
45 min in darkness. The alkylation was stopped by adding 20 μl 
DTT solution and incubating the samples at 25°C for 45 min. 
Trypsin solution was prepared in 50 mM ammonium bicarbonate 
buffer and added to protein samples to make the final trypsin to 
protein ratio of 1:50 (w/w) in solution. The samples were incubated 
at 37°C for 16 h.

ZipTip

The resulting peptides from digested protein samples were 
desalted using micro ZipTip mini-reverse phase (Millipore) with 
capacity of 2 μg. The ZipTip was first equilibrated with 10 μl of 
100% Acetonitrile (ACN), 10 μl of 50% ACN/50% of 0.1% 
trifluoroacetic acid (TFA) solution, and 10 μl of 0.1% TFA × 3. The 
suspended peptide sample was pipetted through the ZipTip for 
ten times, and ZipTip was then again washed with 10 μl of 0.1% 
TFA for ten times before eluting the sample from the ZipTip with 
80% ACN/0.1% TFA solution. The process was repeated for all the 
samples, and all samples were lyophilized in the SpeedVac.

Liquid chromatography with tandem 
mass spectrometry (LC–MS/MS)

Peptides derived from the total proteins were resuspended in 
0.1% formic acid. The bottom-up proteomics data acquisition was 
performed on an EASY-nLC™ 1200 ultra-high-performance 
liquid chromatography system (Thermo Fisher Scientific, 
Waltham, MA, United States) connected to an Orbitrap Fusion™ 
Tribrid™ instrument equipped with a nanoelectrospray source 
(Thermo Fisher Scientific, Waltham, MA, United  States). The 
peptide samples were loaded into a C18 trapping column 
(Acclaim™ PepMap™ 100, 75 μm inner diameter × 2 cm length, 
3 μm particle size, and 100 Å pore size) and then eluted using a 

C18 analytical column (Acclaim™ PepMap™ 100, 75 μm inner 
diameter × 15 cm length, 2 μm particle size, and 100 Å pore size). 
The flow rate was set to 250 nl/min with solvent A (0.1% formic 
acid in water) and solvent B (0.1% formic acid and 80% ACN) as 
the mobile phases. The separation was conducted using the 
following gradient: 2–40% of solvent B over 0–160 min; 40–80% 
of solvent B over 160–165 min, 80–98% of solvent B over 
165–166 min, and kept at 98% of solvent B until 180 min. The 
column was then thoroughly washed with 98% solvent B and 
re-equilibrated with 100% solvent A before injection of the 
next sample.

The full MS1 scan (m/z 350–2,000) was performed on the 
Orbitrap analyzer with a resolution of 120,000 at m/z 200. The 
automatic gain control (AGC) target is 2e5 with 50 ms as the 
maximum injection time. Monoisotopic precursor selection 
(MIPS) was set to select ions with peptide-like isotopic 
distributions. Peptides bearing + 2–6 charges were selected with 
an intensity threshold of 1e4. Dynamic exclusion of 15 s was used 
to prevent resampling the high abundance peptides. Top speed 
method was used for data dependent acquisition within a cycle of 
3 s. The MS/MS was carried out in the linear ion trap, with a 
quadrupole isolation window of 1.3 Da. Fragmentation of the 
selected peptides by collision induced dissociation (CID) was 
done at 35% of normalized collision energy. The MS2 spectra were 
detected in the linear ion trap with the AGC target as 1e4 and the 
maximum injection time as 35 ms.

Database searching

All MS/MS samples were analyzed using Mascot (Matrix 
Science, London, United Kingdom; version 2.7.0.1). Mascot was 
set up to search the NCBI_Liberibacter_crescens_20220214 
database assuming the digestion enzyme trypsin. Mascot was 
searched with a fragment ion mass tolerance of 1.00 Da and a 
parent ion tolerance of 10.0 ppm. O + 18 of pyrrolysine and 
carbamidomethyl of cysteine were specified in Mascot as fixed 
modifications. Gln- > pyro-Glu of the n-terminus, deamidated of 
asparagine and glutamine and oxidation of methionine were 
specified in Mascot as variable modifications.

Scaffold (version Scaffold_4.2.1, Proteome Software Inc., 
Portland, OR) was used to validate MS/MS based peptide and 
protein identifications. Peptide identifications were accepted if 
they could be established at greater than 95.0% probability by the 
Scaffold Local FDR algorithm. Protein identifications were 
accepted if they could be  established at greater than 95.0% 
probability and contained at least two identified peptides. Protein 
probabilities were assigned by the Protein Prophet algorithm 
(Nesvizhskii et al., 2003). Proteins that contained similar peptides 
and could not be differentiated based on MS/MS analysis alone 
were grouped to satisfy the principles of parsimony. Proteins 
sharing significant peptide evidence were grouped into clusters. 
The homologs of Lcr proteins in Las were analyzed by BLAST. Las 
str. psy62 (taxid: 537021) was used as the reference. Subcellular 
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localization of Lcr proteins was predicated using PSORTb (Yu 
et al., 2010), CELLO (Yu et al., 2004) and SOSUI GtamN (Imai 
et al., 2008). Predictions by at least two predictors were considered 
positive for each protein. The subcellular localization of proteins 
with different prediction results using different predictors were 
designated as unknown.

Scanning electron microscopy

Lcr BT-1 cells, OMVs and BM7 medium (control) were 
observed using scanning electron microscope (SEM). A 20 μl 
aliquot of the bacteria samples was pipetted on pieces of fractured 
microscope slides and allowed to dry at room temperature. 
Samples were fixed in a 4% paraformaldehyde solution buffered 
with 1x phosphate-buffered saline (PBS) and incubated overnight. 
The next day samples were dehydrated in an ethanol series (30, 50, 
70, 85, 95, and 100%) and then incubated in 100% ethanol 
overnight at 4°C. The samples were then dried using a Ladd 
28,000 critical point dryer (Ladd Research Industries, Williston, 
VT, United  States), mounted on double-sided 12 mm carbon 
stickers on SEM stubs (Electron Microscopy Sciences, Hatfield, 
PA, United States), and sputter-coated using a Ladd 30,800 sputter 
coater (Ladd Research Industries) with a gold/palladium target. 
Samples were observed using a Hitachi S4000 SEM (Hitachi, 
Tokyo, Japan) and images were captured with PCI imaging 
software (Quartz Imaging Corp., Vancouver, BC, United States).

Bioinformatic analyses

We also conducted bioinformatic analyses for 13 select Ca. 
Liberibacter strains with high-quality complete genomes. These 
strains include Lcr BT-0, Lcr BT-1, Ca. L. solanacearum str. ZC1, 
Ca. L. asiaticus str. A4, Ca. L. asiaticus str. Gxpsy, Ca. L. asiaticus 
str. JRPAMB1, Ca. L. asiaticus str. CoFLP, Ca. L. asiaticus str. 
TaiYZ2, Ca. L. asiaticus str. psy62, Ca. L. asiaticus str. JXGC, Ca. 
L. asiaticus str. Ishi-1, Ca. L. americanus str. Sao Pa and Ca. 
L. africanus str. PTSAPSY. The genome sequence of these strains 
was downloaded from National Center for Biotechnology 
Information website. OMP prediction of Liberibacter species was 
conducted using three groups of predictors as describe previously 
in Pasteurella multocida (E-komon et al., 2012). Briefly, PSORTb 
(Yu et al., 2010), CELLO (Yu et al., 2004) and SOSUI GtamN (Imai 
et al., 2008) were used as subcellular predictors. Transmembrane 
beta barrel domains were predicated using TMBETADISC RBF 
(Ou et  al., 2008), BOMP (Berven et  al., 2004), and MCMBB 
(Bagos et al., 2004). Lipoprotein predictors included LIPO (Berven 
et al., 2006) and LIPOP (Juncker et al., 2003). According to the 
accuracy, recall/sensitivity, specificity, and Mathews Correlation 
Coefficient (MCC) analysis on different criteria for consensus 
prediction of sequences from 526 Gram-negative bacteria proteins 
with known localization (E-komon et al., 2012), the criteria to 
predict OMP in this study was decided as follows: For the first two 

groups of predictors, predictions by at least two were considered 
positive to be localized in the outer membrane or have a beta-
barrel structure. For lipoprotein prediction, it was considered as 
positive when either one predictor predicts a protein to be  a 
lipoprotein associated with the outer member. After combining 
results from all these predictors, a protein list of each strain was 
summarized. Next, we manually verified the annotation of each 
protein, and CDD was used to analyze conserved domains of 
target proteins (Lu et al., 2020).

Results

Identification of proteins in the 
Liberibacter crescens outer membrane 
fraction via LC–MS/MS

Proteins from Lcr BT-1 outer membrane fraction were 
identified via LC–MS/MS. Proteins identified in all 3 replicates 
with an average ≥10 spectrum counts/replicate were considered 
positive, resulting in 55 identified proteins in the outer membrane 
fraction (Table 1). Among these proteins, 14 were predicted to 
be OMPs by bioinformatic analyses (Table 2), approximately 30% 
of the predicated OMPs (14 of 50). In addition, among the rest 35 
predicted OMPs, 8 were identified with 5–9 unique spectrum 
counts, whereas 4 were identified with 1 to 4 unique spectrum 
counts (Table 2). Proteins identified by LC–MS/MS also included 
32 predicated cytoplasmic proteins, 1 extracellular protein, 5 inner 
membrane proteins, and 2 periplasmic proteins (Table 1). Protein 
BLAST showed among the 55 proteins identified from Lcr outer 
membrane fraction, 52 have homolog proteins in Las strains 
(Table 1).

Scanning electron microscopy

Outer membrane vesicles were isolated from Lcr BT-1. Lcr 
cells, OMVs and medium-only samples were observed under 
SEM. Bacterial cells and vesicle-like structures were found in 
bacteria samples. Vesicles were found in OMV samples but not in 
the medium (Figure 1), suggesting the producing of OMVs by Lcr. 
The diameter of 66 OMVs was measured and averaged 110 ± 7 nm 
(91 nm minimum and 120 nm maximum), which is consistent 
with previous report that OMVs are from approximately 
20–350 nm in size (Turner et al., 2018).

Identification of Liberibacter crescens 
outer membrane vesicle proteins via  
LC–MS/MS

Here, proteins were considered as OMV proteins if they were 
present in all three biological replicates. Consequently, a total of 
seven proteins were identified from OMV samples of Lcr 
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TABLE 1 Proteins identified from Liberibacter crescens BT-1 outer membrane fraction.

Accession 
Number Annotation Subcellular 

localization prediction Homolog in Las*

AGA64040.1 Outer membrane protein assembly factor YaeT precursor Outer membrane WP_015452389.1

AGA64980.1 RND efflux system, outer membrane lipoprotein CmeC Outer membrane WP_015452761.1

AGA64249.1 Heat shock protein 60 family chaperone GroEL Cytoplasmic WP_015452683.1

AGA65052.1 Porin Outer membrane WP_012778533.1

AGA65276.1 Type II/IV secretion system secretin RcpA/CpaC, Flp pilus assembly Outer membrane WP_015452435.1

AGA64650.1 Outer membrane lipoprotein Omp16 precursor Outer membrane WP_015452784.1

AGA65195.1 Chaperone protein DnaK Cytoplasmic WP_015824904.1

AGA64835.1 DNA-directed RNA polymerase beta’ subunit Cytoplasmic WP_012778362.1

AGA65143.1 25 kDa outer-membrane immunogenic protein precursor Outer membrane WP_015452561.1

AGA64400.1 Translation elongation factor Tu Cytoplasmic WP_012778370.1

AGA64636.1 Kinesin-like protein Outer membrane WP_015452861.1

AGA64614.1 hypothetical protein B488_06220 Outer membrane WP_015452561.1

AGA64343.1 Outer membrane lipoprotein Omp16 precursor Outer membrane WP_015452611.1

AGA64846.1 D-3-phosphoglycerate dehydrogenase Cytoplasmic ACT56625.1

WP_041770579.1 Protein with unknown function Cytoplasmic ACT56857.1

AGA65275.1 Components of type IV pilus Extracellular WP_015452436.1

AGA65241.1 HtrA protease/chaperone protein Outer membrane WP_015452461.1

AGA64105.1 SSU ribosomal protein S1p Cytoplasmic WP_012778675.1

AGA64822.1 Putative ABC Transporter Atp-Binding Protein Inner membrane WP_012778359.1

AGA64836.1 DNA-directed RNA polymerase beta subunit Cytoplasmic WP_012778363.1

AGA64234.1 Outer membrane protein Imp / Organic solvent tolerance protein precursor Outer membrane WP_012778614.1

AGA64028.1 Polyribonucleotide nucleotidyltransferase Cytoplasmic WP_012778758.1

AGA64033.1 SSU ribosomal protein S2p (SAe) Cytoplasmic WP_015452382.1

AGA64371.1 Glutamine synthetase type I Cytoplasmic WP_012778405.1

AGA64013.1 LOW QUALITY PROTEIN: Cyclic beta-1,2-glucan synthase Inner membrane absent

AGA64113.1 Aconitate hydratase Cytoplasmic WP_012778670.1

AGA64470.1 Omp25 Outer membrane WP_015452561.1

AGA64823.1 Membrane lipoprotein Outer membrane WP_012778361.1

AGA65017.1 Cell division trigger factor Cytoplasmic WP_015452726.1

AGA64736.1 Succinyl-CoA ligase (ADP-forming) beta chain Cytoplasmic WP_015452880.1

AGA65006.1 Manganese ABC transporter, periplasmic-binding protein SitA Periplasmic WP_015452621.1

AGA64399.1 Translation elongation factor G Cytoplasmic WP_012778483.1

AGA64275.1 ClpB protein Cytoplasmic WP_015452710.1

AGA64110.1 General substrate transporter Inner membrane absent

AGA65222.1 NAD-specific glutamate dehydrogenase, large form Cytoplasmic WP_015452498.1

AGA64023.1 Translation initiation factor 2 Cytoplasmic WP_012778755.1

AGA65210.1 NAD-dependent glyceraldehyde-3-phosphate dehydrogenase Cytoplasmic WP_015452505.1

AGA64124.1 Carbamoyl-phosphate synthase large chain Cytoplasmic WP_012778658.1

AGA65007.1 Manganese ABC transporter, ATP-binding protein SitB Cytoplasmic WP_015452620.1

AGA64361.1 NADPH:quinone oxidoreductase 2 Cytoplasmic absent

AGA65095.1 Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex Cytoplasmic WP_171816668.1

AGA64591.1 Competence lipoprotein ComL Outer membrane WP_015453002.1

AGA64022.1 Transcription termination protein NusA Cytoplasmic WP_050815691.1

AGA64342.1 TolB protein precursor unknown WP_015452610.1

AGA64788.1 Zinc ABC transporter, periplasmic-binding protein ZnuA Periplasmic WP_015452621.1

AGA64735.1 Succinyl-CoA ligase (ADP-forming) alpha chain Cytoplasmic WP_015452881.1

AGA65002.1 3-oxoacyl-(acyl-carrier-protein) synthase, KASII Cytoplasmic WP_015452625.1

AGA65274.1 Type II/IV secretion system ATPase TadZ/CpaE, Flp pilus assembly Cytoplasmic WP_015452437.1

AGA65260.1 Signal recognition particle, subunit Ffh SRP54 Cytoplasmic WP_015452450.1

AGA64907.1 ATP-dependent Clp protease ATP-binding subunit ClpX Cytoplasmic WP_012778490.1

(Continued)
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(Table 3) including porin AGA65052.1, 25 kDa outer-membrane 
immunogenic protein precursor AGA65143.1, D-alanyl-D-
alanine carboxypeptidase WP_051012132.1, homoserine 
dehydrogenase AGA64434.1, thioredoxin C-1 AGA65357.1, and 
two proteins with unknown function AGA64557.1 and 
AGA64826.1. These seven proteins were predicated to be in the 
outer membrane (2), inner membrane (1), extracellular (1) and 
cytoplasmic (2) compartments. Among the 7 OMV proteins of 
Lcr identified by LC–MS/MS, 5 have homologs in Las strains 
(Table 3).

Identification of Liberibacter crescens 
extracellular proteins via LC–MS/MS

Next, we investigated Lcr extracellular proteins. A protein 
was considered positive if it was present in all three biological 
replicates. A total of 26 proteins were identified from 
extracellular protein samples (Table 4) including 1 predicted 
extracellular protein, 5 outer membrane proteins, 7 periplasmic 
proteins, and 10 cytoplasmic proteins. Among the 26 putative 
extracellular proteins, 21 proteins were present in Las strains 
(Table 4).

Bioinformatic analysis of outer 
membrane proteins

Outer membrane proteins of 13 Liberibacter strains were 
analyzed using subcellular predictors, transmembrane beta barrel 
domain predictors and lipoprotein predictors 
(Supplementary Tables 2–14). The number of OMPs ranged from 
33 to 65 for different strains and most Ca. Liberibacter strains 
have approximately 40 to 50 OMPs, representing about 3–7% of 
their total coding sequences (Supplementary Table 15). Among 
them, most strains have 20 to 30 hypothetical proteins as putative 
OMPs. The conserved outer membrane proteins like OmpA, and 
porins were also identified. Most strains have only 1 or 2 proteins 
identified with similar definitions. But there are a few exceptions: 
In Lcr BT-0, 4 outer membrane protein assembly factors were 
identified and 5 porins were identified.

Among the predicted OMPs, surface antigen protein, pilus 
assembly protein, OmpA family protein, and outer membrane 

lipoproteins exist in all five species. There are also some proteins 
that are species specific: Iron-dependent peroxidase, M23/M37 
family peptidase, dihydrolipoamide dehydrogenase, thioredoxin 
reductase, 3-ketoacyl-ACP reductase, lysophospholipase, and 
opacity protein are only found in Ca. L. americanus. 
N-acetylglutamate synthase protein, alanine racemase protein, 
3-oxoacyl-(acyl carrier protein) synthase II, monooxygenase 
FAD-binding protein, and HemY domain-containing protein are 
specific to Ca. L. africanus. Liberibacter crescens has many species-
specific OMPs including: putative polysaccharide deacetylase, 
kinesin-like protein, 25 kDa outer-membrane immunogenic 
protein, glycosyl hydrolase, dual specificity protein, DUF5309 
domain-containing protein, tail fiber domain-containing protein, 
glycoside hydrolase family 25 protein, SIMPL domain-containing 
protein, alpha/beta hydrolase, DUF3126 family protein, 
peptidoglycan DD-metalloendopeptidase family protein, AsmA 
family protein, and EAL domain-containing protein. For Ca. 
L. americanus, phage-related integrase/recombinase, putative 
peptidoglycan binding protein, peptidyl-prolyl cis-trans isomerase 
protein, putative membrane-bound lytic murein transglycosylase 
signal peptide protein, hydroxymethylglutaryl-CoA synthase, and 
phosphatidylcholine synthase are species specific. Compared to 
other four species, Las has very few different OMPs which include 
DUF2155 domain-containing protein and GlcNAc transferase. 
Las also has different outer membrane proteomes for different 
strains. Strain TaiYZ2, JXGC, JRPAMB1, CoFLP, and A4 
are similar.

Discussion

In this study, we investigated the proteins in the OM fraction 
of Liberibacter using both LC–MS/MS and bioinformatic 
approaches. Figty five proteins were identified in Lcr outer 
membrane fraction by LC–MS/MS. Protein BLAST results showed 
52 of them have homologs in Las strains. Among these 55 proteins, 
14 were also predicted to be OMPs by bioinformatic analyses and 
13 proteins have been experimentally confirmed to localize to the 
outer membrane including YaeT (AGA64040.1; Stenberg et al., 
2005), lipoprotein CmeC (AGA64980.1; Su et al., 2014), porin 
(AGA65052.1; Stenberg et  al., 2005), lipoprotein ComL 
(AGA64591.1; Volokhina et  al., 2009), translation elongation 
factor Tu (AGA64400.1; Harvey et al., 2019), GroEL (AGA64249.1; 

TABLE 1 (Continued)

Accession 
Number Annotation Subcellular 

localization prediction Homolog in Las*

AGA64987.1 Protein-export membrane protein SecD Inner membrane WP_015452756.1

AGA64369.1 ATP-dependent RNA helicase Cytoplasmic WP_012778601.1

AGA65313.1 Inner membrane protein translocase component YidC, long form Inner membrane WP_012778702.1

AGA65030.1 Inosine-5′-monophosphate dehydrogenase Cytoplasmic WP_015452718.1

AGA64820.1 NADP-dependent malic enzyme Cytoplasmic WP_012778357.1

*Homolog accession # in Las psy62 was shown. Subcellular localization prediction was conducted using predictor PSORTb, CELLO, and SOSUI GtamN.
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TABLE 2 Bioinformatic prediction of outer membrane proteins in Liberibacter crescens BT-1 and the LC–MS/MS results of proteins which were also 
identified from bacterial outer membrane fraction.

Protein 
locus

β barrel predictors Sub-cellular localization 
predictors

Lipoprotein 
predictors

LC–MS/MS (spectrum counts 
in the 3 biological replicates)

BOMP MCMBB TMBETA
DISC-RBF CELLO PSORTb SOSUIGramN LIPO LIPOP 1 2 3

AGA63999.1 – – – Y – – Y – 6 3 6

AGA64002.1 – Y Y Y – – – –

AGA64040.1 – Y Y Y Y Y – – 95 80 96

AGA64234.1 – Y Y Y Y – – – 23 17 14

AGA64245.1 – – Y – – Y Y Y

AGA64332.1 – Y Y Y – Y – – 1 3 1

AGA64343.1 – – Y Y Y – – – 27 23 28

AGA64354.1 – Y Y Y – – – Y 2 2 3

AGA64387.1 Y Y – – – – – –

AGA64389.1 Y Y Y Y Y – – –

AGA64428.1 – – Y Y – Y – –

AGA64431.1 – – – – – – Y Y

AGA64432.1 – – – – – – – Y

AGA64438.1 – – – – – – Y –

AGA64470.1 Y Y Y Y Y Y – – 13 16 14

AGA64492.1 – Y Y – – – – –

AGA64501.1 – Y Y – – – – – 3 4 3

AGA64506.1 – Y Y Y – – – –

AGA64508.1 – Y Y Y – Y – –

AGA64510.1 – Y Y – – – – –

AGA64549.1 – – – – – Y Y Y 8 5 6

AGA64564.1 Y Y – – Y – – – 6 9 3

AGA64573.1 – – – – Y Y Y Y 3 1 3

AGA64585.1 – Y Y Y – – – –

AGA64591.1 – – Y – Y – Y Y 13 9 13

AGA64614.1 Y Y Y Y Y Y – – 30 25 27

AGA64636.1 – Y Y – Y – – – 29 34 25

AGA64650.1 – Y – – Y Y Y Y 47 35 47

AGA64651.1 – – Y Y Y Y – – 4 5 1

AGA64766.1 – Y Y – – – – –

AGA64823.1 – Y Y Y – – Y Y 16 11 14

AGA64892.1 Y Y Y Y Y Y – –

AGA64980.1 – Y Y Y Y Y – Y 61 68 68

AGA65052.1 Y Y Y Y Y Y – – 54 47 61

AGA65105.1 – Y Y – Y Y Y Y 6 4 6

AGA65110.1 – Y Y Y – – – –

AGA65128.1 – – – – – – Y Y 5 2 1

AGA65134.1 – – – – – – – Y 8 8 12

AGA65143.1 Y Y Y Y Y Y – – 31 30 33

AGA65153.1 Y Y Y Y – Y – – 5 3 0

AGA65154.1 – Y Y Y Y – – – 10 9 9

AGA65155.1 – – – – – – Y Y

AGA65174.1 – – – – – – Y Y

AGA65230.1 – – – – – – Y Y

AGA65239.1 – – Y Y – Y – –

AGA65242.1 – – – Y – – – Y 2 2 0

AGA65276.1 – Y Y Y Y – – – 50 40 48

(Continued)
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Rauch et al., 2021), and type II/IV secretion system secretin RcpA/
CpaC (AGA65276.1; Clock et al., 2008). In addition, 32 predicted 
cytoplasmic proteins were also detected in the outer membrane 
compartment. Many cytoplasmic proteins were reported to traffic 
onto the cell surface or in extracellular secretions (Vanden Bergh 
et  al., 2013). For instance, EF-Tu is primarily a cytoplasmic 
protein, but can localize to both the outer membrane and outer 
membrane vesicles of Acinetobacter baumannii (Harvey et  al., 
2019). GroEL is a known cytoplasmic protein, but was found to 
be an immunodominant surface-exposed antigen of Rickettsia 
typhi (Rauch et al., 2021). The surface-associated moonlighting 
proteins have been verified using diverse experimental approaches 
including florescence and electron microscopy (Bergmann et al., 
2001; Candela et al., 2010; Yamaguchi et al., 2010; Robinson et al., 
2013; Gründel et al., 2015; Jarocki et al., 2015). It is important to 
note that mass spectrometry plays instrumental roles in revealing 

the surface localization for proteins that are not predicted to reside 
on the cell (Jeffery, 2005; Robinson et al., 2013; Jarocki et al., 2015; 
Tacchi et al., 2016; Wang and Jeffery, 2016; Widjaja et al., 2017). 
However, we  could not exclude the possibility of issues in 
extraction of outer membrane proteins. For example, some 
cytoplasmic proteins such as ribosomal proteins and RNA 
polymerases may result from contamination during the 
processing. Similar situation has also been found in Ehrlichia 
ruminantium, Pseudomonas aeruginosa and Yersinia ruckeri 
(Coquet et al., 2005; Seyer et al., 2005; Moumène et al., 2015).

According to the bioinformatic analyses, most Liberibacter 
strains have 40–50 putative OMPs. For Lcr, 50 OMPs were 
predicted including the 14proteins identified in all 3 replicates 
with an average ≥10 spectrum counts/replicate in the LC–MS/MS 
data. In addition, another12 predicated OMPs also had some 
spectrum counts in the LC–MS/MS data. In total, 95 different 
proteins were found in the 13 Liberibacter strains investigated in 
this study. Among them, 42 proteins have been experimentally 
verified in other gram-negative bacteria. In E. coli, BAM complex 
consists of five outer membrane assembly factors BamA, BamB, 
BamC, BamD, and BamE. The complex is embedded in the outer 
membrane and it folds and inserts integral β-barrel proteins in the 
outer membrane (Sandoval et al., 2011). BamC and BamE were 
also found in the outer membrane of Aeromonas hydrophila (Lin 
et  al., 2018). Outer membrane protein YaeT is required for 
membrane protein assembly in E. coli (Werner and Misra, 2005). 
Organic solvent tolerance protein OstA was reported to be an 
outer membrane-associated protein in E. coli and it can contribute 
to n-hexane resistance of bacteria (Abe et al., 2003). OmpA is a 
conserved porin protein and it has been found in many bacteria 
such as Helicobacter pylori, Escherichia coli, Yersinia ruckeri, and 
Aeromonas hydrophila (Molloy et al., 2000; Carlsohn et al., 2006; 
Lin et al., 2018; Ormsby et al., 2019). OmpA can mediate bacterial 
biofilm formation, cell infection, immunomodulation and 
antibiotic resistance (Nie et al., 2020). Omp25 is a conserved outer 
membrane protein. Omp25 from Brucella ovis can be exported to 
the outer membrane of E. coli (Lintermans et al., 1996). Omp25 
also affects the penetration and survival of Brucella ovis inside 
host cells (Caro-Hernández et  al., 2007). TadD protein was 
reported to be involved in the assembly of pilus in Aggregatibacter 
actinomycetemcomitans and it can be  found in both the outer 
membrane and inner membrane of bacteria (Clock et al., 2008). 
Gram-negative bacteria are capable of expelling substrates from 

A
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FIGURE 1

Scanning electron microscopy image of Liberibacter crescens 
BT-1 outer membrane vesicles. (A) Representative samples of Lcr 
cells. (B) Representative outer membrane vesicles (OMVs) 
extracted from Lcr. (C) Serum free BM7 medium. Each 
experiment contains three biological replicates and the 
experiment was repeated twice with similar results.

Protein 
locus

β barrel predictors Sub-cellular localization 
predictors

Lipoprotein 
predictors

LC–MS/MS (spectrum counts 
in the 3 biological replicates)

BOMP MCMBB TMBETA
DISC-RBF CELLO PSORTb SOSUIGramN LIPO LIPOP 1 2 3

AGA65326.1 – Y – Y – Y – – 2 1 3

AGA65331.1 – Y Y Y – – – – 9 2 3

AGA65241.1 – – – Y – Y – – 25 21 18

Note: Y represent the protein is predicted to have β barrel domain, localized in outer membrane compartment or is a lipoprotein based on sequence analysis from different predictors.
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within the cell using three-component efflux pumps, which span 
the inner and outer membrane and the periplasmic space (Lin 
et al., 2002; Xu et al., 2012).

Many lipoproteins were characterized to be outer membrane 
proteins in other bacteria. For example, peptidoglycan-
associated lipoprotein (Pal) was identified by LC–MS/MS from 

outer membrane fraction of Helicobacter pylori (Carlsohn et al., 
2006). Pal is a protein anchored to out membrane of bacteria 
and it can interact with Tol proteins to form Tol-Pal complex. 
Tol-Pal proteins were reported to affect the transportation of 
compounds through cytoplasm membrane, the amount of outer 
membrane vesicle produced and pathogenicity in bacteria 

TABLE 4 Proteins identified from Liberibacter crescens BT-1 extracellular protein samples.

Accession number Annotation Subcellular localization 
prediction Homolog in Las

AGA65195.1 Chaperone protein DnaK Cytoplasmic WP_015824904.1

AGA65256.1 Phosphate ABC transporter, periplasmic phosphate-binding protein PstS Periplasmic WP_015452454.1

WP_041770579.1 Protein with unknown function Cytoplasmic ACT56857.1

AGA64093.1 Mitochondrial processing peptidase-like protein Cytoplasmic WP_012778683.1

AGA64249.1 Heat shock protein 60 family chaperone GroEL Cytoplasmic WP_015452683.1

AGA65048.1 Methionine ABC transporter substrate-binding protein Cytoplasmic absent

AGA64732.1 Dihydrolipoamide dehydrogenase of 2-oxoglutarate dehydrogenase Cytoplasmic WP_015452884.1

AGA65091.1 Enolase Cytoplasmic WP_171816669.1

AGA65268.1 Nonheme iron-containing ferritin Cytoplasmic WP_015452441.1

AGA64729.1 Glutathione reductase Cytoplasmic WP_015452886.1

AGA65203.1 Protein with unknown function Cytoplasmic absent

AGA64875.1 Glutamate Aspartate periplasmic binding protein precursor GltI Periplasmic WP_012778390.1

AGA64945.1 Flagellin protein FlaA Extracellular WP_015452627.1

AGA64040.1 Outer membrane protein assembly factor YaeT precursor Outer membrane WP_015452389.1

AGA65052.1 Porin Outer membrane WP_012778533.1

AGA65143.1 25 kDa outer-membrane immunogenic protein precursor Outer membrane WP_015452561.1

AGA64614.1 Protein with unknown function Outer membrane WP_015452561.1

AGA64650.1 Outer membrane lipoprotein Omp16 precursor Outer membrane WP_015452784.1

AGA64091.1 Branched-chain amino acid ABC transporter, amino acid-binding protein Periplasmic absent

AGA65006.1 Manganese ABC transporter, periplasmic-binding protein SitA Periplasmic WP_015452621.1

AGA64788.1 Zinc ABC transporter, periplasmic-binding protein ZnuA Periplasmic WP_015452621.1

AGA64318.1 Peptide/opine/nickel uptake family ABC transporter, periplasmic 

substrate-binding protein

Periplasmic absent

AGA64342.1 TolB protein precursor Unknown WP_015452610.1

AGA64088.1 Branched-chain amino acid ABC transporter, amino acid-binding protein Unknown absent

AGA65071.1 L-proline glycine betaine binding ABC transporter protein ProX Unknown WP_012778561.1

AGA64598.1 Glutamate Aspartate periplasmic binding protein precursor GltI Periplasmic WP_012778390.1

Note: Homolog accession # in Las psy62 was shown. Subcellular localization prediction was conducted using predictor PSORTb, CELLO, and SOSUI GtamN.

TABLE 3 Proteins identified from Liberibacter crescens BT-1 outer membrane vesicle samples.

Accession number Annotation Subcellular localization 
prediction Homolog in Las*

AGA65052.1 Porin Outer membrane WP_012778533.1

AGA65143.1 25 kDa outer-membrane immunogenic protein precursor Outer membrane WP_015452561.1

AGA64557.1 Protein with unknown function Inner membrane absent

WP_051012132.1 D-alanyl-D-alanine carboxypeptidase Extracellular WP_015452463.1

AGA64434.1 Homoserine dehydrogenase Cytoplasmic WP_015824937.1

AGA65357.1 Thioredoxin C-1 Cytoplasmic WP_012778720.1

AGA64826.1 Protein with unknown function unknown absent

*Homolog accession # in Las psy62 was shown. Subcellular localization prediction was conducted using predictor PSORTb, CELLO and SOSUI GtamN.
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(Godlewska et  al., 2009). Outer membrane protein OmlA, 
Omp10, Omp16, Omp19 are lipoproteins (Ochsner et al., 1999; 
Tibor et al., 1999). OMP rare lipoprotein A from Pseudomonas 
aeruginosa contributes to the separation of daughter cells and 
maintenance of rod shape (Jorgenson et  al., 2014). Outer 
membrane lipoprotein YfiO functions as a part of a multiprotein 
complex which is required for outer membrane protein 
assembly (Wu et al., 2005). Competence lipoprotein ComL from 
Neisseria meningitidis is an outer membrane protein with DNA 
binding properties (Benam et al., 2011). Chaperone proteins 
were found in the outer membrane of Ehrlichia ruminantium 
and Aeromonas hydrophila (Moumène et al., 2015; Lin et al., 
2018). Chaperones aid in protein folding and transporting 
proteins in cytoplasm and across cell membrane. In Borrelia 
burgdorferi, chaperon protein Hsp60 was detected both in 
cytoplasm and cell envelop (Scorpio et al., 1994). An OMP from 
Neisseria meningitidis was reported to be  a M23 family 
peptidase (Wang et  al., 2011). Surface antigen D15 was 
identified from outer membrane of Helicobacter pylori 
(Carlsohn et al., 2006). Surface antigen D15 from Haemophilus 
influenzae has been shown to be  a target of host immunity 
(Flack et al., 1995). A lysophospholipase VolA (Vibrio outer 
membrane lysophospholipase A) from Vibrio cholerae was 
reported to be  a surface-exposed lipoprotein phospholipase 
(Pride et  al., 2013). Opacity-associated proteins are OMPs 
which function in the adhesion of bacteria (De Jonge et al., 
2002). Translocation protein TolB is a component of 
Tol-dependent translocation system in bacteria. It can form a 
complex with Pal and associate with the outer membrane 
(Abergel et al., 1999). TolB was identified by mass spectrometry 
from outer membrane samples of Pasteurella multocida 
(Prasannavadhana et al., 2014). Murein transglycosylase can 
degrade bacterial cell well murein (Hoeltje et al., 1975). Multiple 
murein transglycosylases were identified in E. coli outer 
membrane samples (Molloy et al., 2000). lipopolysaccharide 
(LPS) assembly protein LptD is an OMP which can translocate 
LPS from the periplasm across the outer membrane (Lundquist 
and Gumbart, 2020).

Some predicted OMPs might trigger plant immune responses, 
consistent with HLB being a pathogen-triggered immune disease. 
Similar proteins have been reported to be involved in pathogenicity 
and immunity. Bacterial lysophospholipases can function as 
virulence factors. Sphingomyelinase Ds have lysophospholipase D 
activity and can generate lysophosphatidic acid. Aggregation of 
lysophosphatidic acid in blood can induce platelet aggregation 
and endothelial barrier dysfunction (Flores-Díaz et  al., 2016). 
Recognition of lipoprotein from human pathogen Staphylococcus 
aureus is required for host defense against bacteria (Wardenburg 
et al., 2006).

We have demonstrated that Lcr forms outer membrane 
vesicles, providing the first experimental evidence that 
Liberibacter species including Las may use OMVs to transport 
virulence factors during interactions with plant hosts. Seven 
OMV proteins were identified by LC–MS/MS. Among them, 

porins have been found in OMV of E. coli and porins are involved 
in regulating the permeability of β-lactam antibiotics. 
Transferring β-lactam antibiotics into outer membrane vesicles 
via porins and degrading them was suggested as a strategy for 
bacteria to avoid the effect of antibiotics (Kim et  al., 2020). 
β-lactam antibiotics such as ampicillin and cefalexin were 
reported to suppress Las infection and HLB development (Zhang 
et al., 2014; Yang et al., 2020, 2022). Antibiotic application plus 
outer membrane vesicle control might improve efficacy for HLB 
management. D-alanyl-D-alanine carboxypeptidase was 
identified as an OMV protein in Lcr BT-1 and one zinc uptake-
regulator (Zur)-regulated lipoprotein A (ZrlA) from 
Acinetobacter baumannii was reported to have enzymatic activity 
of D-alanyl-D-alanine carboxypeptidase. The ZrlA-deficient 
mutant strain produced 9.7 times more OMVs than the wide type 
strain and the OMVs generated by the mutant were more 
cytotoxic (Kim et al., 2021). Thioredoxin C-1 was identified in 
Lcr BT-1 as an OMV protein and one thioredoxin-related protein 
was also found in Neisseria meningitidis outer membrane vesicles 
(Lappann et al., 2013). Thioredoxin A (TrxA) from Acinetobacter 
baumannii is a virulence factor. OMVs isolated from TrxA-
deficient bacteria resulted in increased lung permeability in 
mouse compared to wild-type bacteria (Shrihari et al., 2022). Five 
of these LC–MS/MS identified OMV proteins have homolog 
proteins in Las and it remains to be determined how they are 
involved in interactions with citrus plants.

A total of 26 proteins were identified from the extracellular 
compartment of Lcr BT-1. Porin protein AGA65052.1 and 25 kDa 
outer-membrane immunogenic protein precursor AGA65143.1 
were also detected from outer membrane fraction and OMV 
samples. Porin was reported to be secreted by spheroplasts of 
E. coli cells (Sen and Nikaido, 1990). Heat shock protein, GroEL 
was found in membrane fraction of Clostridium difficile and in 
the extracellular space after heat stress. It serves an adhesive 
function in this bacteria (Hennequin et al., 2001). α-enolase from 
Streptococcus pneumoniae can induce the formation of neutrophil 
extracellular traps and cause cell death of human neutrophils 
(Mori et al., 2012). Among these 26 proteins, 21 have homolog 
proteins in Las. Because Liberibacter species do not have specific 
protein secretion systems such as type II and III, it remains to 
be  determined how the identified proteins are present in the 
extracellular compartment. One possibility is that some proteins 
remain intact after death of bacterial cells.

Summary

In summary, we have used Lcr as a surrogate to investigate the 
outer membrane proteins, OMV proteins and proteins in the 
extracellular compartments of Ca. Liberibacter species. The roles 
of these proteins in activating plant immune responses have not 
been reported previously. Because Las colonizes inside sieve 
element cells and HLB is a pathogen-triggered immune disease, it 
is possible that citrus cells can recognize proteins in the OM 
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fraction, OMV proteins and extracellular proteins directly. This 
study advances our understanding of the biology of Ca. 
Liberibacter species and identifies many putative proteins that 
might play critical roles in interactions with host proteins in the 
phloem tissues.
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