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Abstract

Amino acid mutations in proteins are random and those mutations which are beneficial or

neutral survive during the course of evolution. Conservation or co-evolution analyses are

performed on the multiple sequence alignment of homologous proteins to understand how

important different amino acids or groups of them are. However, these traditional analyses

do not explore the directed influence of amino acid mutations, such as compensatory

effects. In this work we develop a method to capture the directed evolutionary impact of one

amino acid on all other amino acids, and provide a visual network representation for it. The

method developed for these directed networks of inter- and intra-protein evolutionary inter-

actions can also be used for noting the differences in amino acid evolution between the con-

trol and experimental groups. The analysis is illustrated with a few examples, where the

method identifies several directed interactions of functionally critical amino acids. The

impact of an amino acid is quantified as the number of amino acids that are influenced as a

consequence of its mutation, and it is intended to summarize the compensatory mutations

in large evolutionary sequence data sets as well as to rationally identify targets for mutagen-

esis when their functional significance can not be assessed using structure or conservation.

Introduction

Anfinsen’s dogma of molecular biology postulates that the native structure and function of

proteins are uniquely determined by its amino acid sequence. [1] As such there is a lot of fun-

damental interest in analysing the sequences of proteins. For example, sequence data of pro-

tein from multiple species helps in understanding evolutionary patterns and that from a

cohort helps with the drug resistance patterns. Multiple Sequence Alignment (MSA) of protein

sequences obtained from across species or a cohort is usually the starting point for many such

analyses. The simplest analysis one can perform using MSA is evaluating the level of conserva-

tion of the individual amino acids. A highly conserved amino acid is likely to have an impor-

tant role either in structure or in function, and it is especially true for the perfectly conserved

amino acids that are mostly identified in the functional sites of proteins. Based on similarity

and homology of sequences curated from different species, protein sequences are classified

into families which are likely to share structural and functional similarities. The interest in the

functional information contained in the sequence analysis is only enhanced by the next
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generation sequencing technology [2] which is making sequence data easily accessible com-

pared to the structural data.

Most sites tolerate a degree of change, which reflect either a polymorphism or a mutation

under selection pressure. But co-evolution, where another amino acid simultaneoulsy under-

goes a mutation along with it, is gaining a lot of recent interest. Statistical methods such as Sta-

tistical Coupling Analysis (SCA) [3] and Direct Coupling Analysis (DCA) [4] use large

sequence sets of homologous sequences to uncover several biological details about proteins.

SCA considers thousands of similar sequences in order to derive an energetic coupling

between any two amino acids. Clusters of amino acids contributing specifically to structural

stability or catalysis efficiency could be identified. [5] This led to the development of the con-

cept of functionally coupled domains of proteins called Protein Sectors. [5] Direct Coupling

Analysis (DCA) has been used specifically to identify the structural protein-protein contacts.

In DCA the secondary correlations between noninteracting residues are removed to identify

the residue pairs which are near in structure or which interact directly. Recent studies, some

based on DCA, [6] have used pairwise co-evolution of different amino acids for de novo pro-

tein structure prediction, without using structural homology information. [6, 7] Alternative to

these statistical methods are combinatorial methods, which had a general applicability from

amino acid co-evolution [8] in proteins to species co-evolution. [9] The methods combined

co-evolution information with phylogeny to circumvent the limitation on the number of

sequences. [8] The combinatorial methods applied to proteins not only recovered the func-

tional networks of amino acids predicted by SCA, but could identify other functionally related

networks that were otherwise considered to be lost due to lack of sequence divergence. [8]

Several co-evolutionary analysis algorithms have been developed, [10] some methods com-

bined the predictions from different algorithms to identify drug resistance patterns in a cohort.

[11] Mutual information based methods have also been developed to identify covarying resi-

dues. [12, 13] Bayesian networks were used to construct models which show directional

dependencies between amino acids, with potential implications for HIV-1 drug resistance.

[14] While potentially Bayesian networks can be very powerful, the directional relations may

not be robust nevertheless. [14] Furthermore, they solve inverse problem from the data which

may not be as intuitive as the co-evolution networks.

Asymmetric or directional dependencies effects have been studied in other biological con-

texts such as in gene expression data [15] and regulatory networks. [16] However, in the con-

text of mutations, all the efforts focused on developing symmetric co-evolution measures of

amino acid pairs, and they can not suggest a directed relation between them. The idea is to

capture how many amino acids j are likely to undergo a compensatory change in response to a

change in amino acid i, which may be important for structure or function of the protein.

These relations can be obtained between pairs of amino acids that are either within the same

protein or between two interacting proteins. In order to visualize the (un)directed co-evolu-

tionary relations, an effective tool is network representation, which has been used in metabolic

interaction networks, [17] protein-protein interaction networks, [18, 19] gene regulatory net-

works, [20] amino acid interaction networks [21] and protein structural analysis [22, 23] as

well. In this work we introduce an asymmetric measure of the directed influence of one amino

acid over another amino acid from the same or another protein, use network representation

for visualizing it, and illustrate the method with examples.

Methods

Sequence selection and alignment: All the sequence data other than for HIV-1 was obtained

from Pfam database. [24] We used the full alignment provided by Pfam. For HIV-1 proteins,
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the data was obtained from Los Alamos server (https://www.hiv.lanl.gov/). Both the databases

give aligned sequences. So separate sequence alignment was not performed. But the alignment

was truncated to the reference protein sequence and all sequences having more than 20% gaps

were eliminated from the alignment.

Master sequence: A master sequence is constructed for the MSA by using the most occur-

ring amino acid in each position. Following the master sequence creation, each amino acid in

the MSA is converted into a binary representation, denoting it by “1” if the amino acid at a

given position in a sequence is the same (conserved) as the one at the same position in the mas-

ter sequence, “0” otherwise. Gap is treated as 21st amino acid. When gap becomes the mostly

occurring amino acid, the second highest amino acid at that position is taken. While this

binary classification may seem restrictive, generalizing this definition did not practically

change the conclusions, as discussed later.

Directed Network: For any given pair of amino acids (i, j) two conditional probabilities are

calculated:

a. P(j = 1|i = 1) =

(No. of sequences with i = 1 and j = 1)/(No. of sequences with i = 1 and j = 0 or 1),

and b. P(j = 0|i = 0) =

(No. of sequences with i = 0 and j = 0)/(No. of sequences with i = 0 and j = 0 or 1)

As a probability P(j = 1|i = 1) and P(j = 0|i = 0) are positive numbers between 0 and 1, We

consider an amino acid to be of a certain impact if both P(j = 1|i = 1) and P(j = 0|i = 0) are

simultaneously greater than or equal to a value 0� γ� 1 which is suitably chosen depending

upon the specifics of the protein and the data set used.

Statistical analysis: Statistical significance of the relation between each pair of amino acids

was evaluated by a permutation test (2000 random shuffling of the columns). If p-value

obtained from this statistical test was below 0.01 directional dependence was considered signif-

icant and used for further analysis.

Directed networks: If there is a directional dependence between two amino acids, treated

as nodes in the network terminology, they are considered to be connected by a directed edge.

The network representations for these data sets were created by displaying the directed

connections.

Impact Factor: Impact factor of an amino acid i with a cut-off γ is defined as the number of

amino acids j for which P(j = 1|i = 1)� γ as well as P(j = 0|i = 0)� γ. Impact factor of amino

acids is also interesting when considering inter-protein interactions. In this case as well, a simi-

lar protocol is followed. MSA of the first protein is joined with the MSA of the second protein,

after matching the identities of each of the sequences and ensuring that both the proteins are

from the same sample. The rest of the analysis is the same, finding the impact of residue i from

the first protein, considering residue j from the second protein. The impact factor of amino

acid i on the second protein is defined as the total number of all such residues j.
Dependency Factor: Similar to the impact factor, we define a dependency factor. The

dependency factor of an amino acid j is the total number of amino acids which impact it with

the same cut-off γ.

Results

Asymmetric relations and impact calculation

In this work, we introduce directional co-evolutionary interactions among pairs of amino

acids, either from the same protein or from two different proteins. We use multiple sequence

alignments from homologous proteins to construct a master sequence, relative to which an

Amino acid impact factor
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amino acid in a sequence is coded “1” if it is the most occurring amino acid and “0” if it

mutates to other alternatives (see Methods section). The dependence between amino acids i
and j, schematically shown in Fig 1A is evaluated as follows. A definition of asymmetric depen-

dence between amino acids at site i and j was designed using two conditional probabilities P
(j = 1|i = 1) and P(j = 0|i = 0). The first of the two conditional probabilities reflects how amino

acid i, when it is conserved, imposes conservation on j and the second reflects how a mutation

in i imposes a compensatory mutation on j. When both these probabilities are greater than a

predefined cut-off γ, i is considered to have an impact on j. The total number of such influ-

ences exerted by the amino acid i is defined as its impact factor. While there may be alternative

creative ways to define asymmetry, the definition used here captures the directional correla-

tions in a simple and intuitive way. The choice of γ is discussed later.

We illustrate the calculation of intra-protein impact using two proteins: Dihydrofolate

reductase (DHFR) and Serine protease. DHFR plays an important role in the hydride transfer

from NADPH to dihydrofolate in the reduction reaction of dihydrofolate to tetrahydrofolate.

Fig 1B shows the two conditional probabilities discussed above for all 158 amino acids with

amino acid D27 as the reference. It can be seen that on using a cut-off γ = 0.8, amino acid 27

does not have an impact on any other amino acid, while with a cut-off of 0.7, it has an impact

on three other amino acids L32, D37 and F153. A partial network which shows all amino acids

that are impacted by amino acid 27 is then constructed (Fig 1C). Another example of impact

calculation was performed on serine protease, an enzyme catalyzing peptide bond cleavage. In

the present work, the cut-off was used strictly, without including the few data points that may

be slightly less than the cut-off. The impact factor analysis with γ = 0.7 identified 16 amino

acids from DHFR and 28 amino acids from serine protease and shown on their respective

three dimensional structures (Fig 2). The structural mapping shows that the high impact resi-

dues could be spread out everywhere, with no specific spatial preference.

Cut-off and impact factor

To check the sensitivity of the analysis to cut-off parameter as well as to data curation, we

repeated the analyses on serine protease. Firstly the analysis was performed by changing γ =

0.7 to 0.8. Many residues that were having impact with γ = 0.7, continued to appear with γ =

Fig 1. The work flow of creating directed networks. A: Schematic of the Multiple Sequence Alignment and impact calculation B: Example of the impact analysis of one of

the amino acids of DHFR performed on 2303 sequences obtained from Pfam database [24] (Pfam Id: PF00186) using PDB id 3QL3 as a reference. The green and blue lines

drawn at 0.7 and 0.8 represent the two cut-offs. Amino acid 27 impacts no amino acids with γ = 0.8 and 3 at γ = 0.7. The data point at (1,1) is the identity relation showing

the dependence of 27 on itself. It is not used in the analyses. C: Partial network that was constructed for the impact of amino acid 27 and γ = 0.7.

https://doi.org/10.1371/journal.pone.0198645.g001
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0.8 (Table 1 in S1 File). However, for every amino acid that appeared at γ = 0.7, γ = 0.8 reduced

the number of amino acids it impacted. Thus, while the relative rank order of importance

according to either of the choices of γ seems to be similar, we further explored if there is a limit

to the choice of γ. In the network science terminology, the impact factor we defined is one of

the centrality measures called the out-degree, which is the number of connections going out-

ward from a given node. [25] It is obvious that as the cut-off is reduced, qualitatively number

of nodes as well as the number of outward going connections increase. We make a statistical

comparison at the complete network level by using node-degree distribution, [25] which plots

number n vs. the number of nodes with n outward going connections. The node-degree distri-

butions were analysed with different choices of γ for serine protease and DHFR (Figs 1 and 2

in S1 File). The node degree distribution with power-law and poissonian distributions are

used to differentiate between ordered and random nature of network connections. [25] In Figs

1 and 2 of S1 File, one can see that below a certain cut-off the graphs transition from power-

law behavior towards poissonian distribution, suggesting a transition to random-networks.

The choice of cut-off can thus be limited by these node-degree distributions to avoid the sys-

tem-level random connections.

When the number of sequences were halved, the master sequence itself can change in prin-

ciple, especially if a site has a conservation less than 30% or where there are two residues with

comparable frequency of occurrence. Among all the proteins we studied, even though there

were a few changes in the master sequences when the data set was randomly halved, there were

no changes in the amino acid interaction networks, except in the case of Phosphoglycerate

kinase (PGK). For PGK one residue position which had appeared in the network had many

connections and were not retained when the number of sequences were changed.

Fig 2. Amino acid residues with non-zero impact factor represented on the three dimensional structures of proteins. A: DHFR. B: serine protease. Impact factor

(amino acids) for DHFR is: 3 (27), 2 (3, 57, 146), 1 (13, 14, 22, 31, 32, 55, 58, 90, 95, 135, 138, 149) and for serine protease is 8 (196), 3 (140, 194), 2 (19, 34, 102, 142,

182, 183, 184, 216, 228), 1 (29, 32, 40, 42, 57, 58, 100, 122, 136, 168, 189, 191, 201, 211, 226, 237). The coloring convention for PDBs is: Impact 0—gray, Impact 1—

blue, Impact 2—cyan, Impact 3—green, Impact 8—red.

https://doi.org/10.1371/journal.pone.0198645.g002
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Directed networks and functional relevance

Distal mutation in DHFR: Using the present approach we summarize the compensatory

mutations seen in the 2303 DHFR homologous sequences from the Pfam database (Pfam Id:

PF00186). Performing the impact factor analysis in DHFR shows that 16 amino acids have

impact with γ = 0.7. 21 connections were identified using the conditional probability criteria

described in the Methods section and all of them except one were found to have p-value less

than 0.01. The residues obtained with γ = 0.7 are shown on the three dimensional structure of

DHFR labeled with the color coding corresponding to impact factor (Fig 2A). All the identified

directed interactions are shown in Fig 3A as a network representation. The residues near to

the folate binding pocket are found to have impact on each other. Also the catalytic residue

F31 has an impact on catalytic residue I94. More interestingly the mutation at the residue posi-

tion V13 has an impact on residue G121 which may be essential for maintaining the correlated

dynamics between Met20 loop and the region near G121 and hence the catalytic activity. [26,

27] Also it is notable that most of the interacting pair of residues identified in this way are near

in structure even though are far in sequence. The residues belonging to each of the discon-

nected components of the network have comparable conservation.

Catalytic residues in Serine Protease: Impact analysis on 14659 sequences obtained from

Pfam (Pfam Id:PF00089) homologous to the 223 residue long serine protease shows that there

are 28 residues with non-zero impact factor at γ = 0.7, 11 with γ = 0.8 and 3 with γ = 0.9.

Amino acids G216, G226, D189 and V183 which were functionally associated with the rates of

catalysis experimentally and in the sector analysis (red sector) are captured with this impact

analysis. [5] In the case of serine protease also most of the residue pairs identified are near in

structure as clear from the network representation of the interactions (Fig 3B). Most

Fig 3. Directed networks and their functional relevance. Residue networks for A: DHFR (PDB Id:3QL3) and B: Serine protease (PDB Id:3TGI). The direction of the

arrow shows is in the direction of impact. The thickness of the arrows is proportional to 1/r where r is the distance between pair of amino acids in the crystal

structure. The functional annotation of the amino acids inferred from literature is shown as well.

https://doi.org/10.1371/journal.pone.0198645.g003
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interestingly the catalytic triad (H57, D102 and S195) are found to have impact on each other.

Also the co-evolving disulphide bond pair C42 and C58 plays important role in catalysis by

optimally positioning H57 of the catalytic triad. [28]

Compensatory mutations in HIV protease and Gag: HIV protease cleaves the Gag and

Gag-Pol polyproteins into individual proteins and hence is vital for the viral maturation. Many

of the drugs for HIV target protease. The impact factor analysis on 2550 HIV-1 subtype B pro-

tease sequences downloaded from the Los Alamos HIV database (http://www.hiv.lanl.gov/)

identified 28 compensatory mutation pairs with γ = 0.8. Residue L76 which is located near to

the active site cavity is found to have a high impact factor of 6. The compensatory mutation

pair V32-M46 has previously been observed experimentally [29] which showed that the

reduced replication capacity of the virus due to the mutation V32I is restored by mutation

M46I.

HIV virus gains resistance against the protease inhibitors on accumulation of multiple

mutations not only in protease but also in the Gag polyprotein [30–32]. Our Gag-Pol inter-

protein impact factor analysis with γ = 0.9 captured some of the possible compensatory muta-

tions: positions near to the cleavage sites in Gag—A431, G381, P133 acting as compensatory

mutations for the protease mutations at L76, L38 and G52 respectively. Changing the cut-off

from γ = 0.9 to 0.8 resulted in the intra-protein connections increasing from 901 to 1336 and

comparably, the inter-protein connections increasing from 266 to 521, highlighting the num-

ber of inter-protein compensatory effects.

Compensatory Mutation in PGK: Phosphoglycerate kinase (PGK) is involved in the ATP

generating step of glycolytic pathway: the reversible reaction of 1,3-bisphosphoglycerate and

ADP to 3-phosphoglycerate and ATP. The catalytic residues of PGK is highly conserved across

different species. But it is observed that the residue 219 of PGK which is crucial in the dynam-

ics facilitating catalysis is lysine in all Eukaryotes and Bacteria where as it is threonine or serine

in Archaea. [33] The loss of catalytic activity due to this mutation (K219S) is found to have

been restored by compensatory mutations at the positions 239 and 403. [33] Through our

impact factor analysis of the Pfam family PF00162 with γ = 0.8 we could capture the compen-

satory mutation at the site 403.

Discussion

Directed co-evolution

The present work develops two principles: directed co-evolutionary relationships between

amino acids and a quantification of it by counting the number of such dependencies. Amino

acids in the primary chain of the protein contribute to its structural stability or function and

mutations of these amino acids are differentially tolerated. At a simplistic level, considering

the tolerance to the variations in amino acids and/or its neighbors, they may be grouped as: (i)

absolutely essential and hence can not mutated, (ii) essential but may tolerate certain substitu-

tions, (iii) essential and tolerate substitutions with suitable compensatory mutations and (iv)

not-essential. The present method for identifying directed co-evolutionary relation is mainly

to address the amino acids in group (iii). Groups (i) and (ii) are mostly captured by conserva-

tion analysis. In fact, if an amino acid is so essential that it was never replaced or evolved

among the sequences studied, it will not appear in any co-evolutionary analysis. Further, the

directed co-evolution relation developed should not be construed as a description of causal

relationships. It represents a statistical summary of the interdependencies among different

amino acids while studying large sets of sequence data to identify possible compensatory

effects.

Amino acid impact factor
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In general, when the conditional probabilities of the mutation of one amino acid relative to

all other amino acids are studied, such as in Fig 1, the number of relations are few. When the

positions i and j are uncorrelated, P(j = 1|i = 1) = P(j = 1). Similarly, P(j = 0|i = 0) = P(j = 0),

which is identically 1 − P(j = 1). So, all the amino acid mutations that are uncorrelated scatter

in the anti-diagonal way, as seen in Fig 1B. With a relatively high cut-off γ, only a few amino

acid relations appear in the zone of interest, which is on the top-right corner. This could be

seen from the average number of impact relations that were identified after seeking a signifi-

cance level p< 0.01 (Table 2 in S1 File). Although we look for directed relations between

amino acids, at times the relations may be reciprocated. These reciprocal relations which are

signature of co-evolution are incidental, but the focus of the present analysis remains to be the

relation between a specific pair, one specific direction at a time.

Relation to conservation and dependency

Functional residues tend to have a higher conservation. Recent studies suggest that most of the

information that is contained in the important amino acids identified using SCA is reflected

by their conservation. [34] However, under certain conditions, a mutation at these positions

can be compensated by changes in other amino acids. We studied the relation of the amino

acid impact factors obtained in our calculations to their respective conservation scores. For

DHFR and serine protease (Fig 4A) as well as for HIV-1 protease and reverse transcriptase

(Fig 3 in S1 File), we see that the impact factor can not be directly inferred from conservation

data alone, and as such it is not a trivial repetition of conservation. Amino acids with low con-

servation can have a high impact and vice-versa. The spread in conservation for the high

impact residues is much broader for DHFR and serine protease as they are obtained from

across the species (Fig 4A), compared to that in HIV-1 protease and reverse transcriptase

Fig 4. Comparisons of impact with other measures. A: Impact vs. conservation shows that the impact does not trivially repeat the same information contained in

conservation. B: Impact vs. dependency shows again in addition to the expected negative correlation between the two, there are several deviations from it. Impact was

calculated with γ = 0.7. (Size of the marker shows the density of points at that position.)

https://doi.org/10.1371/journal.pone.0198645.g004
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which are obtained from the polymorphisms in the cohort (Fig 3 in S1 File). Despite these

characteristic differences expected in the conservation patterns in these viral and non-viral

proteins, the conclusion about lack of its correlation with impact could be seen in both cases.

Fig 4B shows impact versus dependency for DHFR and serine protease. There are several

amino acids which have both high impact and dependency. This counter-intuitive behavior

comes from some reciprocal relations. It is also possible that these amino acids are intermedi-

ates in the interaction network. However for many of these amino acids the higher the impact,

the lesser the dependency, which highlights the importance of looking at directed compensa-

tory effects as well rather than co-evolutionary measures alone.

Three-state model

One apparent limitation that arises from the above analyses is that they use a binary-model: at

any position the amino acid corresponds to the one in master sequence or not. Practically, in

the data sets we used, we saw a few discrete scenarios where two dominant polymorphisms

occurred with comparable frequencies. Hence, without complicating for the theoretical possi-

bility of large number of polymorphisms, we performed a three-state model as the next step

towards generalizing our model. In this model we considered residues which occur with a fre-

quency more than 35% at a position to be distinct states. Since there can be at most two states

which have a frequency more than 35%, the amino acid code in a sequence is replaced by “1”

or “2” depending on the polymorphic state and “0” if it did not belong to either. So the condi-

tional probabilities to be satisfied for position i to have an impact on position j is: P(j = 1|i = 1)

� γ,P(j = 2|i = 2)� γ and P(j = 0|i = 0)� γ or P(j = 2|i = 1)� γ,P(j = 1|i = 2)� γ and P(j = 0|

i = 0)� γ
When we repeated the analysis with γ = 0.7, the new three-state definition was relevant only

to a few amino acids: 1, 6 and 14 amino acids from serine protease, DHFR and PGK respec-

tively. However despite this three state generalisation, these positions from serine protease and

DHFR did not appear in the directed co-evolution network. But in the case of PGK, 2 out of 14

had appeared in the network when the binary model is used and the connections involving

these residues do not appear when this new definition is used. Thus in the spirit of the inclu-

sive definition of identifying important residues, a more restrictive binary-state definition with

slightly more network connections seems suited for the analysis.

Significance of impact analysis

Using the directed network analysis, several critical amino acids with functional significance

could be identified as discussed in the previous section. The perfectly conserved amino acids

that never evolve, which are very likely with high functional significance, do not appear in the

analysis by the nature of the definition. Those amino acids could anyway be identified using

the conservation analysis. The significance of the present analysis should thus be seen as one

that identifies amino acids which are likely to have functional repercussions unless compen-

sated, and are not obvious from the standard conservation analyses. Thus the present analysis

is to be treated as an inclusive analysis, rather than a comprehensive one, to suggest which

amino acids should be included into further analyses—experimental or theoretical. In that

sense, the residues requiring the most number of compensatory mutations, may be considered

as the significant ones in the analysis. This knowledge may be useful while studying intra- or

inter-protein amino acid correlations among large sets of evolutionary or cohort data, and for

forming a rational basis for performing site directed mutagenesis experiments. The meaning

of the numeric value of the impact factor itself may not be obvious, especially when comparing

analyses across two different protein families. However, within one protein family the impact
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factor rank-orders the different amino acids by summarising the evolutionary data and priori-

tising them for mutagenesis experiments.

Resistance models

The notion and definition of directed networks can be generalised to other cases. For example,

in analysing the clinical data of the bacterial strains from the group of patients who respond

(sensitive) to a drug versus those that do not (resistant), the same principles may be used.

Resistance to antibiotics poses a severe public health problem, and usually there is a strong cor-

relation between drug usage patterns in a cohort or a geographic region [35] and the develop-

ment of bacterial resistance. Mutations of amino acids from critical bacterial or viral proteins

that are the targets in drug design, may lead to a fitness advantage. However, these mutations

may have to be compensated by other mutations in other sites in the same or other proteins.

[36, 37]. For example, in ribosomal protein S12, which is a usual drug target, K42N mutation

may be compensated by as many as 35 mutations from both the same protein as well as from

others [36]. It is important to identify these compensations that go on in the drug-resistant

cohort from the perspective of avoiding problems with secondary drug resistance.

With such background about cohorts and compensatory mutations, one might design ques-

tions such as—which are the amino acids j that had a compensatory mutation (j = 0) in the

resistant group when a drug targeting amino acid i is used. These mutations in j contribute to

a structural or functional compensation for a mutation in i that made it drug resistant, rather

than requiring a reversion of the mutation in i. [36] Thus comparing the resistant and sensitive

cohorts one can evaluate if the conditional probabilities Presistant(j = 0|i = 0) and Psensitive(j = 1|

i = 1) exceed a threshold, γ. The method is equally applicable when i and j are from the same

protein or from two proteins whose sequences are juxtaposed to perform similar analysis. This

analysis is a simpler alternative to the Bayesian analyses that are sometimes used for the spe-

cific mutations in the drug-resistance group. [14]

Directed co-evolutionary relationships can be useful either from the protein design or drug

design perspective. Considering the compensatory effects, one may plan to add simultaneous

mutations along with mutations that contribute to the specific functional gain or design com-

bination therapies such that the primary group of amino acids targeted by the drug, as well as

those that undergo consequent mutations are simultaneously targeted.

Conclusion

We introduced a way to measure and visualise the directed influence of amino acids on one

another. The directed influence network summarizes the compensatory mutations under func-

tional constraints in response to changes of key amino acids in homologous sequences. We

demonstrate the utility of the method using evolutionary sequences from a few proteins. The

principal results seem to be unaffected by changes in parameters and identify effects from

compensation to distal mutations, as well as the binding pocket and catalytic residues. The

simple and intuitive definition of the directional impact of amino acid interactions can bring a

new perspective to the field that had so far relied on symmetric co-evolution.
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