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Abstract: The present high mortality of lung cancer in China stems mainly from the lack of feasi-
ble, non-invasive and early disease detection biomarkers. Serum metabolomics profiling to reveal
metabolic alterations could expedite the disease detection process and suggest those patients who
are harboring disease. Using a nested case-control design, we applied ultra-high-performance liquid
chromatography/mass spectrometry (LC-MS)-based serum metabolomics to reveal the metabolomic
alterations and to indicate the presence of non-small cell lung cancer (NSCLC) using serum samples
collected prior to disease diagnoses. The studied serum samples were collected from 41 patients
before a NSCLC diagnosis (within 3.0 y) and 38 matched the cancer-free controls from the prospective
Shanghai Suburban Adult Cohort. The NSCLC patients markedly presented cellular metabolism
alterations in serum samples collected prior to their disease diagnoses compared with the cancer-free
controls. In total, we identified 18 significantly expressed metabolites whose relative abundance
showed either an upward or a downward trend, with most of them being lipid and lipid-like
molecules, organic acids, and nitrogen compounds. Choline metabolism in cancer, sphingolipid, and
glycerophospholipid metabolism emerged as the significant metabolic disturbance of NSCLC. The
metabolites involved in these biological processes may be the distinctive features associated with
NSCLC prior to a diagnosis.

Keywords: non-small cell lung cancer (NSCLC); metabolomics; cancer cells metabolism; nested
case-control study

1. Introduction

Lung cancer is currently the leading cause of death in China [1]. According to the
International Agency for Research on Cancer, in 2020, the estimated number of incidents
of lung cancer was over three million in China, accounting for nearly 19.4% of deaths in
both sexes and all ages [2]. Moreover, the survival rate of lung cancer remains dismal.
Most early-stage lung cancers are asymptomatic, contributing to a delayed diagnosis and
resulting in an overall 5 y survival rate of 19% over all stages; however, the detection of
lung cancer at the early stage could increase the 5 y survival rates, rising to 57% [3]. This
significant difference indicates the importance of detecting lung cancer at an early stage
for improving the overall survival rate. With the available treatments having increased in
recent years, the outcomes with an early detection would also be improved.
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At present, low-dose spiral computerized tomography (LDCT) is considered an ef-
fective imaging tool for detecting early-stage lung lesions and for screening high-risk
populations of lung cancer [4]. However, the screening recommendations have been sub-
jectively assessed based on smoking behavior, resulting in a potential reluctance on the
part of patients. Alongside concerns about the economic burden to the nation, the potential
radiation hazards and psychological burdens to patients limit the feasibility of widespread
LDCT screening [5]. In addition, the false-positive rate in a low-dose group, for example,
was estimated to be 96.4%, with most positive results having been withdrawn after further
imaging examinations [6]. These reasonable arguments support the urgent need for a less
invasive screening test, either without or with less harmful side effects, to provide an alert
for the suspicious signs of early neoplasm. Such tests could help medical practitioners
triage patients with malignancy, support an advanced treatment efficiency, and improve
treatment outcomes to lower lung cancer-associated mortality.

Molecular biology, genomics, proteomics, and metabolomics are interrelated in the
probing and identifying of biological processes. Genomics measures genetic mutations and
predicts the possibility of disease development at the individual level; however, proteomics
and metabolomics could identify ongoing biological activities, including alterations due
to the presence of disease [7]. In cancer, metabolomics captures complex physiological
and pathological characteristics, and detects oncological developments via measurable
metabolic profiles from the metabolic pathways through global metabolite variations.

Although metabolomic studies of cancer are carried out frequently, most of these
studies are conducted with case-control study designs, and the results might be prone to
reverse causation [8–11]. Currently, the serum metabolomic profiling revealing metabolic
alterations prior to a diagnosis with lung cancer in the Chinese population is scarce and
limited. The Shanghai Suburban Adult Cohort and Biobank (SSACB) study is a population-
based prospective cohort that included 36,404 participants from the Songjiang district, in
Shanghai, China, who were predominantly community residents aged 20–74 years old.
Here, we report the metabolic alterations established through blood serum samples col-
lected before the diagnosis of non-small cell lung cancer (NSCLC) and compare the patients’
results with the serum samples obtained from healthy, cancer-free control subjects in the
Shanghai Suburban Adult Cohort. Our study provides an opportunity to prospectively
investigate the role of metabolites and their alteration in serum samples collected before
the diagnosis of NSCLC to explore its associated biological processes to prevent disease
precisely. To our knowledge, our study was the first prospective study to investigate
the pre-diagnostic serum metabolic biomarkers and pathway alterations with the liquid
chromatography/mass spectrometry (LC-MS) technique among the community residents
in Shanghai. Our results demonstrate the potential of LC-MS-based serum metabolites
in conjunction with baseline characteristics to indicate the presence of NSCLC, and its
potential to be used as an effective tool for screening high-risk patients of NSCLC.

2. Materials and Methods
2.1. Ethics

This study was performed in conformity with the Declaration of Helsinki and was ap-
proved by the Institutional Review Board of Fudan University, School of Public Health, China
(Authorization number: IRB#2016-04-0586). Informed consent was obtained from all participants.

2.2. Design and Subjects

From April 2016 to September 2017, the SSACB study recruited 36,404 participants
aged 20–74 years old, primarily community residents living in the Songjiang District,
in Shanghai, China. Blood samples of the participants were drawn during the baseline
investigation. Detailed descriptions of our participants’ recruitment criteria and phases
are illustrated in the cohort profile [12]. Sociodemographic information, health status (self-
evaluation), lifestyle, and the history of chronic diseases were collected using a structured
questionnaire at the baseline investigation for all the participants included in the SSCAB
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study. Fasting blood serum samples were collected from the participants enrolled in the
baseline investigation. Afterward, the serum samples were transported to the biobank on
ice at approximately 0 ◦C to −4 ◦C and stored at −80 ◦C until the analysis.

We have depicted the study overview, subjects, and analysis with a flow chart in
Figure 1. All cohort members received periodic follow-ups based on the health information
system (HIS) linked to cancer, stroke, death, and other vital report registry systems at
different local disease control and prevention centers. In this study, the NSCLC cases
were identified through the National Cancer Registry System implemented by hospitals
in Shanghai. The information of local community residents was pooled by the Songjiang
District Center for Disease Control and Prevention (Songjiang CDC) from the cancer
registry data sources. The cancer-free controls were matched according to age and gender
within the same district. A diagnosis of incident NSCLC was confirmed by the medical
record reviewed by the staff from the department of non-communicable disease of the
Songjiang CDC. In our study, the incident NSCLC cases were coded as C34.9 according to
the International Classification of Diseases, tenth revision (ICD-10), and the information on the
pathological diagnoses was collected from the cancer report system.

Figure 1. Flow chart of the study overview, subjects, and analysis.

In this present study, the inclusion criteria of the NSCLC cases were: an incident
of NSCLC and serum samples collected with sufficient volume without hemolysis; the
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exclusion criteria were: a participant with an alcohol-drinking habit, a prior diagnosis of
another type of cancer at the baseline investigation, and being diagnosed with NSCLC
after entering the cohort within a half year to exclude the subjects with preclinical stages
of cancer. Participants in the cohort without having major health events such as a stroke,
diabetes, cancer, and other chronic diseases self-reported in the baseline investigation were
determined as being healthy, cancer-free participants. Among those, we randomly selected
40 subjects matched in age (±2 years) and gender as the cancer-free control group, but
two serum samples were excluded because of hemolysis. Finally, 41 NSCLC cases and
38 cancer-free controls were included for further metabolomic profiling.

2.3. Data Collection and Measurement

At the baseline investigation, a structured questionnaire was conducted face-to-face
by trained healthcare staff at the local community healthcare centers. Information on age,
gender, education, socio-demographic information, lifestyles, and self-reported disease
history was collected. Physical examinations, including height, weight, waist and hip
circumference were carried out for every participant. Fasting blood was collected for a
classical lipid profile, serum alanine aminotransferase (ALT), aspartate amino transferase
(AST), and creatinine (the analysis was finished by Dian Diagnostic Co. Ltd. (Hangzhou,
China) (a medical laboratory center). At follow-up, details of the NSCLC cases were
extracted from the non-communicable disease department at the Songjiang CDC, which
included the international classification (tenth revision) of diseases code, pathological
diagnosis, the TNM classification of malignant tumor, etc.

2.4. Metabolomics Profiling and Data Preprocessing

The fasting serum samples were collected at the baseline investigation and were
transported on ice and stored at −80 ◦C for each subject enrolled in our study. The serum
samples were processed by the following steps: first, the frozen serum samples were thawed
at 4 ◦C on ice. A total of 400 µL of the extraction solution (acetonitrile/methanol = 1/1, v/v)
containing the isotopically-labelled internal standard mixture was added into an aliquot
of serum samples (100 µL). Next, the samples were mixed on a vortex for 30 s, sonicated
in the ice-watered bath for 10 min, and incubated for an hour to precipitate. Afterward,
the samples were centrifuged at 12,000 rpm for 15 mins at 4 ◦C. Then, the supernatant
was transferred to the glass vial for analysis through an ultra-high performance liquid
chromatography-mass spectrometry (UPLC-MS) using the UHPLC system (Vanquish,
Thermo Fisher Scientific) with a UPLC BEH Amide column coupled to a Q-Exactive HFX
mass spectrometer (Orbitrap MS, Thermo). Details about the metabolite extraction and
quality control process are presented in Appendix A. During the data acquisition process,
one quality control (QC) sample was run after every ten samples. The LC-MS raw data
were converted to the mzXML file using the ProteoWizard software (Pala Alto, California,
USA). The peak detection, extraction, alignment, and integration were performed by the
XCMS package (La Jolla, California, USA). The metabolite annotation was performed by
the in-house MS2 database (BiotreeDB). The cut-off value for an annotation was set at 0.4.

Missing values were replaced with half of the minimum. A relative standard deviation
of metabolites > 25% in the QC samples was considered unproducible and, thus, removed
from further analysis. The data were normalized by dividing the peak area of the metabolite
by the peak area of the internal standards, which is a common technique for untargeted
metabolomics. We identified 3868 metabolite features (273 named and 3595 unnamed)
under the positive ion mode of the Q-Exactive HFX mass spectrometer. After finishing the
preprocessing, a data frame consisting of the retention time, mass-to-charge ratio values,
and normalized peak intensity was subjected to further analysis.

2.5. Statistical Analysis

Continuous variables were presented as the mean ± (standard deviation [SD]) or
median (interquartile range [IQR]). Categorical variables were expressed as a number
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(percentage). In univariate statistical comparisons, we used a chi-square or Fisher’s exact
test for the categorical variables, a Student’s t-test or ANOVA for the normally distributed
continuous variables, and a Wilcoxon signed-rank test or Kruskal–Wallis test for the skewed
distributed continuous variables.

To minimize the impact of noise and the high variance of the variables, we scaled and
logarithmically transformed the peak intensity. Then, the principal component analysis
(PCA), an unsupervised analysis that could reduce the dimension of the data, was per-
formed to visualize the distribution and grouping of the samples, including the QC samples.
To visualize the separation of the groups, we performed a partial least squares-discriminant
analysis (PLS-DA). The results for the PLS-DA with a positive ion mode are presented
in Section 3.2. We performed an orthogonal projections to latent structures discriminant
analysis (OPLS-DA) to find the significant different metabolites between the two groups.
The metabolites with a variable importance in projection (VIP) > 1 were included for further
analysis. The results of the PCA and OPLS-DA are presented in Appendix B.

We applied the Benjamini–Hochberg procedure to control the false discovery rate
(FDR). A p-value < 0.05 (using a t-test or Kruskal–Wallis test) and FDR corrected p-value
(q-value) <= 0.2 were considered as significantly changed metabolites. We provide the
named differential metabolites in the Supplementary Table S1: Part A. We set a strict selec-
tion criterion to select the differentially-expressed metabolites to generate the biologically
valuable metabolites, given this study’s exploratory and hypothesis-generating nature. The
selected 18 differentially-expressed metabolites were compared using the Student’s t-test
to measure the relative abundance between the groups. The data were normalized by a
log-transformation and UV scaling. A p-value ≤ 0.5 was considered statistically signifi-
cant. The volcano plot of the overall metabolites identified across groups and the relative
abundance of the differentially-expressed metabolites were presented in Section 3.2.

We used the R version 4.0.1 for the pathway analysis. The significantly changed
metabolites (Supplementary Table S1) were mapped into their biochemical pathway using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp) [13]. The
pathway significance was determined based on the total number of metabolites mapped
into the biochemical pathway and the total number of compounds in the involved pathway
was calculated based on the hypergeometric distribution. The pathway was considered
disturbed if the number of significant metabolites (i.e., hits) was ≥ 1 and the raw p of the hy-
pergeometric distribution was < 0.10. The raw p was calculated based on the number of hits
and the total number of compounds in a pathway. We used this lenient criterion because
the sample size for each comparison group was small. The disturbed metabolic pathways
enriched by the KEGG database are presented in Section 3.3. We provide the results of
the KEGG enrichment analysis in Supplementary Table S2. Furthermore, a HCA was per-
formed among the significantly changed metabolites in the Human Metabolome Database
(HMDB) (https://hmdb.ca/) [14], using the “complete” method and the “Euclidean” dis-
tance measure. Finally, a Spearman correlation analysis was performed to evaluate the
relationships between the significantly changed metabolites, baseline parameters, and
classical lipids among all the participants.

We also performed a hierarchical clustering analysis (HCA) among the significantly
expressed metabolites to identify whether types of metabolites tended to cluster together.
In addition, we conducted a least absolute shrinkage and selection operator (LASSO)
regression to optimize the variable selection and to identify whether any combinations of
serum metabolite signatures could reduce the dimension in the data. Then, we applied a
multivariable logistic regression analysis to assess the association between each metabolite
and the risk of having NSCLC. The peak intensity of the metabolites was log-transformed in
the regression analysis. Age and BMI were adjusted as continuous variables. Sex, education
level, the family history of NSCLC, smoking status, drinking status, and exercise levels were
retained as categorical covariates in the logistic regression models. Additionally, to assess
the performance of the model, we conducted an internal validation with a three-fold cross
validation, with the results presented in Section 3.4. Finally, we performed a Spearman

https://www.kegg.jp
https://hmdb.ca/
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correlation matrix between the significantly expressed metabolites, classical lipids, and
baseline characteristics among all the subjects. The results are shown in Section 3.5. All the
statistical analyses mentioned above were performed using the R version 4.0.1.

2.6. Role of the Funding Sponsors

The sponsors of the study declare no role in the study design, data collection, analysis,
interpretation, or writing of the manuscript. The corresponding author had full access to all the
data in this study and was responsible for the final decision to submit this paper for publication.

3. Results
3.1. Participant Characteristics

Table 1 presents the baseline characteristics of the study population. Of 79 participants,
the NSCLC and the cancer-free controls were comparable in age and sex. The participants
of our cohort primarily consisted of the elderly and middle-aged adults, leading to the
majority of our study subjects being over 55 years old.

Table 1. Characteristics of the study participants.

Characteristic NSCLC
(n = 41)

Cancer-Free Control
(n = 38)

Total
(n = 79) p-Value

Age, years 0.371
41–55 9 (21.95%) 8 (21.05%) 17 (21.52%)
56–65 18 (43.90%) 22 (57.89%) 40 (50.63%)
65–75 14 (34.15%) 8 (21.05%) 22 (27.85%)

Mean ± SD (years) 61.24 ± 6.97 60.21 ± 6.74 60.75 ± 6.84 0.505
Gender 0.411

Male 21 (51.22%) 15 (39.47%) 36 (45.57%)
Female 20 (48.78%) 23 (60.53%) 43 (54.43%)

Education 0.558
Middle school or below 20 (48.78%) 22 (57.89%) 42 (53.16%)

High school or above 21 (51.22%) 16 (42.11%) 37 (46.84%)
History of Respiratory Diseases 0.241

Yes 3 (7.32%) 0 (0.00%) 3 (3.80%)
No 38 (92.68%) 38 (100.00%) 76 (96.20%)

Smoking Status 0.160
Never 27 (65.85%) 31 (81.58%) 58 (73.42%)

Former 1 (2.44%) 0 (0.00%) 1 (1.27%)
Current 13 (31.71%) 7 (18.42%) 20 (25.32%)

Second-hand Exposure 0.026
Yes 6 (14.63%) 0 (0.00%) 6 (7.59%)
No 35 (85.37%) 38 (100.00%) 73 (92.41%)

Alcohol drinking 0.228
Yes 0 (0.00%) 2 (5.26%) 2 (2.53%)
No 41 (100.00%) 36 (94.74%) 77 (97.47%)

Exercise 0.185
Yes 14 (34.15%) 7 (18.42%) 21 (26.58%)
No 27 (65.85%) 31 (81.58%) 58 (73.42%)

BMI, kg/m2 25.08 (22.88–27.29) 21.73 (20.72– 22.55) 22.81(21.35–25.28) <0.001
Waist to hip circumference ratio 0.88 ± 0.06 0.85 ± 0.05 0.88 ± 0.06 <0.001

HDL cholesterol, mmol/L 1.31 (1.12–1.56) 1.40 (1.31–1.49) 1.40 (1.21–1.52) 0.156
LDL cholesterol, mmol/L 2.8 (2.27–3.28) 2.78 (2.50–3.12) 2.79 (2.39–3.12) 0.910

TG, mmol/L 1.4 (1.17–1.76) 1.16 (0.90–1.79) 1.29 (1.07–1.79) 0.016
TC, mmol/L 4.87 ± 1.12 4.76 ± 0.57 4.82 ± 0.90 0.591

Time to diagnosis 1.44 (1.17–1.76) NA 1.44 (1.17–1.76)
Histological subtypes

Adenocarcinoma 32 (78.05%) NA 32 (78.05%)
Squamous cell carcinoma 4 (9.76%) NA 4 (9.76%)

Other subtypes 5 (12.20%) NA 5 (12.20%)

Values are mean ± standard deviation (SD) for normally-distributed variables, median (interquartile range, (IQR))
for skewed-distributed variables, or n (%) for categorical variables. Abbreviations: BMI: body mass index; HDL:
high-density lipo-protein; LDL: low-density lipo-protein; TG: triglyceride; TC: total cholesterol; NA: not applicable.
p-values were calculated from a Wilcoxon signed-rank test for skewed continuous variables, a Student’s t-test for
variables with normal distributions, and a Chi-square test or Fisher’s exact test for categorical variables.



Metabolites 2022, 12, 906 7 of 21

3.2. Significantly Changed Metabolites and Their relative Changes across NSCLC Cases and
Cancer-Free Controls

We first performed a PCA to assess the stability of the quality control (QC) sam-
ples and to visualize the metabolic separations across the NSCLC, cancer-free controls,
and QC samples (Figure A1). Then, we analyzed the PLS-DA results and observed
a significant separation between the NSCLC and cancer-free groups (Figure 2). The
OPLS-DA model was applied to characterize the metabolic disturbances with the cal-
culated VIP index. The OPLS-DA score plot and the result of the permutation test are
shown in Figure A2. Afterward, we performed a Student’s t-test and Benjamini–Hochberg
procedure to control the FDR due to multiple testing. Furthermore, we also calculated the
fold change between the groups for each metabolite. In total, 3868 peaks were identified
under the positive mode, with 273 named (the cut-off value for annotation was 0.4) and
3595 unnamed. The volcano plot of the overall characteristics of the metabolite peaks is
shown in Figure 3. Using the selection criterion of a VIP > 1, p-value < 0.05 and corrected
p-value (q-value) < 0.2, we identified 18 metabolites and considered them to be significantly-
changed (or expressed) metabolites. Here, we conducted stepwise comparisons for the
identified significantly-changed metabolites for identifying the common metabolic path-
ways underlying the cases with NSCLC. The relative abundance of 18 metabolites between
the groups is shown in Figure 4.

Figure 2. PLS–DA score plot between the NSCLC group and cancer-free control group.
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Figure 3. The volcano plot of overall metabolites identified between NSCLC cases and cancer–free
controls. The p-value was calculated based on Student‘s t-test or Kruskal–Wallis test; The q-value
was calculated with Benjamini–Hochberg procedure to control the FDR. FC was calculated based
on the relative abundance across groups. The 18 significantly altered metabolites were labeled. Red
labels stand for NSCLC significantly depleted metabolites, and green labels stand for NSCLC signifi-
cantly enriched metabolites. Abbreviations: Lysophospholipid: LysoPC; PC: Phosphatidylcholine;
GlcCer: Glucosylceramide.
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Figure 4. Relative abundance of 18 significantly changed metabolites across the groups (the relative
expressed values were compared using a Student’s t-test). Data are the normalized values by
log-transformation and UV scaling. The presented box shows the 25th and 75th percentiles. The
horizontal line represents the mean values of each metabolite. p < 0.05, *; 0.001 < p < 0.01, **; 0.0001 <
p < 0.001, ***; p < 0.0001, ****. Abbreviation: GlcCer: Glucosylceramide; PC: Phosphatidylcholine;
LysoPC: Lysophospholipid.

3.3. Altered Metabolic Pathways across NSCLC Cases and Cancer-Free Controls

The significantly-changed metabolites were mapped into their biological metabolic
pathways underlying NSCLC. The perturbed metabolic pathways are presented in Figure 5.

For the participants before a diagnosis with NSCLC with a median time of 1.44 (1.17–1.76)
years, compared with the cancer-free controls, the choline metabolism in the cancer was the
most significant disturbed pathway. Notably, the sphingolipid and glycerophospholipid
(GPL) metabolisms were the metabolic disturbances between the two groups, with two hits
matched in the pathways and with p-values of an enrichment analysis being 0.003 and 0.009,
respectively. Additionally, apoptosis, linoleic acid and necroptosis were also the disturbed
pathways with a p-value < 0.05 but with only one hit matched. The Sphingolipid signaling
pathway, nicotinate and nicotinamide, and the retrograde endocannabinoid signaling were
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the matched pathways with a p-value < 0.1, but they did not meet the criteria for a disturbed
metabolic pathway, possibly due to the small sample size.

Figure 5. The disturbed metabolic pathways when comparing the NSCLC cases versus cancer-free
controls. Various metabolism changes before a diagnosis with NSCLC was manifested (the p-value
was calculated based on the hypergeometric distribution; fold enrichment was calculated based on
the total number of metabolites mapped into the biochemical pathway; and the total number of
compounds in the involved pathway).

3.4. Serum Metabolite Signatures for NSCLC

We explored whether any combinations of the serum metabolites could reduce the
dimension in the data and serve as signatures of NSCLC. A hierarchical clustering analysis
(HCA) was based on the 18 differentially-expressed metabolites, which provided intuitive
visualizations of the trends in metabolites between the two groups (Figure 6a). We focused
on the clusters that showed an upward or downward trend between the NSCLC and
cancer-free controls. The first composition of 12 metabolites (mainly lipids and lipid-like
molecules, organic acids and derivatives, and organic nitrogen compounds) showed a
decreasing trend. The second composition of three metabolites (mainly lipids and lipid-like
molecules and organoheterocyclic compounds) showed an increasing trend.
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Figure 6. Identification of NSCLC-associated serum metabolite signatures. (a) Hierarchical clustering
analysis of 18 significantly differentially-expressed metabolites according to OPLS-DA VIP values.
The definition of significantly-expressed metabolites was the same as in Figure 4. (b) Receiver
operating characteristic curve based on the logistic regression of metabolites selected from the LASSO
regression and characteristics from the baseline investigation to identify the metabolite signatures and
assess their probabilities in identifying NSCLC. The x-axis represents the false-positive rate of the risk
prediction. The y-axis represents the true-positive rate of the risk prediction. The lines represent the
performance of the model, and the shades represent the confidence intervals of the area under the curve.

Figure 7. Receiver operating characteristic (ROC) curve with internal 3-fold cross validation.
(a) ROC curve of logistic model based on the metabolite signatures, e.g., BMI, TG, and smoking.
(b) ROC curve of logistic model only based on the metabolite signatures. The x-axis represents the
false-positive rate. The y-axis represents the true-positive rate. The lines represent the performance
of each fold. Metabolite signatures include N1-Methyl-4-pyridone-3-carboxamide, 2,6-Dimethoxy-4-
(1-propenyl)phenol, Tigloidine, Artonin C, and Pipericine.
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3.5. Correlation between Significantly Changed Metabolites, Baseline Characteristics,
and Classical Lipids

We conducted a Spearman correlation matrix between the significantly-changed
metabolites, baseline clinical characteristics, and classical lipid levels among all the partici-
pants (Figure 8). The metabolites that increased or decreased tended to cluster together in
the correlation matrix. The body mass index (BMI), waist-to-hip ratio, triglyceride (TG),
and years since a NSCLC diagnosis, were clustered together with the upward metabolites
including N1-methyl-pytidone-3-carboxamide, Sphingosine, L-Palmitoylcarnitine, Hex-
acosanoyl carnitine, and Artonin C. The total cholesterol (TC), high-density lipoprotein
(HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol were clustered together
with the downward metabolites, e.g., mostly the lipids and lipid-like molecules, organic
acids and derivatives, and organic nitrogen compounds. In addition, age and second-hand
exposure were clustered together with tigloidine, the alkaloid and derivative, which is the
downward-expressed metabolite.
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Figure 8. Spearman correlation matrix between significantly changed metabolites, classical lipids,
and baseline characteristics in all subjects. Shades of blue represent a negative correlation coefficient;
shades of red represent a positive correlation coefficient. Variables were ordered using a hierarchical
clustering analysis. Threshold for significance testing of the Spearman correlation: 0.01 < p < 0.05, *;
0.001 < p < 0.01, **; p < 0.001, ***.

4. Discussion

To our knowledge, we report the first comprehensive serum metabolomics characteris-
tics of NSCLC patients before the time of a disease diagnosis among Chinese community
residents. In the PLS-DA, we observed that the first and second component scores were
relatively low due to the possible reasons that the blood serum metabolomics data were
highly multi-dimensional with high noise, while the sample size in our study was relatively
small. However, we observed that the group separation was optimized with the PLS-DA
compared with the PCA. We further performed an OPLS-DA to assist in identifying im-



Metabolites 2022, 12, 906 13 of 21

portant metabolites. Using a strict standard (VIP > 1, a p-value < 0.05 and a q-value ≤ 0.2),
we found 18 metabolites significantly-expressed between the groups after accounting for
multiple comparisons. Among them, two were positively-associated with a risk of NSCLC
and showed an upward trend in the NSCLC group, while four had negative associations
and showed downward trends. We performed a LASSO regression and identified that
N1-Methyl-4-pyridone-3-carboxamide, 2,6-Dimethoxy-4-(1-proponyl) phenol, tigloidine,
artonin C, and pipericine could serve as the serum metabolite signatures of NSCLC with
the AUC reaching 0.94 (a 95% CI: 0.89–0.98). Metabolic alterations identified in the KEGG
pathway enrichment analysis imply that pathways including the choline metabolism, sphin-
golipid and glycerophospholipid metabolism, linoleic acid metabolism, and cell apoptosis
and necroptosis were associated with a NSCLC risk before diagnosis.

Metabolic reprogramming is one of the hallmarks of cancer. Tumoral cells exhibit
significant metabolic alterations and change their capability to metabolize carbohydrates,
lipids and proteins to support cell proliferation [15]. The abnormality of lung tumors occurs
in vessel structures that could limit the nutrient supply to the tumoral cells and produce
hypoxia, which could induce multiple metabolic alterations.

In our study, we identified that D-1-Amino-2-pyrrolidinecarboxylic acid, a compound
that belongs to proline and its derivatives, was significantly lowered in the NSCLC group.
Proline has a unique role in metabolic regulation. Recent research has shown that proline
metabolism plays a critical role in cancer metabolic reprogramming [16–18]. Proline has its
α-amino group within a pyrrolidine ring and, thus, it is the sole proteinogenic secondary
amino acid with its own metabolic pathways [12]. Proline dehydrogenase/proline oxidase
(PRODH/POX) is encoded by tumor protein 53 (TP-53)-induced gene 6 (PIG-6), while
TP-53 is the most frequently mutated gene in NSCLC [19,20]. In cancer cells, proline func-
tions as a source for cancer cellular energy production and as an intermediate between the
tricarboxylic acid (TCA) cycle and the urea cycle [21]. Researchers have already identified
the critical role of proline catabolism in NSCLC. PRODH is activated to reduce the proline
levels by the chromatin remodeling factor lymphoid-specific helicase (LSH), an epigenetic
driver of NSCLC. PRODH promotes NSCLC tumorigenesis and could promote the expres-
sion of inflammatory genes and tumor cell proliferation [22]. In our study, the relative
abundance of (3xi,6xi)-Cyclo(alanylvalyl) was significantly lowered in the NSCLC group.
Moreover, (3xi,6xi)-Cyclo(alanylvalyl) belongs to the class of organic compounds known as
alpha amino acids and derivatives and amino acids, such as methionine and tryptophan,
have been reported to be associated with lung cancer [23]. Methionine is found to be
involved in nucleotide biosynthesis via the one-carbon metabolism pathway and protein
synthesis, which are the critical activities in cancer cells [24]. Additionally, methionine is
also involved in the formation of glutathione, a biomarker of oxidative stress and it might
contribute to chronic inflammation and cancer development [23].

We found that the relative concentration of N1-Methy-4-pyridone-3-carboxamide was
significantly higher among the NSCLC group. N1-Methyl-4-pyridone-3-carboxamide be-
longs to the class of organic compounds known as nicotinamides. Nicotinamide (NAM) is
the water-soluble form of Vitamin B3 (niacin) and a precursor of nicotinamide-adenine din-
ucleotide (NAD+), which takes part in several redox and non-redox reactions that regulates
cellular energy metabolism [25]. The uncontrolled proliferation of cancer cells requires
the reprogramming of their metabolism, which is critical for their survival and growth. In
dehydrogenase reactions, NAD+ acts as a co-enzyme to produce adenosine triphosphate
(ATP). High NAD+ could suppress the production of reactive oxygen species (ROS) and
increase the mitochondrial quality; thus, it could protect against oxidative stress and im-
prove cell survival [26]. In addition, we also identified nine lipids and lipid-like molecules
that were significantly-expressed across the groups. Lipid metabolism is highly altered
among proliferating cells because cancer cells increase de novo adipogenesis for membrane
biosynthesis and signaling molecules instead of relying on the uptake of exogenous fatty
acids (FA). We identified four types of phosphatidylcholine (PC) species. Phospholipids
are the primary component of cell membranes and work as the second messengers in
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intracellular signal transduction. Researchers have found that the phospholipids were
altered in NSCLC. For example, Marien et al. used 167 NSCLC patients’ tissue samples
and profiled 179 phospholipids species that were altered between malignant and matched
controls by a mass spectrometry-based approach. Their most important findings included a
decrease in the sphingomyelins (SM) and an increase in several phosphatidylethanolamines
(PEs) and PC species [27]. In our study, we also found phospholipid alterations among the
NSCLC group; however, phospholipid alterations have also been described in other tumor
types such as lymphoma [28]. Changes in phospholipid metabolism are not distinctive in
NSCLC because it occurs early in carcinogenesis, irrespective of the cancer subtype and
cancer stage [15].

Sphingosine (Sph), a metabolite of sphingomyelin, was over-expressed in the NSCLC
group within our study. The metabolites of sphingomyelin, such as Sph, ceramide (Cer)
and sphingosine-1-phosphate (S1P), form the lipid bilayers of cell membranes and play
critical roles in the development of cancer [29]. Sph and Cer induce cell apoptosis, while
S1P promotes cancer cell growth, survival, angiogenesis, and inflammation [30]. When the
physiological condition is normal, the expression of Sph, Cer, and S1P should maintain a
dynamic balance through enzymatic reactions that are described as forming a ‘sphingolipid-
rheostat’ that is crucial for cell survival [31]. Sphingosine kinases (SPHKs) could phospho-
rylate Sph to S1P, which are the critical mediators of the ‘sphingolipid-rheostat.’ SPHK1
and SPHK2 are the two isoenzymes of sphingosine kinase, while SPHK1 has been reported
as an effective pharmacologic target in anticancer therapy by inhibiting its activity of pro-
moting the transition from Sph/Cer to S1P [32]. Song et al. reported that the expression of
SPHK1 was markedly increased in NSCLC and associated with cancer progression and a
poor survival of patients with NSCLC. The upregulation of SPHK1 significantly inhibited
apoptosis, it was associated with the induction of antiapoptotic proteins, and it promoted
the proliferation and migration of NSCLC cells in vitro and in vivo. In contrast, silencing
SPHK1 expression can induce the apoptosis of NSCLC cells and increase the chemosen-
sitivity of NSCLC to cytotoxic drugs [33]. Our results further proved that the metabolic
balance of sphingolipids is of paramount importance in the cellular activities in NSCLC,
which could be detected in the prior-to-diagnosis serum samples. In conjunction with the
baseline characteristics, the metabolites identified by the LC-MS techniques could be used
as a less-invasive, early disease detection tool among Chinese community residents.

Previous findings have showed that the metabolic pathways altered in lung cancer
patients included those of glycolysis (the “Warburg effect”), lipids, choline phospholipid
(the Kennedy pathway), one-carbon, amino acids, nucleotide metabolism, oxidative stress,
and inflammation [34,35]. Consistent with the previous literature, our study proved
that NSCLC patients notably presented alterations in the choline metabolism compared
with the cancer-free participants. The GPL metabolism was also one disturbed pathway
presented in comparisons between the NSCLC and cancer-free participants, followed by the
sphingolipid metabolism. Moreover, we identified metabolomic characteristics specific for
NSCLC prior to diagnosis that reflected 13 metabolites whose relative abundance showed
a downward trend (mainly lipids and lipid-like molecules, organic acids and derivatives,
organic nitrogen compounds, alkaloids and derivatives, and benzenoids). Additionally,
five metabolites showed an upward trend (mainly the organoheterocyclic compound,
phenylpropanoid and polyketide, lipids and lipid-like molecules, and the organic nitrogen
compound). Among these 18 significantly-expressed metabolites, besides the metabolites
involved in the KEGG metabolic pathway, we also identified a few metabolites, such
as (3xi,6xi)-Cyclo(alanylvalyl) and Na,Na-Dimethylhistamine, that were the potential
biomarkers for the consumption of some specific foods. Moreover, a Spearman correlation
matrix further indicated that the metabolites that showed an upward or downward trend
tended to cluster together across the groups and related to each other with the baseline
characteristics in the expected direction.

In cancer, metabolomics detects oncological developments through measurable
metabolic profiles from the metabolic pathways through global metabolite variations [36].
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A growing body of literature shows that abnormal choline metabolism is a distinguishing
feature of carcinogenesis and tumor progression [37,38]. In the NSCLC group, we identified
four types of phosphatidylcholine (PC), such as PC (22:6/20:3), PC (20:4/20:3), and PC
(22:6/20:4), that showed a downward trend. Phosphatidylcholine (PC) and other phos-
pholipids such as phosphatidylethanolamine (PE) are neutral lipids, forming the bilayer
structure of cellular membranes and regulating membrane integrity, and they are the most
abundant phospholipids in the cell membrane [39]. To synthesize PC and PE, cytidine
diphosphate (CDP)-choline and CDP-ethanolamine are required. The biosynthesis and
hydrolysis of PC could mediate the mitogenic signal transduction events in cells. Phos-
phocholine (PCho), diacylglycerol (DAG), and arachidonic acid metabolites, which are
the products of choline phospholipid metabolism, might function as second messengers
that are important to the mitogenic activity [40,41]. Growth factor stimulation, cytokines,
oncogenes, or the requirements for eicosanoid production also regulate choline phospho-
lipid metabolism [42–44]. A network of transporter systems and enzymes are involved in the
choline phospholipid metabolism that is deregulated in cancer cells. In addition, the tumor
microenvironment also affects choline metabolism. Hypoxia and an acidic extracellular pH
could lead to the abnormal physiological environments caused by tumors. Studies have found
that an acidic extracellular pH could significantly increase the glycerophosphocholine (GPC)
level and decrease the PCho levels in perfused mammalian cells [45].

Sphingolipid metabolism was also a significantly altered pathway between the groups,
apart from the choline metabolism. Sphingolipids, the structural molecules of cell mem-
branes, play an important role in regulating cancer cell death and survival by controlling the
cell-signaling functions. Our data showed that the critical metabolites involved in this path-
way were sphingosine and glucosylceramide, and the abundance was significantly different
between the groups. In the NSCLC group, the relative abundance of sphingosine was sig-
nificantly higher than the controls, while glucosylceramide showed a downward trend. In
cells, cellular stress could induce the generation of sphingosine and/or ceramide to mediate
cancer cell death by activating the de novo synthesis pathways, sphingomyelin hydrolysis
or the salvage pathway, which could explain why we observed an increased abundance of
sphingosine in NSCLC. Many tumors could increase the ceramide metabolism by increas-
ing the activities of glucosyl-ceramide synthase (GCS), sphingomyelin synthase (SMS), and
ceramide kinase (CERK), etc., which could increase the generation of sphingolipids with
pro-survival functions [46]. In addition, the accumulation of ceramide in response to cellu-
lar stress could mediate cancer cell death through the induction of apoptosis, necroptosis,
autophagy, and ER stress. Endogenously generated ceramide is an inducer of apoptosis
regulated by various mechanisms in a cell-type-dependent and/or context-dependent
manner [47–49]. In contrast, there are studies that have demonstrated that ceramide could
protect some cancer cells from cell death [50,51]. Overall, ceramide mediates apoptosis
in most cancer cells via mitochondrial membrane perturbation and/or influencing the
cell-death signaling; however, it might have protective effects against apoptosis depending
on the downstream ceramide targets, the subcellular localization of ceramide and the
type of stress stimuli. Our data showed that aberrant sphingolipid metabolism with an
abnormal accumulation of sphingolipids and ceramides could be observed among the
Chinese residents’ serum samples before their diagnosis.

In our study, we found four types of PC that showed a downward trend in the
NSCLC group when compared with the cancer-free controls. Underlying these phenotypic
alterations in the choline metabolism might indicate the degradation of PC, resulting in the
dysplasia of the surrounding substances of the cell membrane. Same as with the previous
findings, the aberrant expression of PC or its related compounds could be detected by
a non-invasive LC-MS to detect NSCLC at an early stage; however, abnormal choline
phospholipid metabolism has also been observed in many other types of cancer, not
heterogeneous to the NSCLC [38,52]. We observed that the AUC of the serum metabolite
signatures combined with the smoking history, BMI, and TG indicators for identifying
NSCLC could reach 0.99 (a 95% CI: 0.98-1.00). This proved that the serum metabolite
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fingerprints combined with the baseline characteristics could be an effective tool to identify
an NSCLC presence within our study. However, future validations are warranted to test
whether our results could be applicable to populations from other districts in China.

Several research groups have recently applied metabolomic techniques to unveil the
metabolic alterations associated with lung cancer, with most of the studies being case-
control studies. Hori et al. detected 58 metabolites in serum using chromatography/mass
(GC/MS) and found 23 differentially-expressed metabolites in the Japanese population [8].
Maeda et al. studied 21 amino acids in NSCLC patients’ plasma with LC/MS and proved
that the amino acid profiles could be used for screening NSCLC among the Japanese pop-
ulation [53]. Jordan et al. applied a nuclear magnetic resonance (NMR) to measure 21
metabolites and showed that serum metabolomics could differentiate lung cancer between
patients and healthy controls [54]. Neither the study design nor the sample population was
different to ours. To avoid reverse causation, we used a prospective nested case-control
study to illustrate the serum metabolomic alterations before diagnosing NSCLC. Schult
TA et al. established the magnetic resonance spectroscopy (MRS)-based metabolomics
predictive models to identify the lung cancer presence in the U.S. population [7]. However,
serum metabolomic profiling prior to a diagnosis with NSCLC is scarce in China and,
thus, the metabolomic predictive models could not be established. Our findings could
have implications for lung cancer screening in China. Considering that the metabolite
fingerprints might improve the identifying of participants with the highest risk of NSCLC,
who could benefit the most from the screening, a metabolomic predictive tool validated in
other cohorts is warranted in future studies. The public health implication of this study
is the importance and the feasibility of the non-invasive and early-detection of NSCLC
with LC-MS among the Chinese community residents. Healthcare centers throughout the
nation could evaluate the use of spectroscopic imaging to assist in preventing and diagnos-
ing NSCLC. Additionally, exploring choline phospholipid metabolism and sphingolipid
metabolism might help to identify new therapeutic targets for NSCLC treatments. Because
the LC-MS technique is relatively expensive and qualified practitioners are in short supply,
the cost-effectiveness of its ability for early-detecting NSCLC could be evaluated before
being widely applicated.

The strength of our study is this prospective setting. The reverse causation could be
mitigated with our study design; however, several limitations should be considered. First,
we did not validate the results of the identified metabolites with an untargeted LC-MS
technique to reconfirm the robustness of the metabolites that we measured. Although we
applied a standard LC-MS data acquisition operation to identify the significantly-expressed
metabolites, the validation of the results should be paramount and must be improved in our
future studies. Second, from the perspective of statistics, the sample sizes for the NSCLC
and cancer-free controls were relatively small. Third, although we identified metabolomic
alterations before a diagnosis with NSCLC among our study participants, and conducted
an internal cross validation of our risk prediction model, the extrapolation has not been
established through external validation in other participants from our cohort and this
should be improved in future research. Last but not least, there is a possibility that the
results could be affected by other confounders that we did not consider. For example,
the serum metabolite profiles could have been affected by diet composition and circadian
rhythm. We did identify a few metabolites that might be the potential biomarkers for the
consumption of certain foods; however, we did not assess the impact of dietary composition
in our study, which should be improved in our future research.

5. Conclusions

In summary, we reported the metabolome profile of NSCLC patient blood serum
samples collected before disease diagnosis and compared the results with those observed
in serum samples obtained from healthy control subjects. We identified 18 significantly-
expressed metabolites, with most of them being lipid and lipid-like molecules, organic
acids, and nitrogen compounds. Additionally, choline metabolism exhibits a markedly
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metabolic disturbance in NSCLC patients, followed by sphingolipid metabolism and
glycerophospholipid metabolism. Our data point to the metabolisms mentioned above and
the related metabolites as the potential critical targets for cancer interventions that could
help with the early diagnosis of NSCLC patients. Our results demonstrate the potential
feasibility of applying LC-MS-based serum metabolomics to predict the presence of NSCLC
combined with baseline characteristics, such as smoking habits and the exposure history to
second-hand smoking. With future validation, metabolomic techniques might be used as
an effective and less-invasive tool to supplement the screening programs of NSCLC in the
Chinese population.
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Appendix A

Appendix A.1. Untargeted Metabolomics Profiling

Appendix A.1.1. LC-MS Metabolites Extraction

A total of 100 µL of a sample was transferred to an EP tube. A 600 µL amount of the
extract solution (e.g., acetonitrile: methanol = 1:1; containing isotopically-labelled internal
standard) was added into the EP tube. The mixed samples were vortexed for 30 s, sonicated
in the ice-water bath for 10 min, incubated at −40 ◦C for 1 h to precipitate the proteins,
and centrifuged at 120,000 rpm at 4 ◦C for 15 min. The supernatant was transferred to a
fresh glass vial for the LC/MS analysis. The quality control (QC) samples were prepared
by using an equal aliquot of the supernatant from all the samples.

https://www.mdpi.com/article/10.3390/metabo12100906/s1
https://www.mdpi.com/article/10.3390/metabo12100906/s1
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Appendix A.1.2. LC-MS/MS Analysis

The liquid chromatography-mass spectrometry (LC-MS) analyses were performed
using a UHPLC system (Vanquish, Thermo Fisher Scientific) with a Waters ACQUITY
UPLC BEH Amide column (2.1 mm × 100, 1.7 µm) coupled to a Q Exactive HFX mass
spectrometer (Orbitrap MS, Thermo Fisher Scientific).

Amounts of 25 mmol/L of ammonium acetate and 25 mmol/L of ammonia hydroxide
in water (pH = 9.75) (A), and acetonitrile (B), consisted of the mobile phase. The temperature
of the auto-sampler was set at 4 ◦C. The injection volume was 2 µL. The Q Exactive HFX
mass spectrometer was used to acquire MS/MS spectra on the information-dependent
acquisition (IDA) mode and was controlled by the acquisition software (Xcalibur, Thermo).
In this mode, the Xcalibur continuously evaluated the full scan MS spectrum. The ESI
source conditions were set as follows: sheath gas flow rate: 30 Arb, aux gas flow rate: 25
Arb, capillary temperature: 350 ◦C, full ms resolution: 60,000, MS/MS resolution: 7500,
collision energy: 10/30/60 in the NCE mode, and spray voltage: 3.6 kV (positive).

To preprocess the raw data and its annotation, ProteoWizard was used to convert
the raw data to a mzXML format. The data were processed with the Biotree in-house
program that was developed using R packages and based on XCMS for peak detection,
extraction, alignment, and integration. Next, the in-house compound database (BiotreeDB)
was applied for the metabolite annotation. The cutoff value for an annotation was set at 0.3.

Appendix A.1.3. Quality Control Process

One quality control (QC) sample was run after every ten samples during the data
acquisition process. The stability and reliability of the instruments were assessed by the
difference in the response peak intensity in the internal standard between the QC samples.
In addition, the peak detected in the internal standard of the blank sample was assessed
to evaluate the compound residue. No peak was detected among the internal standard of
the blank samples, indicating the substance residue was controlled successfully, and the
cross contamination between the samples was under control. For the data quality control,
we assessed the distribution of the QC samples in the score plot of a principal component
analysis. As shown in the Supplementary Figure S1, different QC samples were clustered
together, suggesting the stability of the metabolite extraction process. Additionally, we
performed a correlation analysis between the different QC samples. The results showed
that the QC samples were highly correlated with each other, suggesting the data quality
was acceptable.

Appendix B

Figure A1. PCA score plot and 3D PCA score plot between NSCLC and cancer-free controls.
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Figure A2. OPLS-DA score plot between NSCLC and cancer-free controls and the permutation test
of OPLS-DA.
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