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Emotional experience has a pervasive impact on choice behavior, yet the underlying

mechanism remains unclear. Introducing facial-expression primes into a probabilistic

learning task, we investigated how affective arousal regulates reward-related choice

based on behavioral, model fitting, and feedback-related negativity (FRN) data. Sixty-six

paid subjects were randomly assigned to the Neutral-Neutral (NN), Angry-Neutral (AN),

and Happy-Neutral (HN) groups. A total of 960 trials were conducted. Subjects in

each group were randomly exposed to half trials of the pre-determined emotional

faces and another half of the neutral faces before choosing between two cards drawn

from two decks with different assigned reward probabilities. Trial-by-trial data were fit

with a standard reinforcement learning model using the Bayesian estimation approach.

The temporal dynamics of brain activity were simultaneously recorded and analyzed

using event-related potentials. Our analyses revealed that subjects in the NN group

gained more reward values than those in the other two groups; they also exhibited

comparatively differential estimated model-parameter values for reward prediction errors.

Computing the difference wave of FRNs in reward vs. non-reward trials, we found that,

compared to the NN group, subjects in the AN and HN groups had larger “General”

FRNs (i.e., FRNs in no-reward trials minus FRNs in reward trials) and “Expected” FRNs

(i.e., FRNs in expected reward-omission trials minus FRNs in expected reward-delivery

trials), indicating an interruption in predicting reward. Further, both AN and HN groups

appeared to be more sensitive to negative outcomes than the NN group. Collectively,

our study suggests that affective arousal negatively regulates reward-related choice,

probably through overweighting with negative feedback.
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Introduction

Our daily life is flooded with making decisions, such as having
milk or decaf latte for the morning, driving through the main
road or taking a shortcut to the office, and holding or selling
the declining stocks in hand. That said, optimal decisions are
not easy to make, especially under the impact of emotion and
other social factors (Bechara et al., 2000; Schwarz, 2000; Bechara,
2004; Winkielman et al., 2007; Pessoa, 2008). In recent years, the
impact of emotional experience on decision making has attracted
interests from psychologists, economists, and neuroscientists;
however, its behavioral consequence and underlying neural
mechanism remain unclear. Among the many kinds of decision
processes, reward-based decision making has been extensively
studied in both humans and animals (Schultz et al., 1998;
Bayer and Glimcher, 2005; Rutledge et al., 2009; Glimcher,
2011; Hämmerer et al., 2011; Chen et al., 2012). It has also
been investigated under the reinforcement-learning framework
(Sutton and Barto, 1998), in which the goal of optimal behavior of
an organism is to maximize its reward through the minimization
of the reward prediction error (RPE).

RPE represents the difference between the value of expected
and actual outcomes, and has been suggested to drive the
learning process and choice behavior. A positive RPE is
generated when the outcome of an option is better than
expected, and would increase the (future) expected value of
that option. In contrast, a worse-than-expected outcome leads
to a negative RPE, and would decrease the expected value.
Further evidence has shown that RPE signaling is not only
expressed by mid-brain dopaminergic neurons (Schultz et al.,
1997; Bayer and Glimcher, 2005) but also is carried out by an
extensive fronto-subcortical network, including the orbitofrontal
cortex, ventromedial pre-frontal cortex, anterior cingulate cortex,
striatum, and amygdala (Hare et al., 2008; Haber and Knutson,
2010; Glimcher, 2011; Shenhav et al., 2013). In complementary
to these imaging works disclosing neural circuits engaged in the
decision process, activities of event-related potentials (ERP) are
considered to be especially suitable for the capture of covert
mental operations and dynamic changes because of the high
temporal resolution and electrophysiological nature. Recently,
researchers further identified a component termed feedback-
related negativity (FRN) as a potential electrophysiological
signature for coding RPE signals during reinforcement learning
(Holroyd and Coles, 2002; Holroyd et al., 2003, 2009; Yasuda
et al., 2004; Warren et al., 2014).

FRN is the difference wave computed by subtracting activities
following positive outcomes from those following negative
outcomes, and is commonly obtained at the fronto-central sites
(e.g., Fz, FCz, and Cz) around 200–400ms after the onset
of the outcome feedback (Miltner et al., 1997). A dominant
theory, dubbed the reinforcement-learning error-related negativity
(RL-ERN; Holroyd and Coles, 2002) claims that FRN reflects
RPE signaling derived from the dopaminergic projection to the
anterior cingulate cortex and neighboring areas (Amiez et al.,
2005; Mars et al., 2005; Walsh and Anderson, 2012; Warren
et al., 2014). Increased RPE signals would disinhibit the anterior
cingulate cortex (ACC) activity and lead to a larger FRN, while

decreased RPE signals would inhibit the ACC activity and the
FRN. Convergent evidence also indicates that FRN is affected by
psychiatric or long-term emotional traits (Hajcak and Simons,
2002; Hajcak et al., 2003; Yasuda et al., 2004). Using emotional
pictures (Lang et al., 1999) as the affective primes in a flanker
task, Wiswede et al. (2009) reported that preceding unpleasant
pictures can result in an enhanced error-related negativity (i.e.,
a counterpart of FRN) compared with the trials with neutral
or pleasant pictures. Altogether, the above evidence implies that
FRN not only indicates the dynamic of RPE signaling, but also
reflects the impact of regulatory factors on the decision process.

Given that emotional experience has a pervasive impact on
our decision-making and its underlying mechanism remains
unclear, it is of great interest to explore the issue through the
measurement of FRN and the evaluation of RPE-driven behavior.
In particular, using a mixed-design with both within- and
between-subjects comparisons of the facial-expression primes
in a probabilistic learning task, this study aimed to investigate
how affective arousal regulates the reward-based choice behavior
from the behavioral, model-fitting, and ERP perspectives. There
were three groups in this study, including the Neutral-Neutral
(NN) group, Angry-Neutral (AN) group, and Happy-Neutral
(HN) group. The NN group served as the group-wise baseline
control and the neutral condition in the AN and HN groups
served as the within-subject baseline control. Three types of
facial expressions (i.e., neutral, angry, and happy faces) from a
culture-based facial-expression database (Chen et al., 2009, 2013)
were selected to elicit affective arousal for each corresponding
group. Specifically, angry and happy faces were adopted as the
affective primes and neutral faces were used as the neutral prime.
Each subject in the three groups was confronted with either an
affective-prime condition or a neutral-prime condition during
each trial. We expect to observe an up-regulation for both
the model-estimated and electrophysiological indices of RPE
signaling by affective arousal for both the within- and between-
subjects comparisons. Specifically, FRNs and the learning rate—a
model-estimated parameter which is assumed to be positively
correlated with RPE signaling, would be higher under the
affective condition in the two emotional groups (i.e., AN and
HN). On the contrary, the choice perseveration (consistency)
parameter from the reinforcement learning model would be
lower for the same case, as it is assumed to be negatively
correlated with RPE signaling. Furthermore, this regulatory effect
would also be manifested as unstable choices and thus interrupt
performances in the behavioral level.

Materials and Methods

Subjects
Sixty-six paid subjects recruited fromNational TaiwanUniversity
were randomly assigned to three groups: the NN group (8 males
and 14 females; mean age: 21.14 years), the AN group (12 males
and 10 females; mean age: 22.14 years), and the HN group (11
males and 11 females; mean age: 21.55 years). All subjects had
normal or corrected-to-normal vision and were screened for
the presence of psychiatric or neurological disorders. Informed
consent was provided by each subject prior to the experiment in
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accordance with the procedure of the Research Ethics Committee
of National Taiwan University.

Design
As illustrated in Figure 1A, the entire test consisted of five
main phases, which included the training phase of the dynamic
reward task, the pre-test questionnaire, the experimental phase
of the dynamic reward task, the post-test questionnaire, and
the debriefing. The dynamic reward task was modified from
Rutledge et al. (2009) and Li et al. (2014), which employed a
trial-by-trial two-card scenario as illustrated in Figures 1B,C.
In each trial, two cards, including one card from a “rich”

deck and the second card from a “poor” deck, were presented
side by side on the computer screen without showing the
reward values until the subject made a choice between them.
Next, feedback of 0 (no reward) or 1 (reward) point was
presented to the subject on the center of the screen. The subject
was instructed to maximize the total points, and a monetary
reward was provided to him/her based on his/her total game
scores at the end of the experiment. The ratio of reward
probabilities between the two decks varied across 6 blocks,
and changes between blocks were not signaled to the subjects.
The details of the procedure are described in the following
section.

FIGURE 1 | General procedure and experimental design of the

dynamic reward task. (A) The general procedure sequentially

consisted of a training phase, a pre-test PANAS rating phase, an

experimental phase, a post-test PANAS rating phase, and a task

debriefing phase. (B,C) An example of the trial structure in the training

and experimental phases of the dynamic reward task, respectively. The

training phase comprised a minimum of 40 training trials without a facial

prime prior to each trial, whereas the experimental phase comprised

960 test trials with a facial prime prior to each trial. In each trial, the

subjects had to choose one card from the two decks (either from deck

pairs A, B or C, D) on the screen, and their choice was displayed on

the center of the screen. When a reward had been scheduled to their

choice, a digit “1” was displayed on the center of the screen to

represent a one-point gain. Otherwise, the displayed digit was “0” to

represent a non-rewarded outcome. (D) In the experimental phase of

the dynamic reward task, the subjects from each of the three groups

[the Neutral-Neutral (NN) group, Angry-Neutral (AN) group, and

Happy-Neutral (HN) group] were randomly exposed to half of the trials

with a pre-determined affective prime condition and half of the trials

with a neutral prime condition prior to making trail-by-trial two-choice

decisions. A set of natural faces from 8 individuals in our culture-based

facial-expression database was selected and used for the corresponding

affective or neutral prime conditions. (E) An example of a block

sequence and the underlying reward-probability structure. Reward ratios

of the two deck-pairs (6:1, 3:1, 1:3, 1:6) varied from block to block

(70–90 trials per block). The blocks were separated by un-signaled

transitions in which the higher reward probability was shifted within each

deck pair, but with the reward probability otherwise unpredictable.
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Training Phase

Subjects were seated comfortably in front of a computer monitor
in an electromagnetically shielded chamber. Following the setup
with electroencephalogram (EEG) recording device and the task
instruction, subjects answered three questions to confirm that
they had a basic understanding of the task (see Supplementary 1).
They were then engaged in the dynamic reward task which is a
modified version of the probabilistic learning task (Rutledge et al.,
2009; Li et al., 2014). The training phase comprised a minimum
of 40 trials without the insertion of the facial prime. As illustrated
in Figure 1B, there were two pairs of decks (i.e., A, B and C, D)
with the same reward probability ratio (6:1 or 1:6, a total of 60%),
and each pair was assigned to one of the two prime conditions
within each subject (Watanabe et al., 2013). The subjects were
informed that each pair of decks would be presented randomly
in half of the trials, and the reward probabilities were fixed
throughout the block. In each trial, the subjects had to choose
one card from the two decks on the screen, and then the central
fixation on the screen would be replaced by the display of their
choice (i.e., capital letter A/B or C/D). When a reward had been
scheduled to their choice, a digit “1” was displayed on the center
of the screen, which represented a one-point gain. Otherwise,
the displayed digit was “0,” which represented a non-reward
outcome. The subjects were asked to identify the rich deck (i.e.,
the deck with higher reward probability) of each pair of decks
after they completed the trials, and the training phase would be
repeated until their answers were correct.

The training phase was followed by the pre-test questionnaire
phase as shown in Figure 1A. Each subject was asked to complete
the Chinese version of the Positive and Negative Affect Schedule
(PANAS) (Watson et al., 1988; Teng and Chang, 2006) as a
measure of their baseline affective arousal before experiencing the
facial primes in the experimental phase.

Experimental Phase

The experimental phase of the dynamic reward task was
conducted immediately after the completion of the pre-test
PANAS. Each subject was informed that (1) the distribution of
reward probabilities may shift over time; (2) each trial would be
introduced with a task-irrelevant face picture prior to the choice
display; and (3) his/her total game score in the experimental
phase would be transmitted into an actual monetary reward in
a 1:1 ratio. To investigate the emotional-regulation effect on
reward-based decision making, a face picture was introduced
prior to the presentation of the deck-pair to elicit affective arousal
in each trial (Figure 1C). A split-plot design was adopted here.
Subjects were randomly assigned into one of the three groups,
and were exposed to one of the three types of facial expressions
(i.e., happy, angry, and neutral faces) from the database (Chen
et al., 2009, 2013) prior to choosing the card in each trial. Subjects
in the AN (and HN, respectively) group were randomly exposed
to angry (and happy, respectively) faces (as the affective prime) in
half of the trials and to neutral faces (as the neutral prime) in the
other half of the trials (Figure 1D). For the group-wise baseline
control, subjects in the NN group were exposed to neutral faces
in all the trials. Following Watanabe et al. (2013), we used two
versions of displays of the deck-pair: A, B and C, D (Figure 1E);

they were referred to as the Up and Down pairs. There were 480
trials in each prime condition (and so the total was 960 trials
for each subject). These trials were divided into six 70–90 trial-
blocks with four possible reward probability ratios within each
deck-pair (6:1, 3:1, 1:3, and 1:6; see Figure 1E for an example).
The blocks were separated by un-signaled transitions in which
the higher reward probability was shifted within each deck pair,
but with the reward probability otherwise unpredictable. There
was no time limit for response in each trial, but subjects typically
completed the entire task in approximately 50min. Following
the experimental phase, each subject were required to complete
the post-test PANAS, and the difference between the pre- and
post-test PANAS score was evaluated to assess his/her change in
affective arousal.

Debriefing

Following the post-test PANAS phase, subjects were required
to answer a task-debriefing questionnaire regarding (1) their
decision style, (2) self-prediction of the game score, and (3) their
recall and ratings of emotional intensity for the facial primes
in the experimental phase (see Supplementary 2). Finally, the
total game score was announced by the experimenters, and the
subjects were paid accordingly.

Reinforcement Learning Model-Based Analysis
To explore the process that underlies RPE-driven choice
behavior, the trial-by-trial choice data from all conditions for
each subject were fitted with a standard reinforcement learning
model (for technical discussions, see Watkins and Dayan, 1992;
Sutton and Barto, 1998). This model is composed of a sensory
component, which represents how information is updated, and a
decision component, which represents how a choice is made. For
the updating component, we used a simplified Q-learning model
to characterize the dynamic of RPE signaling during the task.
Specifically, the expected value of the chosen deck [for example,
QA(t) for deck A in trial t] was updated according to the following
rule (see also Rutledge et al., 2009; Li et al., 2014):

QA(t + 1) = QA(t)+ αδ(t) (1)

δ(t) = RA(t)− QA(t) (2)

where δ(t) is the RPE that represents the discrepancy between the
experienced and expected reward, and RA(t) represents the actual
outcome from choosing deck A in trial t with a value of 1 for
reward and 0 otherwise. The learning rate parameter, denoted by
α in Equation (1), determines how rapidly the estimation of the
expected value is updated. A higher learning rate indicates that
the expected value is updated more frequently, and thus recent
outcomes would have a greater impact on the expected value
compared with less recent outcomes. For the choice component,
similar to Rutledge et al. (2009) and Li et al. (2014), we assumed
that the probability of choosing deck A, PA(t + 1), is determined
by the Boltzmann exploration (Kaelbling et al., 1996), which is a
logistic form that assigns a weight to each of the actions:

PA(t + 1) =
eβQA(t)

eβQA(t) + eβQB(t)
(3)
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The choice perseveration (consistency) parameter, denoted by β

in Equation (3), refers to the tendency to make choice guided
by expected reward values. Higher choice perseveration indicates
that the deck with a higher expected value is more likely to be
chosen, and the choice would be completely random when the
value of the choice perseveration equals 0.

To estimate the learning rate (α) and choice perseveration (β)
in the reinforcement learning model, we applied a hierarchical
Bayesian modeling approach with the Markov Chain Monte
Carlo (MCMC) algorithm for parameter estimation to the trial-
by-trial choice data from the dynamic reward task. The MCMC-
based parameter estimation is commonly used in many fields,
such as machine learning and computational psychology, and we
have previously applied the same method to analyze the learning
behavior of Akt1-mutant mice (Chen et al., 2012) and of patients
with schizophrenia (Li et al., 2014). Such a method is especially
suitable for dealing with multiple sources of variability within
and between groups. The structure of the Bayesian hierarchical
model we adopted is depicted in Figure 2. The parameters α and
β for subject i (αi and βi) were assumed normally distributed
with respective means and standard deviations, which were
from the group-level distributions (i.e., µα and σα , and µβ

and σβ , respectively). We used WinBUGS (Lunn et al., 2000)
to approximate the posterior distributions of the parameters
by sampling values using the MCMC algorithm. Three MCMC
chains were used for the estimation of α and β . A chain
consisted of 16,000 iterations, of which the first 6000 (burn-
in) points were discarded to ensure that only samples from
the stationary distribution were used and that the data were
unaffected by the starting values. Thus, we obtained 30,000 points
of estimation from the three chains, from which we collected
samples at intervals of every five samples, yielding a total of
6000 points. All interpretations and tests of the parameters were
performed based on these 6000 samples. To ensure that the
final estimation of posterior distributions would not be affected
significantly by different priors, both µα and σα were assigned
an (non-informative) uniform distribution between 0 and 1 for
the prior. For β , a uniform prior between 0 and 10 and a
uniform prior between 0 and 5 were assigned to µβ and σβ ,
respectively.

EEG Recordings and Data Analysis
EEG signals were recorded with an electrode cap (Quick-
Cap, NeuroScan, El Paso, Texas, USA) from 64 scalp locations
according to the 10–10 system, using a SymAmp II amplifier
(NeuroScan, El Paso, Texas, USA). The ground was placed above
the forehead, and an electrode mounted in the middle position
between Cz and CPz served as the online reference. The vertical
and horizontal electrooculograms were recorded from the
electrodes placed above and below the left eye and on the outer
canthi of the left and right eyes, respectively. Impedances were
kept below 5 k�. The sampling rate was 1 kHz with an online
bandpass filter of 0.01–100Hz. The recorded data were offline
re-referenced to the average of the left and right mastoids using
the EDIT module from Scan 4.5 (NeuroScan, Charlotte, North
Carolina, USA) and then subjected to a 0.1–40Hz bandpass
filter and an EOG artifact reduction procedure, by which the

FIGURE 2 | A graphical Bayesian approach for parameter estimation

of the reinforcement learning model for the dynamic reward task.

In this graphical model, nodes represent variables of interest and arrows

indicate dependencies among these variables. Note that shaded nodes

represent observed variables. Specifically, Ri,j−1 is the reward received by

subject i in trial j – 1, and Chi,j is the observed choice of subject i in

trial j. The parameters αi and β i represent the learning rate and choice

perseveration for subject i, respectively. Each parameter was assumed

from a normally distributed group-level population with respective means

and standard deviations. In our implementation, both µα and σαwere

assigned an (non-informative) uniform distribution between 0 and 1 for

the prior. For β, a uniform prior between 0 and 10 was assigned to µβ .

For σβ , we assigned a uniform prior between 0 and 5.

continuous data were mathematically corrected for eye-blink
artifacts through a built-in pattern recognition algorithm. The
corrected continuous data were then segmented into epochs
of −100 to 500ms following the onset of the face picture to
extract the ERP components for emotional and perceptual facial
processing [i.e., early emotional positivity (EEP) and N170,
respectively] (Bentin et al., 1996; Bentin and Deouell, 2000;
Eimer, 2000; Eimer and Holmes, 2002, 2007; Eimer et al., 2003;
Yovel et al., 2003; Sadeh et al., 2008), and epochs of −100 to
700ms following the onset of feedback to extract ERPs for reward
processing (i.e., FRN and its variation) (Holroyd and Coles,
2002; Holroyd et al., 2003, 2009; Yasuda et al., 2004). Baseline
corrections were applied to the epoched data with respect to
the mean activity of the pre-stimulus window. The epochs were
then underwent an artifact rejection procedure in which the
epochs that contained activities exceeding±50µVwere excluded
from further analysis, and the resulting average rejection rate
was 6.19% across all conditions (NN group: 6.89%, AN group:
5.79%, HN group: 5.89%). The ERPs were obtained by averaging
all the artifact-free epochs for each electrode and condition. For
statistical analysis, the amplitude of the N170 following the facial
prime was evaluated as the negative peak within the 110–200ms
post-stimulus interval at channels P7 and P8; the EEP amplitude

Frontiers in Psychology | www.frontiersin.org 5 May 2015 | Volume 6 | Article 592

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Liu et al. Emotions regulate reward-based decision making

was evaluated as the positive peak within the 120–180ms post-
stimulus interval at channels Fz, Cz, and Pz (Eimer and Holmes,
2002, 2007; Kiss and Eimer, 2008).

FRN is considered to reflect the processing of (negative) RPE
signals in the brain (Holroyd and Coles, 2002; Holroyd et al.,
2003, 2009; Yasuda et al., 2004; Marco-Pallares et al., 2008;
Warren et al., 2014). Following Holroyd et al. (2009), in the
present study, we distinguished between three types of difference
waves of FRNs by subtracting the raw FRNs in the reward trials
from those in the corresponding non-reward trials in the same
condition. First, to extract the activities associated with reward
processing from other overlapping ERP components, a General
FRN was created by subtracting raw FRNs in all reward trials
from those in all non-reward trials. Second, to characterize the
baseline activity in feedback processing, an Expected FRN was
created by subtracting raw FRNs in the expected reward-delivery
trials (in which subjects chose cards from the rich deck and got
the reward) from those in the expected reward-omission trials (in
which subjects chose cards from the poor deck and didn’t get the
reward). Third, to characterize the activity related to expectation
violation, an Unexpected FRN was created by subtracting raw
FRNs in the unexpected reward-delivery trials (in which subjects
chose cards from the poor deck but got the reward) from those
in the unexpected reward-omission trials (in which subjects chose
cards from the rich deck but didn’t get the reward). Note that
the Unexpected FRN has been considered to be an index of
both positive and negative RPE signaling (Eppinger et al., 2008;
Holroyd et al., 2009; Smillie et al., 2011; Cooper et al., 2014).
For statistical analysis, amplitudes of these three difference waves
were measured as the negative peak within the 200–400ms
post-stimulus interval1 and were evaluated at the three fronto-
midline channels, Fz, FCz, and Cz, because the magnitude of
FRNs is normally maximal at these sites (Holroyd and Krigolson,
2007; Holroyd et al., 2009).

Statistical Analyses
We computed multiple measures of subjective ratings, task
performance, and ERP data. We also fit the trial-by-trial choice
data with the standard reinforcement learning model. Statistical
analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL,
USA) and SAS 8.1 for Windows (SAS Institute Inc., Cary, NC,
USA). Repeated measures analysis of variance (RM-ANOVA)
was used to assess behavioral and electrophysiological measures
under the different combinations of the prime conditions.
Post-hoc analyses were performed using Tukey’s test when the
F-value indicated a significant difference. A Greenhouse-Geisser
adjustment of degrees of freedom, as well as a Bonferroni
correction, was used when necessary. For the model-estimated
parameters, instead of comparing the Bayes factors from each
posterior distribution, Wald tests were applied to the estimated
parameter values for a quick examination as previously described
(Rutledge et al., 2009).

1Note that the peak of difference wave (i.e., General FRN) is not necessarily the
difference of the two respective peaks in non-reward and reward raw FRNs. Similar
remarks apply to the Expected FRN and Unexpected FRN. Our use of the base-to-
peak measure for difference-wave FRN follows closely the work by Holroyd and
colleagues (Holroyd and Krigolson, 2007; Holroyd et al., 2003, 2009).

Results

Subjective Ratings on Affective Arousal and Task
Debriefing
The effect of facial primes on the subjects’ affective arousal was
evaluated through the examination of the difference between
the pre- and post-PANAS scores. As illustrated in Figure 3A,
the mean difference on the rating scores across the three
groups was −4.85 points for the positive affect and +3.42
points for the negative affect. Post-hoc analyses revealed that for
the positive affect, the HN group showed less reduction than
the other two groups (ps < 0.05); for the negative affect, no
significant difference was identified among the three groups.
A two-way RM-ANOVA revealed a significant main effect on
the affect dimension [F(1, 65) = 128.87, p < 0.001] and
a significant interaction between affect dimension and subject
group [F(2, 126) = 6.49, p = 0.002]. Two separated one-way
ANOVAs on each affect dimension further revealed that the
effect of subject group was significant on the positive affect
[F(2, 65) = 5.52, p = 0.006], but was only marginal on the
negative affect [F(2, 65) = 3.02, p = 0.054]. As depicted
in Figure 3B, we also found that the number of consecutive
non-reward trials was significantly higher in the NN group
compared with the other two groups [F(2, 63) = 43.58, p <

0.001], suggesting that the subjects in the NN group tended
to make more stable choices. Further evidence of the effect of
affective priming was also supported from the analysis of the
task-debriefing data. As shown in Figure 3C, a significant group
effect was identified in the difference between the predicted and
actual game scores [F(2, 63) = 43.58, p < 0.001]. Subjects in the
AN group underestimated their game scores compared with the
other two groups (ps < 0.05); whereas subjects in the HN group
tended to overestimate their performance, although the effect was
marginal (p = 0.078). Furthermore, as shown in Figure 3D,
different patterns on the recall and intensity ratings for the facial
expression in the experimental phase were identified among the
three groups. In each group, subjects’ ratings for the emotion
categories significantly corresponded with their assigned groups
[F(12, 440) = 18.36, p < 0.001]. These data support the success of
our manipulation of affective priming in each group.

Behavioral Performance in the Dynamic Reward
Task
As depicted in Figure 4A, the mean probability of choosing
the rich-deck (PCRD) was gradually accumulated across trials
within each block, and it stabilized after the 20th trial. Therefore,
the 1st–20th trials and the remaining trials in each block
were considered as the acquisition state and the steady state,
respectively. As shown in Figure 4B, the overall PCRD was
significantly higher in the steady state (73.2%) than in the
acquisition state (62.5%) (p < 0.001), reflecting the dynamic
process of learning the distribution of reward probability and
the formation of reward expectation. For the between-subjects
comparison of the affective prime, no significant group effect
was identified [F(2, 63) = 0.67, p = 0.52] in the acquisition
state; on the other hand, the NN group showed a significantly
higher PCRD than the other two groups in the steady state
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FIGURE 3 | Subjective ratings and task debriefing for the NN, AN,

and HN groups. (A) Differences between the post-test and pre-test

PANAS rating scores on positive and negative affects across the three

groups. (B) The numbers of successive non-reward trials prior to shifting.

(C) Differences between self-prediction and actual game scores across

the three groups. (D) Recall and intensity ratings of facial expressions in

the experimental phase in each group. Data from the NN, AN, and HN

groups are displayed in light gray, red, and deep blue bars, respectively,

with the mean ± SEM and * p < 0.05.

[F(2, 63) = 6.42, p = 0.002; post-hoc NN vs. AN: p = 0.017; NN
vs. HN: p = 0.006].

Next, we turned to investigate the effect of affective
prime-pairs on the behavioral performance of the three groups.
As shown in Figure 4C, taking the whole trial-data for
consideration, omnibus ANOVA revealed that there was a
significant group effect for PCRD [F(2, 63) = 3.66, p = 0.03],
which suggesting that the NN group has a better PCRD than the
other two groups in both prime conditions. However, neither the
prime condition [F(1, 65) = 0.002, p = 0.97] nor the interaction
[F(2, 63) = 0.82, p = 0.44] showed a significant difference for
PCRD. Regarding the game score, as shown in Figure 4D, a
significant group effect was found [F(2, 63) = 8.28, p < 0.001]
and the mean scores for the NN, AN, and HN groups were
374.86, 355.23, and 354.96, respectively. The NN group showed a
higher game score than the other two emotional groups (both ps
< 0.05). The mean game scores under the two prime conditions
in each group are further depicted in Figure 4E. A two-way
(prime condition × group) ANOVA revealed a significant main
effect on group [F(2, 63) = 5.02, p = 0.01]. Post-hoc analyses
indicated that the NN group had a significantly higher game
score than the other two emotional groups under both prime
conditions (all ps < 0.05; Neutral vs. Angry: p = 0.003; Neutral
vs. Happy: p = 0.002), and, once again, no significant effect was
identified for the prime condition [F(1, 63) = 0.15, p = 0.70]
and for their interaction with group [F(2, 63) = 1.28, p = 0.29].
Thus, our behavioral data indicated that the subjects’ behavioral
performance can be divided into two learning states in each
block of the dynamic reward task, reflecting the dynamic of
reward learning and expectation formation. More importantly,

FIGURE 4 | Behavioral performance (mean ± SEM) in the dynamic

reward task and parameter estimation in the model-based analysis

across the three groups. (A) Mean probabilities of choosing the rich-decks

(PCRD) for the subjects in each of the three groups in both prime conditions.

Each data point represented the moving average of 10 trials in each prime

condition. The 1st–20th trials and the remaining trials in each block were

defined as the “acquisition state” and the “steady state,” respectively. (B)

Mean PCRD in the acquisition and steady states for the three groups. (C)

Mean PCRD for each group under the affective and neutral prime conditions.

(D) The overall total game scores for each group. (E) Mean game score for

each group under the affective and neutral prime conditions. (F) Mean

estimated learning rate for each group under the affective and neutral prime

conditions. (G) Mean choice perseveration for each group under the affective

and neutral prime conditions. For the line graphs, the groups are represented

by different color lines (NN group: light gray; AN group: red; HN group: deep

blue), and the two prime conditions in each subject group were distinguished

by solid (affective) and dotted (neutral) lines. *p < 0.05.

the NN group showed better PCRD and game scores than the
other two emotional groups under both the affective and neutral
prime conditions, suggesting a down regulation of behavioral
performance by affective arousal.

Model-Based Analysis and Parameter Estimation
To further investigate the process underlying the emotional
regulation effect on subjects’ performance in the dynamic
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reward task, a graphical Bayesian approach on the individual
trial-by-trial choice data was applied to estimate the posterior
distributions of the group mean (µ) and standard deviation
(σ ) for the learning rate (α) and choice perseveration (β) of
the reinforcement learning model (see Equations 1–3). The
Gelman–Rubin convergence statistics and a visual inspection
indicated that the Markov chain converged properly. The
estimated learning rate and choice perseveration for the three
subject groups under the affective prime and neutral prime
conditions are shown in Figures 4F,G, respectively. Wald tests
indicate that the mean learning rate (µα) was significantly higher
in the AN group than in the NN group under both prime
conditions (both ps < 0.005; corrected ps < 0.05; Figure 4F)
and that the mean choice perseverations (µβ ) was significantly
higher in the NN group than in the other two emotional groups
(ps < 0.005; corrected ps < 0.05; Figure 4G). The alteration of
prime conditions within each group did not yield any significant
effect. Though it is not entirely consistent with our behavioral
data, different facial expressions did elicit differential effects on
the parameters for RPE signaling, in which the NN group had
a lower learning rate than the AN group and showed a higher
degree of choice perseveration than both emotional groups.
And, once again, the within-subject comparison of the prime
condition showed no significant effect on the reward-driven
choice behavior in each group.

Event-Related Potentials (ERPs)
Raw EEG data recorded during the experimental phase were
processed into ERP components. The averaged ERP waveforms
elicited by the facial primes under both prime conditions
in each group at the bilateral occipito-temporal sites (i.e.,
P7 and P8) and the three midline sites (i.e., Fz, Cz, and
Pz) are shown in Figures 5A,B, respectively. For the facial
processing-related N170 recorded at P7 and P8 (Figure 5C), a
three-way RM-ANOVA (electrode, prime condition, and group)
revealed a significant main effect on electrode [F(1, 63) = 6.55,
p = 0.013] and a significant interaction between electrode and
group [F(2, 63) = 3.18, p = 0.048]. Post-hoc analyses indicated
that the N170 was right-lateralized to the P8 electrode, especially
in the AN and HN groups (ps < 0.05). No significant main
effects were identified on either prime conditions [F(1, 63) = 1.60,
p = 0.21] or groups [F(2, 63) = 1.60, p = 0.85] (Figure 5D).
The finding of a constant right-lateralized N170 across different
groups and prime conditions suggests that all facial primes were
processed and recognized by the subjects.

For the EEP recorded at Fz, Cz, and Pz, a three-way
RM-ANOVA (electrode, prime condition, and group) revealed
significant main effects on electrode [F(2, 126) = 25.48, p <

0.001], prime conditions [F(1, 63) = 9.05, p = 0.004], and
groups [F(2, 63) = 11.45, p < 0.001]. The interactions between
electrode × prime condition [F(2, 126) = 7.14, p = 0.005], prime
condition× group [F(2, 63) = 14.94, p < 0.001], and electrode×
prime condition × group [F(4, 126) = 2.96, p = 0.042] were
also significant. Post-hoc analyses indicated that the EEP was
more prominent at the two fronto-central sites (i.e., Fz and
Cz) than in the Pz electrode (ps < 0.001) (Figure 5E), and was
larger under the affective prime condition than under the neutral

FIGURE 5 | Representative event-related potential waveforms and ERP

components (mean ± SEM) for prime-processing across the three

groups. (A) Grand average of the ERP waveforms time-locked to the facial

primes for each of the three groups at the two occipito-temporal sites (P7:

upper panel; P8: lower panel). The time window of N170 is labeled by shaded

color. (B) Grand average of the ERP waveforms time-locked to the facial

primes for each of the three groups at the three midline sites (Fz: upper panel;

Cz: middle panel; Pz: lower panel). The time window of the early emotional

positivity (EEP) is labeled by shaded background. (C) Mean amplitude of N170

for each of the three groups at P7 and P8. (D) Mean amplitude of N170 for

each of the three groups under the affective and neutral prime conditions. (E)

Mean amplitude of EEP for each of the three groups at Fz, Cz, and Pz in each

group. (F) Mean amplitude of EEP for each of the three groups under the

affective and neutral prime conditions. *p < 0.05.

prime condition for the two emotional groups (Figure 5F).
Furthermore, as depicted in both Figures 5E,F, the amplitude
and topographical distribution of EEP differ across both the
prime conditions and subject groups. For subjects in the AN
group, their mean EEPs elicited by the affective prime were larger
than in the neutral prime condition at all three fronto-midline
sites (ps < 0.05). A similar prime-condition effect was evident
only at the Fz and Cz electrodes in the HN group (ps< 0.05), and
was totally vanished in the NN group. Thus, the prime condition
effect was stronger in the AN group, mild in the HN group,
and totally vanished in the NN group. These findings suggest,
as expected, that the manipulation of the facial prime elicited
distinguished affective arousal in the two emotional groups.
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In addition to the N170 and EEP for the affective prime
processing, the averaged waveforms for the General FRN at the
Fz, FCz, and Cz electrodes are shown in Figure 6A. A four-
way RM-ANOVA (electrode, prime condition, learning state, and
group) revealed significant main effects on electrode [F(2, 126) =
21.22, p < 0.001], learning state [F(1, 65) = 11.74, p = 0.001],
and group [F(2, 63) = 5.57, p = 0.004]. Post-hoc analyses
indicated that the mean amplitude of the General FRN was more
pronounced at FCz (−7.22µV) and Cz (−7.30µV) than at Fz
(−6.55µV) (ps < 0.001) (Figure 6B), and it was higher in the
acquisition state (−7.39µV) than in the steady state (−6.65µV)
(Figure 6C). Given that the amount of prediction errors ought to
decrease from the acquisition state to the steady state, it is very
likely that the General FRN observed here might simply reflect
the dynamic of RPE signaling in the brain as reported previously
(Holroyd and Coles, 2002; Holroyd et al., 2003; Yasuda et al.,
2004). More importantly, as shown in both Figures 6B,C, the
mean amplitudes of the General FRN were higher in the two
emotional groups (AN: −7.33µV; HN: −7.23µV) than in the
NN group (−6.50µV) and no significant effect was found on the
prime condition [F(1, 63) = 1.14, p = 0.29]. As the General FRN

FIGURE 6 | Representative waveforms of the “General FRN” difference

wave and their mean amplitudes (mean ± SEM) across the three

groups. (A) Grand averages of the difference wave time-locked to feedback

display under the acquisition state (left panel) and steady state (right panel) in

each subject group at the three fronto-midline electrodes. The time window of

the General FRN is labeled by shaded background. (B) Mean amplitude in

each subject group in the affective and neutral prime conditions. (C) Mean

amplitude for each of the three groups in the acquisition and steady states.

*p < 0.05.

reflects the dynamic of RPEs, these findings suggest that both
positive and negative arousal enhanced RPE signaling during the
reward-based decision making.

The averaged waveforms for the Expected FRN at Fz, FCz,
and Cz electrodes are illustrated in Figure 7A. A four-way RM-
ANOVA (electrode, prime condition, learning state, and group)
revealed significant main effects on electrode [F(2, 126) = 4.279,
p = 0.033], learning state [F(1, 65) = 5.257, p = 0.025], group
[F(2, 63) = 10.556, p < 0.001] and interactions between electrode
× learning state [F(2, 126) = 4.473, p = 0.023], electrode× group
[F(4, 126) = 3.21, p = 0.035], and electrode × learning state ×
group [F(4, 126) = 6.877, p = 0.001]. As illustrated in Figure 7B,
the mean amplitude was more pronounced at Cz than Fz
(p = 0.001), which suggests a similar topographical distribution
with the General FRN. Post-hoc analyses revealed that the two
emotional groups exhibited larger Expected FRN than the NN
group (ps < 0.05), and the difference of mean amplitude between
the AN and NN groups was more pronounced than the one
between the HN and NN groups (Figures 7B,C). Specifically, for
the AN group, larger Expected FRNs than the NN group were
evident at all three fronto-central sites across the acquisition and

FIGURE 7 | Representative waveforms of the “Expected FRN”

difference wave and their mean amplitudes (mean ± SEM) across the

three groups. (A) Grand averages of the difference wave time-locked to

feedback display under the acquisition state (left panel) and steady state (right

panel) in each subject group at the three fronto-midline electrodes. The time

window of the Expected FRN is labeled by shaded background. (B) Mean

amplitude in each subject group in the affective and neutral prime conditions.

(C) Mean amplitude for each of the three groups in the acquisition and steady

states. *p < 0.05.
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steady states (ps< 0.05). In contrast, compared with the Expected
FRN in the NN group, the HN group exhibited a larger Expected
FRN only at the Cz electrode in the acquisition state and at the
FCz and Cz electrodes in the steady state (ps < 0.05). Although
further studies are needed, one possible explanation is that the
engagement of positive arousal in the HN group might enlarge
neural population in the circuit representing the dynamic of
RPE signaling. But no significant effect was found in the prime
condition [F(1, 63) = 1.19, p = 0.28] and its interactions with
other factors. Thus, these results suggest that both positive and
negative arousal enhanced RPE signals even when the reward
outcome is expected, and the impact of negative arousal was even
more pronounced than the positive one.

In addition to the Expected FRN, the averaged waveforms
for the Unexpected FRN at the Fz, FCz, and Cz electrodes are
illustrated in Figure 8A. A four-way RM-ANOVA (electrode,
prime condition, learning state, and group) revealed significant
main effects on electrode [F(2, 126) = 35.79, p < 0.001]
and learning state [F(1, 65) = 24.10, p < 0.001]. Post-hoc
analyses revealed that the topographical distribution of the
Unexpected FRN across the three fronto-central electrodes was
similar to those of the General and Expected FRNs. As shown
in Figure 8B, the mean amplitude of the Unexpected FRN
was more pronounced at FCz (−7.03µV) and Cz (−7.48µV)
than Fz (−5.76µV) (ps < 0.001). However, as depicted in
Figure 8C, the Unexpected FRN was larger in the steady
state (−8.34µV) than in the acquisition state (−5.13µV).
Furthermore, no significant main effect or interaction was found
in either prime condition [F(1, 63) = 0.21, p = 0.65] or
group [F(1, 63) = 0.10, p = 0.91]. These results suggest
that all subjects, regardless of their affective arousal, showed
the same level of responses while confronting unexpected
feedbacks.

Discussion

In this study, an integrated approach was adopted to investigate
how affective arousal regulates the decision making process in a
probabilistic learning task. Our data indicate that (1) the inserted
facial primes successfully altered subjects’ affective arousal which
was reflected in their PANAS ratings, task debriefings, and ERP
components related to facial and affective processing (i.e., N170
and EEP); (2) subjects with affective arousal had lower PCRDs
and game scores in the two emotional groups (i.e., AN and
HN groups); (3) the between-subjects manipulation of affective
arousal yielded a significant impact on reward processing—
both the estimated model parameters and the General and
Expected FRNs were enhanced in the two emotional groups; (4)
the within-subject comparison of affective arousal showed no
significant effect on RPE signaling in each group; (5) affective
arousal rendered the subjects to be more sensitive to negative
outcomes, which was reflected in larger Expected FRNs in the two
emotional groups. To the best of our knowledge, this is the first
study to integrate model-based analysis and ERP components
to simultaneously examine the effects of affective primes with
both positive and negative facial expressions on the regulation of
reward-based decision making. Our results suggest that affective

FIGURE 8 | Representative waveforms of the “Unexpected FRN”

difference wave and their mean amplitudes (mean ± SEM) across the

three groups. (A) Grand averages of the difference wave time-locked to

feedback display under the acquisition state (left panel) and steady state (right

panel) in each subject group at the three fronto-midline electrodes. The time

window of the Unexpected FRN is labeled by shaded background. (B) Mean

amplitude in each subject group in the affective and neutral prime conditions.

(C) Mean amplitude for each of the three groups in the acquisition and steady

states. *p < 0.05.

arousal primed by facial expressions have enduring effects across
trials; it also negatively regulates reward-based decision making.

It has been well-accepted that emotions play a vital role in our
decision making (Bechara et al., 2000; Schwarz, 2000; Bechara,
2004; Winkielman et al., 2007; Pessoa, 2008) even though the
precise function remains debatable. In this study, a probabilistic
dynamic reward task, which was modified from the “dynamic
foraging task” for Parkinson’s patients (Rutledge et al., 2009),
the “dynamic reward task” for schizophrenic patients (Li et al.,
2014), and the “dynamic foraging T-maze” for mice (Chen
et al., 2012), was used to study how affective arousal regulates
reward-based decision making, especially under uncertainty. To
ensure and motivate our subjects in the performance of this
task, actual monetary rewards were applied to mimic real-life
events. Three types of facial expressions from the culture-based
facial-expression database (Chen et al., 2009, 2013) were selected
to prime affective arousal in each group. Patterns on the PANAS
and facial-expression ratings evidenced that facial primes were
perceived by our subjects and successfully elicited corresponding
affective arousal as planned, and this was further confirmed by
the N170 and EEP results.
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It is not surprising to observe that subjects across groups,
after participating in a 1-h ERP experiment, showed decreased
positive affect and increased negative affect on their PANAS
scores. Nevertheless, the AN group exhibited more negative
arousal and underestimated their performance, whereas the HN
group showed more positive arousal and tended to overestimate
their game scores. As the N170 component is considered an index
of online perceptual integration of facial features (Bentin et al.,
1996; Bentin and Deouell, 2000; Eimer, 2000; Yovel et al., 2003),
the typical right-lateralizedN170 across all groups and conditions
suggests that all facial primes used in this study were perceived
by our subjects. The EEP component is assumed to reflect the
early stage of affective processing (Eimer andHolmes, 2002, 2007;
Kiss and Eimer, 2008), and thus the differences in amplitude and
topographical distribution in each prime condition and subject
group suggest that our manipulation was effective.

Moreover, affective arousal primed by facial expressions
yielded significant impact on subjects’ performance and,
importantly, enhanced their RPE signaling during the decision
process. It has been reported that the anticipation of viewing
positive/rewarding pictures increased financial risk taking in a
gambling task, and that the activation of the nucleus accumbens
(which is the main dopaminergic target for reward) mediated the
influence of reward cues on financial risk taking (Knutson and
Bossaerts, 2007; Knutson et al., 2008; Heitland et al., 2012). In
contrast, among most measurements we utilized here, the NN
group consistently exhibited higher game scores and lower neural
activities related to RPE signaling than the other two groups,
whereas no significant difference was identified between the
two emotional groups. Our reinforcement learning model-based
analysis also revealed that the NN group had a higher degree
of choice perseveration (consistency) compared with the other
two emotional groups, which suggests that these control subjects
had a higher tendency to make choices guided by reward values
and their choices were more stable. Thus, the between-subjects
manipulation of affective arousal was effective. In particular,
exposure to angry or happy faces led to a similar negative effect
on the regulation of choice behavior in the dynamic reward task.
Accordingly, these findings appear to suggest that “stay calm”
or “less emotional” might be a better strategy to gain additional
rewards under uncertainty.

In addition to the emotional regulation obtained among the
subject groups, we also examined whether the regulatory effect
would sustain throughout the experimental task or could be
transiently neutralized by the insertion of neutral facial primes.
Using fearful and neutral facial primes, a recent fMRI study
by Watanabe et al. (2013) provided a primal insight regarding
probabilistic reward-based decision making. They found that
the presentation of fearful faces as affective primes not only
promoted subjects’ behavioral performance, but also underscored
the role of striatal-amygdala interactions in the modulation of
RPE signaling (Watanabe et al., 2013). Further, they reported
that the impact induced by the fearful faces can be ceased or
neutralized by the presentation of neutral faces in the subsequent
trials, which implies a transient effect on affective priming
in decision making. In contrast, in our study, no significant
difference was identified between the two prime conditions

within each subject on the behavioral performance, estimated
model-based parameters, and FRNs across subject groups. Our
findings suggest that the presentation of emotional faces can
evoke transient affective arousal, but its regulatory effect on
reward-based decision making appears to be enduring rather
than transient or rapidly switchable. In other words, although
the within-subject manipulation of facial prime can alter subjects’
affective arousal across testing trials, the emotional-regulation
effect on decision making appears to be sustained across the
entire task session. The inconsistent findings between our current
study andWatanabe’s studymay result from the differences in the
research purpose, design, and data analyses. Specifically, given
that affective primes were presented before each choice-reward
association in Watanabe’s study, it is possible that subjects used
affective primes to predict the identity of incoming choices and
thus brought out stronger distinction between the two types of
affective primes. On the other hand, in our current study, the
two prime conditions were assigned to different deck-pairs with
the same set of total reward probabilities, thus our subjects may
tend to ignore the identities of the primes and treat the two
deck-pairs as the same. This interpretation is supported by the
fact that all subjects in this study claimed that they eventually
adopted the same strategy on the two pairs of decks. Nevertheless,
it is of great interest to further investigate the brain activity and
neural circuits that underlie the emotional-regulation effect on
reward-based decision making using neural imaging techniques
and our probabilistic dynamic reward task.

Furthermore, our results of FRN difference waves in different
conditions are consistent with our behavioral and model-fitting
findings, which support the use of FRN as an index of RPE
signaling (Holroyd and Coles, 2002; Yasuda et al., 2004; Holroyd
and Krigolson, 2007). FRN has been shown to reflect the
evaluation of monetary loss and negative performance feedback
(Hajcak et al., 2007), and the modulation of the FRN has been
suggested as a potential biomarker in psychopathology (Olvet
and Hajcak, 2008). In the current study, three types of FRN
were obtained and each of them was related to different aspects
of reward processing. The General FRN is the difference wave
derived by subtracting the raw FRN components in all rewarded
trials from those in all non-reward trials. In this study, the mean
amplitude of the General FRN was higher in the acquisition
state than in the steady state in each task block. Given the
fact that the amount of negative feedback decreased from the
acquisition state to the steady state, the General FRN can be
used as an index for the dynamic RPE signaling during reward-
based decision making as previously reported (Holroyd and
Coles, 2002; Holroyd et al., 2003, 2009; Yasuda et al., 2004;
Marco-Pallares et al., 2008; Warren et al., 2014). It was also
reported that this index is prone to overestimate the impact of
negative outcomes (Holroyd and Coles, 2002; Holroyd et al.,
2003, 2009; Yasuda et al., 2004; Marco-Pallares et al., 2008). Thus,
in our current study, it is probable that the higher General FRN
observed in the two emotional groups could be resulted from
the enhancement of RPE signals induced by affective arousal. It
also suggests that both the positive and negative components of
emotional arousal can positively regulate RPE signaling during
reward-based decision making. In addition to the General FRN,
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two additional types of FRN, namely the Expected FRN and
Unexpected FRN, were conducted to characterize the activities
in the expectation-matched and expectation-violated conditions
in reward processing, respectively (Holroyd et al., 2009). A
significant group difference was also revealed by the Expected
FRN, in which the two emotional groups also exhibited higher
mean amplitudes than the NN group. Even though the reward
outcome is expected, subjects in the AN and HN groups
exhibited larger responses to negative feedback compared with
the subjects in NN group, suggesting that affective arousal can
facilitate baseline brain activity and enhance the sensitivity to
negative feedback in the emotional groups. In contrast, no group
difference was identified by the Unexpected FRN in both the
acquisition and steady states. Given that Unexpected FRN reflects
the combination of both positive and negative RPE signals
(Eppinger et al., 2008; Holroyd et al., 2009; Smillie et al., 2011;
Cooper et al., 2014), it is likely that this duplicated activity has
reached its ceiling of response. Thus, the emotional regulation
effect cannot be manifested on this component. Note that this is
just one explanation for the null effect, and may be limited by the
design and scope of the present study. Future work on this issue
would require a more flexible design for single-trial analysis on
both EEG and model-fitting data to provide more dynamic and
sensitive measurement of RPE signal (as demonstrated in Frank
et al., 2015).

There is an increasing number of studies proposing that FRN
codes prediction errors associated with motivational salience
rather than motivational value (Alexander and Brown, 2011;
Talmi et al., 2013; Hauser et al., 2014), challenging the classic
view held by the RL-ERN theory (Holroyd and Coles, 2002). For
example, Talmi et al. (2013) compared FRNs elicited by appetitive
(i.e., monetary reward) and by aversive (i.e., electrical pain)
outcomes. Specifically, the authors compared (1) FRNs following
unexpected pain delivery and those following unexpected pain
omission (positive RPE), and (2) FRNs following unexpected
reward delivery and those following unexpected reward omission
(negative RPE). They found that in both cases the difference-wave
FRNs showed a negative deflection, and thus concluded that
FRNs reflect the violation of outcome expectation but not
the valence of outcome. However, the General, Expected, and
Unexpected FRNs in our study were all identified as negative
deflections. Although their mean amplitudes were different, it is
obvious that unexpectedness was not the only factor behind the

generation of FRN. Instead, our data are likely to be explained by
the RL-ERN theory, as FRN reflects RPE signaling with different
valences (i.e., positive or negative). Besides, it is still unclear
whether aversive stimuli could be directly coded by the midbrain
dopaminergic system as in the case of appetitive stimuli (Schultz
et al., 1997; Delgado et al., 2000).

Altogether, an integrated study from behavioral, model-fitting,
and ERP approaches was conducted here to investigate
the emotional-regulation effect on reward-based decision
making. These findings indicate that the presentation of facial
expressions can prime affective arousal which then intensifies
negative RPE signaling (especially for angry faces), dampens
the sustainability for non-rewarded trials, interrupts reward
expectation and eventually leads to the interference with
gaining scores. Future research on the emotional-regulation
effect of reward-based decision making would be timely and
greatly worthwhile, especially using patients with abnormality
in midbrain dopaminergic system (e.g., schizophrenia and
pathological gambling).
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