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Purpose: Improved second-tier tools are needed to reduce false-
positive outcomes in newborn screening (NBS) for inborn
metabolic disorders on the Recommended Universal Screening
Panel (RUSP).

Methods: We designed an assay for multiplex sequencing of 72
metabolic genes (RUSPseq) from newborn dried blood spots.
Analytical and clinical performance was evaluated in 60 screen-
positive newborns for methylmalonic acidemia (MMA) reported by
the California Department of Public Health NBS program.
Additionally, we trained a Random Forest machine learning
classifier on NBS data to improve prediction of true and false-
positive MMA cases.

Results: Of 28 MMA patients sequenced, we found two pathogenic
or likely pathogenic (P/LP) variants in a MMA-related gene in 24
patients, and one pathogenic variant and a variant of unknown
significance (VUS) in 1 patient. No such variant combinations were

detected in MMA false positives and healthy controls. Random
Forest–based analysis of the entire NBS metabolic profile correctly
identified the MMA patients and reduced MMA false-positive cases
by 51%. MMA screen-positive newborns were more likely of
Hispanic ethnicity.

Conclusion: Our two-pronged approach reduced false positives by
half and provided a reportable molecular finding for 89% of MMA
patients. Challenges remain in newborn metabolic screening and
DNA variant interpretation in diverse multiethnic populations.
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INTRODUCTION
Newborn screening (NBS) using tandem mass spectrometry
(MS/MS) represents a major advance in our ability to detect
inborn metabolic disorders that have historically caused
significant morbidity and mortality in children.1–3 Using MS/
MS, more than 40 metabolic disorders on the Recommended
Universal Screening Panel (RUSP) can now be detected from
newborn dried blood spots (DBS), the common specimen
collected by heel stick shortly after birth.4,5 While beneficial in
most respects, MS/MS screening is tuned to maximize the
number of newborns identified, with sensitivity favored over
specificity. This approach increases the number of false-
positive results, leading to considerable emotional and
financial burdens of follow-up testing, unneeded medical
precautions for false-positive cases, and diagnostic delays for
some infants.6 To reduce the number of false-positive cases
without compromising sensitivity, screen-positive results are

followed by second-tier testing at higher specificity.7 As such,
second-tier tests measure more specific disease markers (e.g.,
organic acids) to confirm (true positive) or reject (false
positive) the primary screen result. Second-tier tests are
typically not part of the primary screen due to assay
complexity, limited throughput, analysis time, and cost.7,8

However, both primary and secondary screening utilizes the
original newborn DBS to avoid a new blood draw and
minimize turnaround time.
The advent of rapid, inexpensive next-generation sequen-

cing (NGS) promises to revolutionize newborn screening.5,9

Incorporating NGS-based analysis at the earliest stage in the
screening process could drastically streamline the diagnostic
work-up following an abnormal NBS result, but has several
challenges. Newborn DBS samples contain only small and
varying amounts of blood, from which multiple punches are
taken for NBS for the various conditions on the panel. The
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small amount of dried blood remaining limits the amount
of extractable DNA for use in second-tier testing. Previous
studies using residual DBS for NGS either required large
amounts of DBS material, or used whole-genome amplifica-
tion for sequence library preparation.10–13 The feasibility of
exome and genome sequencing from two 3-mm DBS
punches without whole-genome amplification was recently
described.14 Despite dramatic reductions in sequencing costs,
exome sequencing still is relatively expensive compared with
the cost of NBS ($15–$150 depending on the state), which is
often covered by health insurance.15 A less expensive and
more efficient approach is multiplex gene sequencing
from DBS, using a panel of genes relevant to the specific
NBS condition or biochemical profile detected in the primary
MS/MS screen.
Here, we adapted a validated multiplex NGS technology16

for sequencing of 72 genes for inborn metabolic disorders
(RUSPseq) from a single 3-mm DBS punch, and used it to
evaluate archived DBS from newborns that screened positive
for methylmalonic acidemia (MMA) by the California
Department of Public Health NBS program. MMA screening
is fraught with false-positive cases that require second-tier
confirmation using liquid chromatography –tandem mass
spectrometry (LC-MS/MS),17 while DNA testing is necessary
to reach a final diagnosis and to identify which of several
genes is responsible and the severity of the specific variant.18

To further improve MMA screening using MS/MS, we also
developed a statistical approach using machine learning that
significantly reduced the number of false-positive MMA cases.
In addition to the two primary MS/MS analytes currently
used in MMA screening, our novel method utilizes informa-
tion on the entire MS/MS metabolic profile measured at birth.

MATERIALS AND METHODS
Study specimens and NBS data
This study was approved by the Institutional Review Boards at
Yale University (protocol ID 1505015917), Stanford Uni-
versity (protocol ID 30618) and the State of California
Committee for the Protection of Human Subjects (protocol
ID 13-05-1236). De-identified residual DBS samples from 80
newborns from the California Biobank Program were used to
validate the RUSPseq assay. These samples included 30
confirmed MMA cases, 30 MMA screen false positives, and 20
DBS from healthy controls (Supplementary Table 1). In
addition, we evaluated metabolic data from a larger cohort of
803 newborns, consisting of 103 cases with confirmed MMA
(24 mut0, 26 mut-; 45 CblC, D or F; 3 CblA or B; and 5
unclassified MMA), 502 screen false positives, and 198
healthy controls. All newborns had routine MS/MS metabolic
screening performed through the California NBS program
between 2005 and 2015. The 56 MS/MS analytes included free
carnitine, acylcarnitines, amino acids, and calculated ratios.
Additional data collected included newborn race/ethnicity,
gestational age (GA, in days), birth weight (in grams), total
parenteral nutrition (yes or no), and newborn age at blood
collection (in hours).

NBS metabolic data analysis
We performed a retrospective analysis of NBS data from 803
newborns that focused on 46 of the 56 MS/MS analytes. Ten
of the 56 analytes had missing data in more than 15% of the
samples, and were removed from the analysis. If analytes had
missing data in 15% or less of the samples, analyte median
values were used to impute missing data. We first compared
analyte levels between MMA true positives, false positives,
and controls (Supplementary Figure 1). Analysis of variance
(ANOVA) was used to compare the 46 analytes between three
specific phenotypic subgroups of 95 MMA patients (24 mut0,
26 mut-, and 45 CblC, D or F). The 3 patients with CblA or B
and 5 patients with unclassified MMA were removed from
analysis due to small sample size. As differences in gestational
age (GA) may be associated with distinct metabolic
profiles,19,20 we further stratified newborns into two sub-
groups, 193 preterm (GA ≤ 37 weeks) and 501 full-term
(GA > 37 weeks). Of 803 newborns, 109 had no GA
information available and were removed from analysis. While
NBS programs collect DBS from virtually every newborn,
additional outcome data such as GA are not always provided
by the referring hospitals. In the second analysis we studied
the newborn metabolic patterns of 46 analytes using Random
Forest (RF).21 We divided the 605 MMA screen positives (103
true positive, 502 false positive) into ten sample groups with
stratification of approximately equal size and used a tenfold
cross validation to assess the performance of RF. At each
validation step, nine sample groups were combined for
training, while one group of blinded samples was used for
testing. In result of the cross validation, RF classified each of
the 605 samples as either a MMA true or false positive. Only
RF assignments from testing samples (and not from training)
were used to plot the receiver operating characteristic (ROC)
curve (Fig. 2a). The synthetic minority oversampling
technique (SMOTE)22 method was applied to correct for the
imbalance in sample size from a larger number of false
positives than true positives. The mean decrease in accuracy
(MDA) index was used to measure the contribution of
individual analytes in the RF model.23 MDA analysis was
performed for two different RF models with the relative
importance of each analyte and covariate ranked from top to
bottom. The first RF model included 46 MS/MS analytes
(Fig. 2b), while the second model included the 46 analytes and
additional covariates of birth weight, total parenteral nutri-
tion, GA, and newborn age at blood collection (Supplemen-
tary Figure 2). RF was also applied to predict MMA false
positives in the 60 MMA screen-positive sequenced samples
(testing set) and using the remaining 545 samples as a training
set (Supplementary Table 1). In addition, to study metabolic
patterns in MMA phenotypic subgroups, separate RF analyses
were performed for 50 mut0/- and 45 CblC, D or F patients,
respectively (Supplementary Figure 3). To separate mut0/-

from CblC, D or F patients using RF, a tenfold cross
validation was performed after dividing the 95 samples into
ten sample groups of 5 mut0/- and 4–5 CblC, D or F patients
in each group. At each validation step, nine sample groups
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were combined for training, while one group of blinded
samples was used for testing. Only RF assignments from
testing samples (and not from training) were used to calculate
the error rate for classifying mut0/- from CblC, D or F
patients.

DNA extraction from DBS
A single 3-mm punch was taken from each DBS using a PE
Wallac instrument (Perkin Elmer, Santa Clara, CA, USA) and
deposited into a 96-well plate. Three blank paper spots were
punched between each sample to prevent cross-
contamination. DBS punch spots were washed twice with
180 µL of 10 mM NaOH. Each punch spot was then
suspended in 50 µL of 10 mM NaOH solution and heated at
99 °C for 15 min in an Applied Biosystems GeneAmp PCR
System 9700 (Life Technologies, Grand Island, NY, USA).
The supernatant, containing eluted DNA, was mixed by
pipetting and then transferred to a clean tube containing 50
µL of 20 mM TrisCL pH 7.5. Two samples (D3, C11 in
Supplementary Table 1) of the 80 DBS failed in the DNA
extraction.

RUSPseq design and sequence data analysis
Detailed information for RUSPseq is provided in Supplemen-
tary Information. Briefly, target-specific forward and reverse
primers were designed for 939 amplicons including all exons
and 20 bp of flanking intronic sequence of 72 genes (362,013
bp) based on hg19/GRCh37 (Supplementary Table 2). Estab-
lishing single-tube multiplex amplification of 72 genes
required primer pool rebalancing, which included increasing
or lowering the concentration of specific primers, replacing of
failed primers, repeated sequencing, and analysis. Rebalancing
minimized amplicon dropout and nonspecific amplification
and achieved a 99% target base coverage from <10 ng of DBS
DNA extracted from a single DBS punch. We sequenced
78 samples in four Illumina MiSeq runs by multiplexing 17 to
22 samples per run. A no-template water control was included
in each run. Following sample de-multiplexing and sequence
read alignment (GRCh38 reference assembly), quality control
(QC) metrics were extracted for each sample, including total
number of reads, percent reads that were properly paired and
mapped to the human genome, read depths for each
amplicon, and read depth for individual base pairs within
the target region (Supplementary Figure 4). DNA variant
calling was performed using GATK (version 3.6-0-g89b7209)
(ref. 24) with parameters as described previously.16 ANNO-
VAR25 was used to annotate variants with the corresponding
Human Genome Variation Society (HGVS) DNA and protein
level nomenclature in combination with public information
relevant for variant annotation from OMIM, dbSNP,
ClinVar,26 and ExAC.27 Our sequencing pipeline uses publicly
available bioinformatics tools to facilitate the deployability of
this workflow in the clinical molecular laboratory. The custom
script for data analysis is available at https://github.com/peng-
gang/TGPipeline. For each sample (Fig. 3, Supplementary
Table 1), sequence variants were classified as pathogenic (P),

likely pathogenic (LP), likely benign, benign, or of unknown
significance (VUS) based on American College of Medical
Genetics and Genomics (ACMG) standards and guidelines for
interpretation of sequence variants.28

RESULTS
Newborn metabolic data analysis
MMA screen-positive cases are identified by C3 acylcarni-
tine ≥6.5 µmol/L or C3/C2 ratio ≥0.25. Both C3 and C3/C2
are equally important primary NBS analytes.29 Between
2005 and 2015, the California NBS program identified 605
MMA screen positives including 103 MMA patients and
502 screen false positives. Notably, 4 of 103 MMA patients
had C3 and C3/C2 values below the established thresholds
and thus were not technically screen positive for MMA.
These 4 cases were screen positive for other NBS metabolic
conditions, and elevated MMA levels were seen during
follow-up testing, which ultimately lead to their MMA
diagnosis. To investigate newborn metabolic patterns, we
performed an analysis of 46 NBS metabolic analytes in 605
MMA screen positives and 198 controls (Supplementary
Figure 1). Not unexpectedly, we detected significant differ-
ence in C3 between MMA patients and controls (p=
5.3e–28), and a relatively smaller difference between patients
and false positives (p= 5.8e–3). Significant differences
between MMA patients and false positives were also found
for C2 (p= 9.1e–14), C3/C2 (p= 1.2e–10), and C18:2 (p=
5.3e–28), and methionine (p= 1.5e–8), arginine/ornithine (p
= 3.2e–13), and leucine/alanine (p= 4.5e–10). Methionine
showed significant differences in MMA phenotypic sub-
groups, with relatively higher methionine levels in patients
with mutase deficiencies (mut0 or mut-) compared with
remethylation defects (CblC, D or F), and relatively higher
methionine levels in preterm false positives (Supplementary
Figure 5). Overall, there were much fewer differences for NBS
analytes between preterm newborns with MMA and preterm
newborns in the healthy control group, indicating that
preterm newborns are metabolically similar.

Evaluation of newborn race/ethnicity, gestational age,
and birth weight
The prevalence of specific disorders detectable through NBS is
known to vary widely between racial/ethnic groups.30 We
assessed the race/ethnicity profile of MMA screen-positive
newborns in California’s NBS program (Fig. 1a), and found a
significantly higher prevalence of Hispanic newborns among
the 605 MMA screen-positive cases than among the 5.6
million newborns screened in California during this same
time period of 2005–2015 (p= 4.27e–14). Based on recent
reports that metabolic profiles may vary by gestational age
(GA),19,20 we next compared GA between MMA screen-
positive cases and healthy newborns (Fig. 1b). Within
the group of MMA false positives, there was a significantly
higher proportion of preterm (GA ≤37 weeks) compared with
full-term (>37 weeks) births. A separate analysis of newborn
birth weight (normal: 2500–4000 grams) showed a relatively
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lower birth weight for MMA screen-positive newborns
(both true and false positives) compared with healthy controls
(Fig. 1c).

Newborn metabolic pattern analysis using Random Forest
We trained a machine learning classifier based on Random
Forest (RF)21 that utilized 46 MS/MS analytes to distinguish
true and false-positive MMA cases. Without changing the
96.1% sensitivity of MMA screening (99 of 103 true positives
detected, 4 false negatives), RF reduced the number of MMA
false positives from 502 to 244 (49%) and increased the
positive predictive value (PPV) from 16.5 to 28.9% (Fig. 2a).
The MDA index was used to identify the individual
contribution of specific MS/MS analytes and covariates in
our RF model. Comparing the MDA index results between
two RF models (Fig. 2b, Supplementary Figure 2) showed
similar ranking for a number of metabolic analytes (e.g., C3/
C2, free carnitine, methionine, C4, arginine). Of the four
covariates tested, newborn birth weight was the highest
ranked covariate. RF analysis of two MMA phenotypic
subgroups showed significant differences in analyte ranking
for patients with mutase deficiency (e.g., C3/C2, C3, C12:1,
C18OH) compared with patients with a cobalamin disorder
(e.g., methionine, C3/C2, C18:2) (Supplementary Figure 3).
Of the 95 MMA patients, RF misclassifed only 15 mut0/-

patients as CblC, D or F (or vice versa) with an error rate
of 16%. Finally, of the 60 MMA cases sequenced, RF
confirmed all 30 MMA cases as true positives and reduced
the number of MMA false positives from 30 to 15
(Supplementary Table 1).

RUSPseq quality control (QC) and data analysis
Here, we developed a recently validated multiplex NGS
technology16 for sequencing of 72 genes for inborn metabolic
disorders (RUSPseq) from DBS, which increased the number
of primers pooled in a single tube by more than 20-fold. The
72 genes were curated based on evidence for association with
RUSP metabolic conditions (Supplementary Table 2). Assay
performance was assessed using our algorithms for monitor-
ing sequence read coverage on four levels: sequence runs,
samples, amplicons, and sequence base pairs. The first QC
metric (sequence runs), defined as the percentage of all
amplicon bases in 72 genes (362 kb) covered at a specified
read depth, was used to compare the performance of different
MiSeq runs (Supplementary Figure 4a). The second QC
metric (sample coverage), defined as the number of reads per
sample, was used for detecting samples that failed in the
multiplex polymerase chain reaction (PCR). This metric
identified sample G1 in run 2 with inadequate coverage
(Supplementary Figure 4b). The third QC metric (amplicon
coverage) was used to identify samples with partially failed
amplification, such as individual amplicons that may have
been insufficiently covered despite an overall normal read
count for that sample. For each sample, we obtained the mean
amplicon coverage and calculated the fraction of amplicons
covered by 20% (0.2× mean) of the mean amplicon coverage.
A threshold of 2 SDs below the mean of all samples was used
to flag samples for review. This metric identified two samples
(G1 and D1) with poor uniformity (Supplementary Figure 4c).
Lastly, the fourth QC metric (base pairs) assessed base
coverage for each sample, reasoning that if base coverage was
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sufficiently high, even samples with lower amplicon uni-
formity could be analyzed further. Sample G1 flagged in the
prior QC steps had a low base coverage, while sample D1
passed this threshold and yielded interpretable results in
sequence analysis. In summary, of the 77 samples that

progressed to analysis, >90% of the target bases within the
region of interest were covered at ≥20 reads (Supplementary
Figure 4d), providing a high confidence for single-nucleotide
variant (SNV) calling. Sequence analysis detected a larger
number of variants in the 72 genes in the MMA screen-
positive cases compared with controls (Fig. 3), which could be
due to the high number of Hispanic newborns (72% in MMA.
FP, 64% in MMA.TP) compared with controls (30%). In each
of the 77 samples, variants in eight MMA genes (MUT,
MMAA, MMAB, MMACHC, MMADHC, LMBRD1, MCEE,
ACSF3) were manually classified based on ACMG guide-
lines,28 identifying a total of 73 unique pathogenic or likely
pathogenic (P/LP) variants, of which 24 variants were listed in
ClinVar.26 Twenty-five MMA patients were found with two
P/LP variants or one P/LP and a variant of unknown
significance in a MMA gene. Two MMA false positives (H10,
E10) were identified with two variants in a MMA gene and
read phasing showed that these variants were located in cis
(Supplementary Figure 6). None of the controls carried two
DNA variants in a MMA gene.

DISCUSSION
Although MS/MS-based screening now identifies most new-
borns with MMA, it also creates a high number of false
positives at a ratio of 5 infants without the disorder to 1 infant
with the disorder. We identified statistically significant
differences for several MS/MS analytes (Supplementary
Figure 1), and explored if these analytes could be used in
addition to the primary MMA analytes C3 and C3/C2 to
improve the prediction of MMA true and false positives. Our
approach using Random Forest (RF) machine learning
reduced the number of false-positive MMA cases by 51%
(from 502 to 244) without changing the 96.1% sensitivity of
screening. C3/C2, C4, methionine, arginine, and the citrul-
line/arginine ratio were among the high-ranking analytes in
the RF model (Fig. 2). In a separate analysis, postanalytical
interpretive tools from Collaborative Laboratory Integrated
Reports (CLIR)29,31 were applied to MS/MS screening data of
our 605 MMA screen-positive cases. While CLIR tools
initially had a reduced sensitivity for MMA true-positive
cases, CLIR achieved a performance comparable with RF after
including all 46 NBS analytes (unpublished results, Piero
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Rinaldo, personal communication). These results suggest that
second-tier postanalytical performance is maximized by
utilizing information on the entire MS/MS metabolic profile
measured at birth. This novel approach may be used to reduce
false-positive outcomes in other RUSP metabolic disorders.
Furthermore, RF can also be used to study different MMA
phenotypic subgroups. NBS using MS/MS does not currently
distinguish between a complete or partial deficiency of
methylmalonyl-CoA mutase (mut0/-) and impaired cobalamin
metabolism (CblC, D or F) as a cause of MMA. A comparison
of these MMA subgroups using RF analysis of 46 MS/MS
analytes identified methionine as the highest-ranking analyte
for separating CblC, D, or F patients from MMA false
positives (Supplementary Figure 3). We estimated an error
rate of 16% for RF to separate mut0/- from CblC, D or F
patients using MS/MS data.

Analysis of newborn race/ethnicity profiles reported by the
California NBS program revealed that MMA screen-positive
cases were more likely of Hispanic ethnicity, with both true
and false positives showing similar race/ethnicity profiles
(Fig. 1). While the birth prevalence for specific disorders is
known to vary among different racial/ethnic groupings,30

identifying a higher number of MMA false-positive cases with
Hispanic ethnicity was surprising. MMA screen-positive cases
are detected in NBS based on elevated C3 or C3/C2 levels.
Our first hypothesis was that Hispanic newborns may have a
naturally higher level of C3 or C3/C2, which could directly

lead to more MMA false positives in this ethnic group
compared with non-Hispanic newborns. Our second hypoth-
esis was that babies who are born prematurely may have
higher levels of C3 or C3/C2. We found that preterms without
or with MMA were otherwise very similar with respect to
metabolite levels (Supplementary Figure 1), which in turn
could make it harder for NBS to separate true from false
positives. However, there is currently no support for
substantially higher preterm birth rates for Hispanic new-
borns32 that would explain the high MMA false-positive rate
in this ethnic group. Thus, more research is needed in a larger
newborn population to test these hypotheses.
Second-tier DNA testing using DBS has been available for

some RUSP diseases such as cystic fibrosis4,33 but it is not well
established for metabolic disorders. Here we developed a
multiplex sequencing assay from DBS for 72 genes for inborn
metabolic disorders (RUSPseq) to enable comprehensive
testing of these disorders in a time and cost-effective manner.
We choose to pilot the assay for MMA screening because
MMA is fraught with frequent false-positive results and DNA
testing is often necessary to identify which of multiple genes is
responsible, leading to diagnostic delays.18 RUSPseq was used
to sequence 78 DBS samples with one sample (G1) flagged
due to low read counts and 77 samples passing QC for variant
analysis (Supplementary Figure 4). The 77 samples included
28 MMA patients, of which 25 patients (89%) were identified
with a reportable molecular finding with two variants in a
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MMA disease gene (Fig. 3). This screening strategy was
related to second-tier cystic fibrosis (CF) testing, which looks
for two CFTR variants to minimize the referral of CF carriers
for follow up.33 Of the 28 MMA patients, two patients (B2
and F4) had only a single P/LP variant, while one patient (F3)
had only one VUS in a MMA gene (Supplementary Table 1).
It is likely that these patients have yet unknown DNA changes
in deep intronic and gene regulatory regions or in genes not
targeted by this assay. Further expansion of RUSPseq to
include additional genes that were not part of the current
panel (e.g., TCN2, CD320, ABCD4, HCFC1, and THAP11)
(refs. 34–38) may reveal MMA-related variants in these genes.
While variants were found in all MMA-related genes, only
MUT,MMAA, andMMACHC had two variants per gene in at
least one patient. An overall agreement was seen between
genes and phenotype (e.g., MUT and mut0, MMACHC and
CblC, D or F). In two MMA false-positive cases (H10, E10)
we identified two variants in a MMA gene located in cis on
the same chromosome (Supplementary Figure 6). An area of
future work is to reduce the time for variant interpretation,
which ranged from <10 min to >2 h per variant. Similar to our
curated CFTR database,16 RUSPseq data interpretation would
greatly benefit from a database of curated metabolic genes. A
major effort to establish and share such resources is underway
in the Clinical Genome Resource (ClinGen) Inborn Errors of
Metabolism Clinical Domain Working Group.39 A curated
RUSP gene database could also shed light on challenges in
variant interpretation in diverse multiethnic populations.40

Additionally, for new NGS assays to be adopted, NBS
laboratories would need to perform thorough validation
studies to show that the reliability of RUSPseq in a research
setting will be maintained in the larger-scale clinical
laboratory.
In this study, Random Forest–based analysis of the entire

set of MS/MS screening data reduced the number of MMA
false-positive newborns by more than half (51%) without
altering clinical sensitivity. Applied to second-tier testing, RF
analysis would immediately reduce the number of “false
alarms” and help focus efforts on those newborns who require
follow-up testing. RUSPseq multiplex gene sequencing from
DBS provided a reportable molecular finding for 89% of the
MMA patients, with preliminary evidence for no false-
positive events. The remaining 11% false-negative patients
(RF captured them correctly as true positives) would be
routinely identified in biochemical testing using LC-MS/MS.17

Such combined second-tier approach from DBS would
provide both genetic and metabolic information to the
treating physician, and following clinical laboratory valida-
tion, could be implemented for rapid and inexpensive
screening for MMA and other disorders in newborns.

ELECTRONIC SUPPLEMENTARY MATERIAL
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