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,e traditional imagery task for brain–computer interfaces (BCIs) consists of motor imagery (MI) in which subjects are instructed
to imagine moving certain parts of their body.,is kind of imagery task is difficult for subjects. In this study, we used a less studied
yet more easily performed type of mental imagery—visual imagery (VI)—in which subjects are instructed to visualize a picture in
their brain to implement a BCI. In this study, 18 subjects were recruited and instructed to observe one of two visual-cued pictures
(one was static, while the other was moving) and then imagine the cued picture in each trial. Simultaneously, electroen-
cephalography (EEG) signals were collected. Hilbert–Huang Transform (HHT), autoregressive (AR) models, and a combination
of empirical mode decomposition (EMD) and ARwere used to extract features, respectively. A support vector machine (SVM) was
used to classify the two kinds of VI tasks. ,e average, highest, and lowest classification accuracies of HHTwere 68.14 ± 3.06%,
78.33%, and 53.3%, respectively. ,e values of the AR model were 56.29 ± 2.73%, 71.67%, and 30%, respectively. ,e values
obtained by the combination of the EMD and the AR model were 78.40 ± 2.07%, 87%, and 48.33%, respectively. ,e results
indicate that multiple VI tasks were separable based on EEG and that the combination of EMD and an AR model used in VI
feature extraction was better than an HHT or AR model alone. Our work may provide ideas for the construction of a new
online VI-BCI.

1. Introduction

Brain–computer interfaces (BCIs) represent revolution-
ary human–computer interactions that aim to bypass
peripheral nerves and muscles of the spinal cord and
neuromusculature to realize direct communication and
control between brains and the outside world. ,is
technology is expected to provide an alternative new
communication or control method for patients with
severe movement disabilities or for healthy people with
ad hoc needs for BCIs.

BCIs based on imagery represent an important type of
BCI [1]. ,e traditional imagery task is motor imagery (MI)
[2, 3], which requires subjects to imagine moving a certain
part of their body from a first-person perspective [4, 5]. MI is
difficult for subjects and requires a certain amount of training,
and approximately 20% of individuals are incapable of MI [6].
Hence, MI may not be the best mental task for controlling
BCIs [1]. Compared with the properties of MI, visual imagery
(VI) is another mental-imagery task that is easier to complete,
and it consists of instructing subjects to visualize a picture
clearly in their brain from a third-person perspective [4]. Such
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mental-imagery activity usually does not require training or
only requires a small amount of training. However, compared
to the number of studies on MI-BCIs, much less research has
been conducted on VI-BCIs. ,erefore, there is a need for
more research on VI-BCIs.

Currently, VI-BCI studies [1, 4, 7–9] exhibit continued
issues with VI task design, as indicated by results revealing a
lack of significant differences between different VI tasks,
which may make it difficult to distinguish electroencepha-
lography (EEG) characteristics induced by differentially
designed VI tasks. Compared with the selection and exe-
cution of MI tasks, VI tasks are widely selected and consist of
any picture or scene from daily life. For example, Kosmyna
et al. [1] chose a flower and a hammer as VI tasks, with an
average classification accuracy of 52%. ,is result may be
because the VI tasks that were selected were all static,
resulting in poor separability of evoked EEG signals. Azmy
and Safri [7] analyzed the maximum power difference be-
tween EEGs during the resting state and a VI task (i.e.,
imagining a star rotating clockwise), which showed that
there was no significant difference between the two states;
unfortunately, the classification accuracy was not reported.
Neuper et al. [4] measured EEGs during resting states and
while subjects were instructed to imagine their hands in a VI
task, which yielded an average classification accuracy of 56%.
Koizumi et al. [8] used EEG to classify VI tasks of an un-
manned aerial vehicle (UAV) moving in three planes (up/
down, left/right, and front/back), with an average classifi-
cation accuracy of 84.6% in prefrontal cortex. Sousa et al. [9]
used EEG to classify three types of VI tasks: static points,
dynamic points moving vertically in the up and down di-
rections, and dynamic points moving vertically in the up,
down, left, and right directions; this study yielded an average
classification accuracy of 87.64%. Collectively, the above
static VI task designs led to poor separability of evoked EEG
signals, whereas use of a combination of moving VI tasks led
to better separability of evoked EEG signals. Hence, the aim
of this study was to combine static VI tasks (static pictures of
visual imagery) and moving VI tasks (dynamic pictures of
visual imagery), with the hypothesis that the EEG charac-
teristics induced by these two different VI tasks would be
separable.

In addition, the classification accuracies resulting from
the feature-extraction methods used by previous VI-BCI
studies could be improved [1, 4, 8, 9]. Kosmyna et al. [1]
extracted power-spectrum features of EEG signals related to
two VI tasks—flower and hammer—using a classifier based
on spectrally weighted common spatial patterns, which
yielded a low classification accuracy (52%). Neuper et al. [4]
extracted frequency-band features of EEG signals related to
two VI tasks, hand movement, and resting state, using a
classifier based on distinction-sensitive learning vector
quantization, which yielded a low-average classification
accuracy (56%). Koizumi et al. [8] extracted power-spectral
density features of the frequency bands of EEG signals re-
lated to three types of VI tasks and used a classifier based on
a support vector machine (SVM), which yielded a moderate
classification accuracy of 84.6%. Sousa et al. [9] extracted
power-spectrum energy features of EEG signals related to

three types of VI tasks and used an SVM classifier, which
yielded a moderate classification accuracy of 87.64%. In
contrast to these previous studies, our study used a com-
bination of moving and static VI tasks to determine the
resultant classification accuracies based on Hilbert–Huang
Transform (HHT), autoregressive (AR) models, a combi-
nation method of empirical mode decomposition (EMD)
and AR models for feature extraction, and an SVM for
classification.

EMD has been used in HHT. HHT is an effective
time–frequency analysis method for nonlinear and non-
stationary signals [10]. Considering the nonlinear and
nonstationary characteristics of EEG signals, some research
has applied HHT to MI-BCIs, which has yielded promising
results [11–14]. Some research also used the improved
algorithm for empirical mode decomposition to classify
motor imagery or other types of EEG signals such as ep-
ilepsy or depth of anesthesia [15–18]. However, this method
has not yet been used in VI-BCIs. ,e AR model is a
method for time-series analysis, and it has been used in MI-
BCIs [19, 20]. AR model parameters gather important
information, and studies have shown that the autore-
gressive parameters of AR model are most sensitive to
state-dependent changes [21–23].,erefore, autoregressive
parameters of the AR model have been used as eigenvectors
to represent EEG changes related to the state of subjects,
which has yielded promising results [19, 20]. A combi-
nation of the EMD and the AR model is commonly used in
mechanical fault diagnosis [24–26]. Zhang et al. investigate
feature extraction of electroencephalogram (EEG) based
emotional data by focusing on empirical mode decom-
position (EMD) and autoregressive (AR) model to classify
those emotional states. ,is combination has also yielded
promising results [27]. It first uses EMD to decompose
nonlinear nonstationary signals to obtain stable intrinsic
mode function (IMF) components and then establishes the
AR model for each IMF component. However, the com-
bination of the EMD and the AR model has not been used
for EEG feature extraction and classification verification of
VI. ,erefore, our study evaluated the HHT, the AR model,
and a combination of the EMD and the AR model for their
efficacies in classification accuracies of a novel VI-BCI
paradigm.

2. Methods

2.1. Subjects, Visual Imagery Tasks, Time Sequences, Trials,
and Experimental Settings

2.1.1. Subjects. Eighteen right-handed subjects (male, 24–28
years old) participated in this study. All subjects had no
perceptual or cognitive impairments, and their vision was
either normal or corrected to normal via corrective lenses.
Each subject signed an informed consent before the
experiment.

2.1.2. Visual Imagery Tasks. Previous VI-BCI studies that
have used static pictures as mental tasks have resulted in
poor separability of EEG characteristics [1]. In contrast,
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studies that have used MI as mental tasks have yielded
separable characteristics of evoked EEGs. In this study, we
used static-picture VI and moving-picture VI as mental task
pairs. It is assumed that these two types of VI tasks can
induce significantly different EEG characteristics. In our
study, one VI task consisted of visually imagining a star with
a static picture, while the other VI task involved visually
imaging a star moving to the right, as shown in Figure 1.

2.1.3. 4e Time Sequence and Process of Each Trial. ,e time
sequence of a trial is shown in Figure 2. ,e subjects were
required to first conduct a visual observation and then
imagine a cued picture. When t� 0 s, the screen showed the
following text: “the experiment is about to start.” ,is re-
quired the subjects to remain awake and relax for 3 s. When
t� 3 s, a static star or a star moving to the right was randomly
displayed on the screen. ,e subjects were required to
observe and memorize the picture for 4 s. When t� 7 s, the
cued picture disappeared and the screen went black. ,e
subjects were required to visualize the picture just cued for
4 s. When t� 11 s, “rest” appeared on the screen for 5 s. After
the rest period, the next trial was started. Each subject ex-
ecuted 200 trials, and each task consisted of 100 trials.

2.1.4. Experimental Settings. ,e EEG equipment that was
used is NT9200, and the sampling rate was 1,000Hz. ,e
electrode cap had 32 channels (according to the interna-
tional 10–20 system), the grounding electrode was GND, the
reference electrodes consisted of A1 and A2, and the elec-
trode impedance was kept below 10 kΩ. A band-pass filter
was set at 0.1Hz and 100Hz, and a 50Hz notch filter was
used to avoid power line noise. EEG data from eight
channels—including FP2, F8, C3, CZ, C4, O1, Oz, and
O2—were collected in this study.

2.2. Data Preprocessing. First, each EEG signal was linearly
corrected to eliminate linear artifacts.,en, the original EEG
signal was filtered with an elliptical filter with a digital band-
pass filter at 8–13Hz. ,e band-pass attenuation was 0.5 dB,
and the stop-band attenuation was 50 dB. Finally, inde-
pendent component analysis (ICA) was used to remove eye
movement artifacts, ECG artifacts, and EMG artifacts.

2.3. Empirical Mode Decomposition and HHT. EMD is an
adaptive signal time–frequency processing method that was
creatively proposed by Huang et al. in 1998 [28]. Specifically,
EMD is an adaptive data processing or excavation method
that is suitable for the analysis of nonlinear and nonsta-
tionary time series. EMD assumes that any signal is com-
posed of different IMFs, and each IMF can be linear or
nonlinear. Each IMF component must satisfy two conditions
[29]: (1) that the number of its extreme points and zero
crossing points are the same or at most different by only one
point and (2) that its upper and lower envelopes are locally
symmetric with respect to the time axis. Any signal can be
decomposed into a finite sum of IMFs, and the decompo-
sition process should be based on the following assumptions

[30]: (1) the signal has at least one maximum value and one
minimum value; (2) the time-domain characteristics are
determined by the extreme value interval; and (3) if the data
sequence lacks the extreme value but contains the inflection
point, the extreme point can be obtained by derivation.

,e decomposition process of EMD is as follows [30]:

Step 1: all the maximum points of the original data
series x(t) are determined, and a cubic-spline inter-
polation function is used to fit the upper envelope of the
original data; then, all the minimum points are de-
termined, and a cubic-spline interpolation function is
used to fit all the minimum points to form the lower
envelope of the data. ,e mean values of the upper and
lower envelope are recorded as m1, and the average
envelope m1 is then subtracted from the original data
series x(t) to yield a new data series, h1:

x(t) − m1 � h1. (1)

In an ideal case, if it is an IMF, then it is the first
component of x(t).

Step 2: if h1 does not satisfy the conditions of an IMF, h1 is
used as the original data, Step 1 is repeated to obtain the
average value ofm11 of the upper and lower envelope lines,
and then it is determined whether h1(k−1) − m1k � h1k

satisfies the conditions of IMF. If not, the cycle is repeated
k times to get h1(k−1) − m1k � h1k, so that h1k satisfies the
conditions of IMF. Note that for c1 � h1k, c1 is the first
IMF component of signal x(t). ,en, c1 is separated from
x(t) to obtain the following:

r1 � x(t) − c1. (2)

Step 1 and Step 2 are then repeated with r1 as the original
data to obtain the second IMF component c2 of x(t). ,is
cycle is repeated n times to obtain n IMF components, as
follows:

r1 − c2 � r2

⋮

rn−1 − cn � rn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (3)

When rn becomes a monotone function from which an
IMF component can no longer be extracted, the cycle ends.
From (2) and (3), we obtain the following:

x(t) � 􏽘
n

j�1
cj + rn. (4)

,erefore, any signal x(t) can be decomposed into the
sum of n IMF components and a residual rn, where the IMF
component c1, c2, . . . , cn contains the components of dif-
ferent frequency ranges from high to low, and they are all
stable.

After EMD decomposition, Hilbert spectrum analysis
was carried out, and Hilbert spectrum transformation was
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carried out for each IMF component according to the fol-
lowing formula:

yj(t) �
1
π

􏽚
+∞

−∞

cj(τ)

t − τ
dτ. (5)

,e analytical signal is as follows:

zj(t) � cj(t) + iyj(t) � aj(t)e
iθj(t)

. (6)

Furthermore, the instantaneous amplitude and phase
can be obtained as follows:

aj(t) �

������������

cj(t)
2

+ yj(t)
2

􏽱

,

θj(t) � arctan
yj(t)

cj(t)
.

(7)

In this study, an HHT transform was used to extract the
average instantaneous energy as the eigenvector. First, EMD
was used to decompose each EEG signal under each task.
,en, the spectrum of each IMF component was analyzed by
the Hilbert transform. ,e average instantaneous energy of
the HHTamplitude was calculated, and the eigenvector was
constructed. Finally, SVM was used to classify the test set.

2.4. AR Model. For general random signals, the AR model
can be described as follows:

y(i) � 􏽘

p

j�1
ϕjy(i − j) + n(i), (8)

where y(i) is the ith sampling value of the signal, ϕj is the jth
coefficient of the AR model, n(i) is the residual of white
noise, and p is the order of the AR model.

In this study, the order of the AR model was first de-
termined by the Akaike information criterion (AIC), and the
optimal order of the AR model was with a p of 6. ,en, the
Burg algorithm was used to extract the six-order AR model
coefficient (AR1, . . ., AR6), which was composed of 12-
dimensional feature vectors: FP2AR1, . . . , FP2AR6,􏼈

F8AR1, . . . , F8AR6}. Finally, SVM was used to classify the test
set.

2.5. Combination of EMD and AR Model. We first decom-
posed the VI-based EEG signals by EMD and obtained
several stable IMF components.,en, we built the ARmodel
for each IMF component and used the autoregressive pa-
rameters of the AR model and the variance of the residual as
the eigenvector.

,e EMD method was used to decompose the collected
EEG signal x(t) to obtain n IMF components,

(a) (b)

Figure 1: Two visual imagery tasks used in this study. (a) ,e subject was instructed to imagine a static star (static picture). (b) ,e subject
was instructed to imagine a star moving to the right (dynamic picture). ,e dotted arrow in panel b indicates the direction of movement.

�e experiment is
about to start Visual imagery

task tips Visual imagery Rest

0 3 7 11 16 t (s)

Figure 2: ,e timing of a single trial.
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c1(t), c2(t), . . . cn(t). Each IMF component contained dif-
ferent feature-scale information. ,us, through EMD
analysis, the features of signal x(t) were completely described
by these n IMF components, c1(t), c2(t), . . . cn(t). ,erefore,
through the feature extraction of c1(t), c2(t), . . . cn(t), the
features of the original signal x(t) were obtained.

For any IMF component ci(t), the following autoregressive
(AR) model (m) was established:

ci(t) + 􏽘

m

k�1
hikci(t − k) � ei(t), (9)

where hik is the AR (m) model parameter of component
ci(t); m is the model order; and ei(t) is the residual of the
model, which is the white noise sequence with a mean value
of 0 and variance of e2i . ,erefore, hik(k � 1, 2, . . . m) and e2i
can be used as feature vectors Ai � hi1, hi2, · · · him, e2i􏼈 􏼉 to
identify VI tasks.

,e steps of feature extraction with EMD combined with
the AR model are as follows: Under the VI tasks of static and
moving pictures, n samples were taken and 2n EEG signals
were obtained as samples. EMD decomposition was carried
out for EEG signals under each task. ,e number of IMF
components obtained by different EEG signals was
n1, n2, . . . n2N, and the maximum value in n1, n2, . . . n2N was
assumed to be n. If the number of IMF components in a
sample was nk < n (k� 1, 2, 2n), the zero vector was sup-
plemented to have n components c1(t), c2(t), . . . cn(t),
namely, ci(t) � 0{ }(i � nk + 1, nk + 2, . . . , n).

Each IMF component was energy-normalized to yield a
new component ci(t) as follows:

ci(t) �
ci(t)

����������

􏽒
∞
−∞ c

2
i (t)dt

􏽱 . (10)

,e AR model was established for each energy-nor-
malized component ci(t), and the order m of the model was
determined by the final prediction error (FPE) criterion.,e
autoregressive parameter hik(k � 1, 2, . . . m) and the resid-
ual variance e2i of the model were estimated by the least-
square method, and hik represented the kth autoregressive
parameter of the ith IMF component.

,e average value hik(k � 1, 2, . . . , m), e2i of
hik(k � 1, 2, . . . m), and e2i of N samples in the same state
were calculated, and hik and e2i were taken as the template
eigenvector Aj,i � [hi1, hi2, . . . , him, e2i ] of the ith component,
where j� 1, 2 represent the VI static picture and VI moving
picture, respectively.

2.6. Support Vector Machine. SVM is a classification algo-
rithm that improves the generalizing ability of learning
machines by seeking the minimum structural risk and also
minimizes the empirical risk and confidence range, so as to
achieve sufficient statistical power for small samples [31].

,e cores of the SVM algorithm that we used are as
follows [32]: (1) in the case of linear separability, the learning
strategy of interval maximization was used to find a hy-
perplane with the largest interval; (2) in the case of online
separability, the feature vector of a low dimension was

mapped to a high dimension by a kernel function to de-
termine linear separability. ,e EEG signals we collected
were small and nonlinear, so this SVM classifier was suitable
for our present study.

,e EEG data of FP2 and F8 were analyzed. ,e VI data
consisted of 100 training datasets and 100 test datasets,
including the labels of training samples and test samples.
First, the training samples and labels were used to train the
model. ,en, the model was used to predict the labels of the
test samples. Finally, the prediction labels were compared
with the real labels to determine the classification accuracies.

3. Results

Table 1 shows the t-test value and variance analysis p value
during the two VI tasks in each frequency band of the eight
EEG channels. ,ere were three variance analysis factors: (1)
the VI tasks of imagining static and moving pictures; (2) the
frequency-band range of the EEG signals (delta, theta, alpha,
beta, and gamma); and (3) the EEG electrode channels (eight
channels). ,e significance level was set as p< 0.05. ,e t-
test results of the two VI tasks are shown in Table 1.,e table
also includes the p value and df value of each electrode
position obtained from the analysis of variance. As can be
seen from the table, the most significant difference was in the
α bands of FP2 and F8 (p< 0.001). In addition, a t-test was
carried out to determine which channel had a significant
difference. ,e results showed that the p values of positions
F8 and FP2 were less than 0.01, which meant that there was a
99% significant difference between the data groups, which
was the highest among all of the results.

,e variance contribution rate and correlation coeffi-
cient of each IMF were calculated for IMF screening, as
shown in Table 2. ,e sum-of-variance contribution rate of
the first four stages of IMF was 96.13%, and the correlation
coefficient was also high (Table 2). ,erefore, the first four
autoregressive parameters hik(k � 1, 2, . . . m) and the vari-
ance e2i of model residuals were chosen as the eigenvectors.

Table 3 shows the average, maximum, and minimum
classification rates obtained by the combination of EMD and
AR model to extract features (within 4 s after the beginning
of visual imagery) and the use of the SVM classifier.

Table 4 shows the average, maximum, and minimum
classification rates obtained by using the HHT, the AR, and the
combination of the EMD and the ARmodel to extract features
(0–4 s after the beginning of VI tasks) via the SVM classifier.

Figure 3 shows the IMF obtained by EMD of EEG signals
during VI tasks. It can be seen from Figure 3 that the EEG
signal was decomposed into eight IMF components.

Figure 4 shows curves of classification accuracies as a
function of time obtained by the HHT, the AR model, and
the combination of the EMD and the AR model. ,e results
of Figure 4(a) show that the classification curve of the test set
at 0.0–4.0 s was generally stable and that the classification
accuracy was the lowest at the beginning of the test. ,ere
was a maximum value between 0.3 and 0.8 s, a maximum
value between 0.8 and 2.8 s, a maximum value between 2.8
and 3.5 s, and a maximum value between 3.5 and 4.0 s that
tended to be stable. Figure 4(b) shows that the overall
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fluctuation of the classification curve of the test set was
within 0.0–4.0 s and was relatively large, and the classifi-
cation accuracy was the lowest at the beginning of the test
and tended to decline within 0.0–1.0 s, with a maximum
within 1.0–1.5 s, a minimum within 1.5–2.5 s, and a decline
within 2.5–4.0 s. ,e results of Figure 4(c) show that the
classification curve of the test set in 0–4 s tended to be stable
as a whole, rising at 0.0–1.0 s, remaining stable at 1.0–3.0 s,
and rising at 3.0–4.0 s.

4. Discussion

Many MI-BCI studies using EEG signals for analysis have been
published. Although some elucidations have been made with
this approach, MI tasks are not easy to acquire and control, as
many subjects are incapable of performingMI tasks. Compared
with the large volume of MI-BCI studies, fewer VI-BCI studies
have been conducted. Importantly, VI tasks are easier to acquire
and control compared to MI tasks.

Table 1: t-test values and visual imagery variance analysis of p values for each frequency band of the eight EEG electrode channels.

t-test Delta ,eta Alpha Beta Gamma
ANOVA

df p

FP2 0.057 0.623 0.001∗∗∗ 0.065 0.084 3 0.000∗∗∗
F8 0.124 0.386 0.001∗∗∗ 0.072 0.245 3 0.001∗∗∗
C3 0.172 0.045∗ 0.023∗ 0.469 0.190 3 0.020
Cz 0.579 0.452 0.008∗∗ 0.754 0.312 3 0.572
C4 0.422 0.325 0.653 0.164 0.270 3 0.023
O1 0.026∗ 0.830 0.035∗ 0.226 0.459 3 0.572
Oz 0.376 0.962 0.274 0.395 0.731 3 0.970
O2 0.076 0.631 0.938 0.339 0.126 3 0.136
Note. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.

Table 3: Classification accuracy of feature extraction using EMD and AR model.

Sub Average Maximum Minimum
1 79.40 80.13 63.02
2 76.12 73.33 57
3 77.27 87 62.45
4 81.23 86 60.75
5 79.28 83 56
6 77.43 85 65.34
7 82.55 81.33 59.36
8 69.22 88 62
9 69.50 84.33 63.23
10 31.70 46 26.66
11 81.79 85 48.33
12 78.37 86.33 68.33
13 77.99 83.48 63.24
14 41.20 60 31.66
15 78.23 87 68.33
16 35.90 41.66 30
17 77.52 76.66 63.33
18 80.20 83.29 61.71

Table 2: Variance contribution rates and correlation coefficients of all IMF components.

IMF components 1 2 3 4 5 6 7 8
Variance contribution rates (%) 57.1652 17.5349 14.1053 7.3225 1.4372 1.0732 0.7628 0.5989
Correlation coefficients 0.7526 0.4932 0.4021 0.2136 0.0034 0.0023 0.0013 0.0006

Table 4: Average, maximum, and minimum classification rates obtained by the HHT, the AR, and the combination of the EMD and the AR
model.

Feature-extraction method HHT AR EMD+AR
Classification time period (s) 0–4 0–4 0–4
Average (%) 68.14 ± 3.06 56.29 ± 2.73 78.40 ± 2.07
Maximum (%) 78.33 71.67 87
Minimum (%) 53.33 30 48.33
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In this study, visualizations of static and moving
pictures were selected as VI task pairs. We hypothesized
that the characteristic EEGs induced by these two different
VI tasks would be separable. ,e most significant dif-
ference between the EEG signals induced by the two VI
tasks appeared in the α band of FP2 and F8 (Table 1). ,e
variance contribution rate of the first four IMF compo-
nents reached 96.13%, and the correlation coefficient was
high (Table 2). ,e features extracted between the two VI-
task-based EEG signals by the combination of EMD and
AR model could be distinguished to a certain extent
(average classification accuracy: 78.40 ± 2.07%; Table 3).
,erefore, the two different VI tasks in this study were
separable. Our future work will aim to further develop
feature-extraction and classification methods to poten-
tially improve this classification accuracy.

For the extraction of VI features in VI-BCIs, previous
studies have mainly used EEG power-spectrum estima-
tions or frequency bands [1, 4, 8, 9]. In [33], Llorella et al.
created two different models of neural networks such as
densely connected neural networks (NN) and convolu-
tional neural networks (CNN) through genetic algo-
rithms (GA) for classification. ,e result obtained is a
60.5% success rate for the five mental states using the
CNN+GA technique. In this study, the HHT, the AR
model, and a combination of the EMD and the AR model
were used to extract features, while SVM was used to
classify the EEG signals induced by VI task pairs.
According to the results in Table 4, the average classi-
fication accuracy of HHT was 11.85% higher than that of
the AR model, which showed that the former was better

than the latter. ,e average classification accuracy of the
combination of the EMD and the AR model was 10.26%
and 22.11% higher than that of the HHT and AR model,
respectively, which showed that this combination was
better than the HHTor AR model alone. According to the
results in Figure 4, the combination of EMD and the AR
model yielded a better classification accuracy curve than
did the HHT or AR model alone.

Table 5 shows the VI tasks (paradigm), feature-extrac-
tion method, classification method, and classification ac-
curacy in VI-BCI studies. In the present study, the average
classification accuracy of VIs of moving and static pictures
was 26.4% higher than that of Kosmyna et al. and 22.4%
higher than that of Neuper et al. We speculated that the VI
tasks designed by Kosmyna et al. being all static led to poor
separability of the VI-evoked EEG signals. ,e VI adopted
by Neuper et al. induced certain difficulties in hand
movements, which led to poor separability of the VI-evoked
EEG signals. However, the methods of feature extraction and
classification in these studies were different from one
another.

,e average classification accuracy of this study was
6.2% lower than that of Koizumi et al. which used three
types of VI tasks of an UAV moving in three planes (up/
down, left/right, front/back). Our present classification
accuracy was also 9.24% lower than that of Sousa et al. that
used three types of VI tasks of visual imagery: static
points; dynamic points moving vertically up and down in
two directions; and dynamic points moving up and down,
as well as left and right (four directions). Compared with
that of Koizumi and Sousa, the classification accuracy of
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Figure 3: Each IMF after EMD of EEGs during visual imagery.
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our study was lower. We speculate that since the VI tasks
designed by Koizumi and Sousa were dynamic, the VI-
evoked EEG signals were more separable. However, the
feature-extraction methods of their study and our study
were different from one another.

,e present study was an off-line VI-BCI study. ,ere
are more improved artificial neural networks used in motor
task recognition based EEG signals which provided favor-
able results [34, 35]. To this end, our future work will include
the following: (1) online verification and improvement of the

Table 5: VI task (paradigm), feature-extraction method, classification method, and classification accuracy in VI-BCI research.

Author VI tasks Feature-extraction
method

Classification
method

Classification
accuracy

Kosmyna
et al. Flower; hammer Power spectrum SpecCSP 52%

Neuper
et al. Visualizing the movement of one’s hand; resting state Frequency band DSLVQ 56%

Koizumi
et al.

UAV moves in three planes (up/down, left/right, front/
back) PSD SVM 84.6%

Sousa et al.
Static point; dynamic point moving vertically in two

directions; and dynamic point moving vertically in four
directions

Power-spectrum
energy SVM 87.64%

,is
research Static star and star moving right HHT, AR model,

and EMD+AR SVM

HHT:
68.14 ± 3.06%

AR: 56.29 ± 2.73%
EMD+AR:

78.40 ± 2.07%
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Figure 4: Classification accuracy over time. (a) HHTwas used to extract the curve of classification accuracy varying with time. (b) ,e AR
model was used to extract the curve of classification accuracy varying with time. (c) A combination of EMD and AR model was used to
extract the curve of classification accuracy varying with time.
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proposed methods; (2) further improvement of the VI-BCI
experimental paradigm (e.g., new VI tasks); and (3) for the
VI-BCI experimental paradigm, further development of
effective feature-extraction and classification methods based
artificial neural networks.

5. Conclusions

,is study was aimed at determining classification accura-
cies of different VI tasks reflected in EEG signals. In order to
improve the separability between VI-evoked EEG charac-
teristics, a new paradigm of VI tasks involving visualization
of both moving and static pictures was used. We found that
the most significant difference between the VI-evoked EEG
signals appeared in the α band of FP2 and F8. ,e results
showed that the combination of the EMD and the AR model
yielded an average classification accuracy of 78.40%± 2.07%,
which was better than that of HHT or the AR model alone.
,erefore, it is expected that the recognition of VI of moving
and static pictures based on EEGs can be used as a BCI
strategy. Additionally, our findings may provide ideas for the
construction of a new online real-time VI-BCI with few
channels (e.g., FP2 and F8).
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