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ABSTRACT AnarQue and Figliar are bacteriophages identified from the host bacte-
rium Gordonia rubripertincta NRRL B-16540. AnarQue is circularly permuted and has a
length of 61,822 bp; it is assigned to cluster DR. Figliar has a 39 sticky overhang and
a length of 61,147 bp; it is assigned to cluster DJ.

Two bacteriophages were isolated and characterized as part of the program Science
Education Alliance—Phage Hunters Advancing Genomics and Evolutionary Science

(SEA-PHAGES) (1). The host bacterium, Gordonia rubripertincta, is a Gram-positive,
opportunistic pathogen with potential use for bioremediation (2). The isolation of bac-
teriophages from this host is useful for investigating bacteriophage diversity. AnarQue
was collected from Wetlands Park in Las Vegas (GPS coordinates 36.104529 N,
1115.020891 W). AnarQue was discovered by direct isolation, and it produces clear, cir-
cular 3-mm plaques. Figliar was recovered from an enriched soil sample collected from
a dog park in Las Vegas (GPS coordinates 36.155333 N, 115.265056 W). Figliar produces
small, cloudy 1-mm plaques; however, genome analysis revealed no lysogenic-related
genes.

The protocols used for isolation and purification of the bacteriophages and DNA
extraction are available from the SEA-PHAGES Phage Discovery Manual (3). Soil samples
were incubated with phage buffer for 4 h and allowed to settle, and supernatants were
sterilized using 0.22-mm filters. For direct isolation, the supernatant was used immedi-
ately for the plaque assay. For enriched isolation, 500 mL host bacteria was incubated
with the supernatant at 30°C for 72 h prior to the plaque assay. The sample was 0.22-
mm filter sterilized and used for the plaque assays. DNA was isolated using the Norgen
phage DNA isolation kit modified with five rounds of freeze/thaw (a 4-min freeze in a
dry ice-ethanol bath and a 1-min thaw). AnarQue and Figliar were sequenced at the
Pittsburgh Bacteriophage Institute using an Illumina MiSeq instrument. Sequencing
libraries were generated from the extracted genomic DNA using the New England
Biolabs (NEB) Ultra II library preparation kit v3 with 150-base single-end reads, per the
manufacturer’s instructions. There was 2,830� coverage for AnarQue, with 1,232,424
reads. There was 793� coverage for Figliar, with 338,736 reads. The sequencing reads
were used as inputs for Newbler v2.9 with default settings (4). The contigs produced
using Newbler were analyzed using the default settings of Consed v29 (http://www
.phrap.org/consed/consed.html) to produce a single contig. Quality control included
evaluating for completeness by checking the genome circularization, accuracy by
checking for gaps, and determining the genomic termini by searching for overrepre-
sented portions of the DNA (4). The AnarQue genome is 61,822 bp long and has a
68.8% GC content. The Figliar genome is 61,147 bp long and has a 51.5% GC content.

Annotation of AnarQue and Figliar was completed using the following programs:
DNA Master v5.23.2 (http://cobamide2.bio.pitt.edu/computer.htm), Starterator v1.2 (https://
github.com/SEA-PHAGES/starterator), Phamerator (https://phamerator.org/) (5), PhagesDB
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BLAST (https://phagesdb.org/blast/) (6), NCBI BLAST (7), PECAAN, GeneMark v2.5p (8),
Glimmer v3.02 (9), Aragorn v1.1 and v1.2.38 (10), HHPRED v3.2.0 (11), tRNAscan-SE v2.0 (12),
TMHMM v2.0 (13), and SOSUI v1.11 (14). All tools were run with default parameters unless
otherwise specified.

The closest related genome to Figliar was bacteriophage Jodelie19 in the same cluster
(DJ) with a 97.97% identity match. AnarQue’s closest relative was fellow DR cluster mem-
ber CloverMinnie, with a 98.22% identity match. Putative functions were assigned to 35 of
90 genes in Figliar and 32 of 86 genes in AnarQue. Neither bacteriophage encoded tRNA
or transfer-messenger RNA (tmRNA). The annotation revealed that AnarQue contains a pu-
tative endonuclease VII not present in other cluster DR bacteriophages.

Data availability. The GenBank and SRA accession numbers for AnarQue are OK216879
and SRR15908344, respectively. The GenBank and SRA accession numbers for Figliar are
MZ209301 and SRR15908339, respectively.
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