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Lysine crotonylation (Kcr) is involved in plenty of activities in the human body. Various
technologies have been developed for Kcr prediction. Sequence-based features are
typically adopted in existing methods, in which only linearly neighboring amino acid
composition was considered. However, modified Kcr sites are neighbored by not only
the linear-neighboring amino acid but also those spatially surrounding residues around the
target site. In this paper, we have used residue–residue contact as a new feature for Kcr
prediction, in which features encoded with not only linearly surrounding residues but also
those spatially nearby the target site. Then, the spatial-surrounding residue was used as a
new scheme for feature encoding for the first time, named residue–residue composition
(RRC) and residue–residue pair composition (RRPC), which were used in supervised
learning classification for Kcr prediction. As the result suggests, RRC and RRPC have
achieved the best performance of RRC at an accuracy of 0.77 and an area under curve
(AUC) value of 0.78, RRPC at an accuracy of 0.74, and an AUC value of 0.80. In order to
show that the spatial feature is of a competitively high significance as other sequence-
based features, feature selection was carried on those sequence-based features together
with feature RRPC. In addition, different ranges of the surrounding amino acid
compositions’ radii were used for comparison of the performance. After result
assessment, RRC and RRPC features have shown competitively outstanding
performance as others or in some cases even around 0.20 higher in accuracy or 0.3
higher in AUC values compared with sequence-based features.
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supervised learning

1 INTRODUCTION

Post-translational modifications (PTMs) have great impacts on regulating the activity of most
eukaryote proteins Mann and Jensen (2003), which play significant roles in numerous biological
processes by modulating regulation of protein functions and cellular processes Huang et al. (2017).
For instance, histone acetylation plays a pivotal role in mammalian DNA repair Gong and Miller
(2013). Sumoylation was found on transcription factors with greatly increased frequencies, which
shows that it has a large impact on the transcription of protein Filtz et al. (2014), Huang et al. (2019).
The ubiquitin–proteasome pathway is the most important protein degradation pathway in
eukaryotic cells and participates in various physiological processes, including transcription
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regulation, the cell cycle, apoptosis, DNA damage repair, the
metabolism, and immunity Tu et al. (2012), Wang et al. (2020),
and ubiquitination is an important post-translational
modification, which controls protein turnover and also serves
intriguing non-proteolytic regulatory functions Li et al. (2021).
Protein–protein interactions Li et al. (2012), Vermeulen et al.
(2008), signaling pathways Hornbeck et al. (2015), apoptosis
Zamaraev et al. (2017), cell death Urdinguio et al. (2019), cell
regulation and pathogenesis Chung et al. (2020), and metabolic
pathways Cruz et al. (2019), Romero-Puertas and Sandalio (2016)
are all affected by various kinds of PTMs. Due to its importance,
plenty of datasets with annotated PTMs of various types have
been released in decades, such as emerging S-sulfenylation Bui
et al. (2016), S-glutathionylation Chen et al. (2015), and
succinylation Huang et al. (2015), Kao et al. (2020), which
provided enough resources for investigation. Besides those
earlier-discovered PTMs, crotonylation is a recently discovered
one, which was originally found in somatic and mouse male germ
cells and enriched on sex chromosomes Tan et al. (2011), and of
paramount importance in regulating various biological processes.
The abundance of MS-verified crotonylated peptides enabled the
investigation of substrate site specificity of crotonylation sites
through sequence-based attributes Huang et al. (2018). In 2017,
Ju, Z. and He, J.J. had proposed an SVM-based method by using
attribute CKSAAP for this prediction, and a tool named
CKSAAP_CrotSite was developed at that time Ju and He
(2017); also in 2017, Wang, R.Q. had proposed another
method based on ensemble RF, which employed the attribute
of pseudo-AAC Qiu et al. (2018). In 2018, 5,995 sites on 2,120
proteins had first been extracted and released by Liu, K. et al. Liu
et al. (2018) and provided more experimental-verified
crotonylated samples in plant Carica papaya L, which filled in
the gaps of lacking samples in computational analysis of
crotonylation. Based on these Carica papaya L. data, Zhao, Y
et al. have carried out a prediction on the large dataset, in which
the deep learning method has been involved Zhao et al. (2020)
and more deep learning-related methods were released, such as
“DeepKcr”Lv et al. (2021) and “nhKcr”Chen Y. Z. et al. (2021).
These tools have highly improved the ablities of Kcr modification.
However, these predictions are all based on sequence-based
features, which consist of a piece of peptide segment around
the modified site. The existed methods of PTM prediction often
focus on the linear neighboring amino acid residues, which
considered the piece-wise part of a small interval upstream or
downstream of the modified site. However in the real case, the
modified site often has not only the linear-contacted residue
neighbors but also more neighboring amino acid residues which
are linearly far away from the target site but actually contacted
with it based on different spatial structures by various ways of
peptide folding. There are plenty of studies attempting to solve
the problem of predicting which amino acid residues in the
structure are “in contact” with each other, which refers to the
case that when the distance between their β-carbin (or α-carbin
for the amino acid glycine) is smaller than 8�A Luttrell et al.
(2019). In this paper, we considered the spatial residue–residue
contact information into the structure of peptides and employed
the spatial structure of residue–residue contact into the encoding

of features. In this way, not only the linear segments around the
modified site but also the spatial surrounding residues are
considered for analysis of Kcr modification. This is the first
time that spatial neighbored residues are considered into the
encoding of features for PTM prediction, and we found that it can
be an effective feature which could yield a promising good
performance and has achieved performances as good as those
generally used features.

2 MATERIALS AND METHODS

2.1 Data Pre-processing
In this research, the steps proposed by Zhao, Y. et al. were
followed to collect the experimentally verified Kcr sites Zhao
et al. (2020). As the obtained data were of a fixed length, which are
only a part of the whole peptide sequence and cannot provide
enough information for predicting its spatial structure, BLAST
was used for the alignment of a partial peptide onto the whole
sequence from the existing database first; in this case, the
corresponding whole peptide sequence was found out by
selecting whose alignment result provided 100 identity values.
The whole sequences were obtained and were used as input for
the prediction of residue–residue contact. We have obtained 511
peptides (the whole sequence instead of partial segments) after
the alignment; among these whole peptide sequences, there are
totally 10,944 sites, consisting of 1,119 positive and 9,825 negative
samples (they are slightly different in the sample numbers for
datasets of different window size numbers; here are the sample
numbers from the dataset which is of a window length of 10). The
detailed datasets are provided in the supplementary materials.
Among this dataset, 80 and 20% were randomly divided for the
training and testing datasets, which gives 6,902 negative samples
and 758 positive samples in the training dataset and 2,923
negative samples and 361 positive samples in the testing
dataset. Since the dataset is very imbalanced with positive and
negative samples of a ratio around 1:10, it would cause the
performance of cross validation biased He and Garcia (2009).
Because of this, the random under sampling method was
employed onto the training step to make the positive and
negative sites equal-sized in the training set, while the testing
set keeps imbalanced for validation.

2.2 Overview of Our Prediction Model
There are two phases in this research. The first is residue–residue
contact prediction. In this phase, a released tool named MapPred
Wu et al. (2020) was employed for the prediction as it was of
relatively higher performance in terms of both prediction
accuracy and computation speed Wuyun et al. (2016). It also
can be accessed via a web server, which is more user-friendly. The
residue–residue contact prediction tool will provide a table
containing six columns as a prediction result; the first and
second columns are the indices of two amino acid residues in
the whole peptide sequence, and the fifth column is the
probability of which the two residues of the indices (in the
first and second columns) are contacted. In this research, we
chose 0.80 as a threshold value, whichmeans that if the prediction
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probability value is higher than 0.8, we regarded these
two residues as contacted, otherwise not. These selected
contacted residues will be used in the later phase of feature
representation.

The next phase is Kcr prediction. We applied the
residue–residue contact information into the feature
representation part; then, the procedure follows the general
PTM prediction steps. We applied different machine learning
classifiers including support vector machine (SVM), random
forest (RF), and logistic regression (LR). Then, we carried out
result assessment for each feature. For analyzing whether those
spatially related features (RRC and RRPC) are efficient, we also
applied feature selection based on the best-performed spatial
feature together with other generally used features which are
encoded based on linear segments such as binary encoding (BE),
composition of k-spaced amino acid pairs (CKSAAP), enhanced
amino acid composition (EAAC), enhanced group amino acid
composition (EGAAC), and position-specific score matrix
(PSSM). The flowchart of this paper is indicated in Figure 1.

2.3 Feature Representation
In this research, both linear features and new-raised spatial
features were taken into consideration.

2.3.1 Linear Feature
Linear features stand for the general-adopted features; these
features are encoded with a piece of peptide of certain window
size n upstream or downstream of the target amino acid site,
which forms a segment of length 2pn + 1. It contains only the
neighbored amino acid composition and depends only on
different window size numbers. In this paper, we have chosen
a window size number equal to 10, 15, 20, 25, and 30 for linear
feature encoding.

2.3.1.1 AAC
AAC is the most basic and widely used feature in PTM prediction;
it indicates the frequency that each type of amino acid occurs in a
peptide. As there are 20 types of amino acids in a protein
sequence, the dimension of an AAC feature is 20. For the

FIGURE 1 | Flowchart of this paper; the main steps are data pre-processing, feature encoding, classification, and performance assessment. In data pre-
processing, whole peptide sequences were used as inputs of a contact prediction tool, which gives a table-formed result, suggesting whether two residues (indices
shown in column 1 and column 2) are contacted, and the possibility (in column five) that these two residues are contacted. Then, we append the contacted residues at
the tail of the sequence segment and used the expanded segments for feature encoding, obtaining RRC and RRPC features. Then, machine learning methods
were involved for Kcr prediction. In the performance assessment part, we compared the accuracy and AUC criterion between spatial and linear features; then,
visualization of different window length segments was carried out.
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FIGURE 2 | Amino acid composition analysis of linear feature AAC (the left-column figures) and spatial contacted feature RRC (the right-column figures). The five
rows correspond to window sizes of 10, 15, 20, 25, and 30 from the top to the bottom. In detail, (A) AAC of a window size of 10, (B) RRC of a window size of 10, (C) AAC
of a window size of 15, (D) RRC of a window size of 15, (E) AAC of a window size of 20, (F) RRC of a window size of 20, (G) AAC of a window size of 25, (H) RRC of a
window size of 25, (I) AAC of a window size of 30, and (J) RRC of a window size of 30.
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sequence x, which is of fixed length n (n refers to the window
size), the probability Px(k) of amino acid k is

Px k( ) � nx k( )
n

where nx(k) refers to occurrence of amino acid k. In this paper, we
encoded the AAC feature based on a window size of 10, 15, 20, 25,
and 30 .

2.3.1.2 AAPC
AAPC is the pair-wise feature of AAC as it indicates the
frequency that each type of amino acid pair occurs in a
peptide. There are totally 20 types of amino acids in protein;
hence, 20p20 types of amino acid pairs are available, so the
dimension of the AAPC feature should be 400. The probability
Px(k) of an amino acid pair in a sequence x is

Px k( ) � nx k( )
n p n − 1( )

where nx(k) is the occurrence of amino acid pair k. In this paper,
we encoded the AAPC feature based on the same window size as
the AAC feature, which is 10, 15, 20, 25, and 30 Wang et al.
(2020).

2.3.2 Spatial Feature
2.3.2.1 RRC
RRC is of a similar rule to AAC, but the residue–residue contact
part has been taken into consideration. The residue–residue
contact result obtained from residue–residue contact
prediction was used here; if one of the contacted residue pair
is within the range of n amino acids upstream and downstream of
the target site, then we expand it to the range of the − n to + n
segment (where 0 is the location of the target site), and then we
used the same rule as AAC to compute the frequency of each
amino acid. The dimension of RRC is the same as AAC, also 20.
Similar to AAC, we chose n equal to 10, 15, 20, 25, and 30 for the
residue–residue contact selection. The reason why we chose AAC
as a basic rule for expanding a new spatial feature is that the
dimension of the AAC feature is fixed as the total type of amino
acid is of a fixed number, which means that the order we arrange
these contacted residues would have an impact on neither the
dimension nor the feature value in each dimension of feature
RRC as we need not consider the order of residues but only their
occurrence. The visualization of AAC and RRC is indicated in
Figure 2.

2.3.2.2 RRPC
RRPC is of a similar rule to the AAPC feature; in this feature, the
residue–residue prediction result was directly used; that is, if the
two residues are considered to be contacted, then we regarded it
as one type of RRPC. The dimension is also 400 as there are
overall 20p20 � 400 types of possible combinations of
residue–residue contact, which is of the same dimension
number as AAPC. For the same reason that we encoded RRC
based on AAC, the reason that we encoded RRPC based on AAPC
is that the dimension of the AAPC feature is also fixed as the total

type number of amino acid pairs is constant; in this case, we can
make comparison between AAPC and RRPC as they are of a
similar encoding method, and in this research, we assign
residue–residue pairs based on the index order in ascending
order. The visualization of RRPC is indicated in Figure 3.

2.4 Feature Selection
For the aim of improving prediction performance and
removing redundant dimensions of the feature to speed up
the prediction process, feature selection is a phase which is of
paramount importance Guyon and Elisseeff (2003). In the
feature selection procedure, each dimension of the feature
vectors was ranked according to a certain criterion of
“importance”; then, those of lower “importance” would be
deleted, and then, the feature vector will be of a lower
dimension but higher importance, which is more
information-rich than the original encoding feature Tang
et al. (2020). In this study, the data in the training sets were
applied in the feature selection procedure and then follow the
steps of validation and independent testing. The feature
dimensions were ranked according to their merit
information gain in IG, the value of the χ2 statistic in the
Chi-square method Chen et al. (2007).

2.4.1 Chi-Square Method
In the ranking step of the Chi-square value method, the Chi-
square value of each feature was calculated by

χ2 � ∑
m

i�1

ni − npi( )2
npi

where ni is the number of instances, which will result in the
outcome xi Chen et al. (2007). A feature that gives a higher
value of χ2 receives a lower rank; then, according to the χ2

value, the p-value for each dimension of the individual feature
was obtained and the p-value greater than 0.05 was removed.
This selection was taken on each feature for deleting those
redundant dimensions.

2.4.2 Information Gain Method
For the information-gain method, it follows a similar
procedure to the Chi-square method. It measures the
entropy in descending order when a given feature is used to
group values of another feature. The entropy of a feature x is
defined as

H x( ) � −∑
i

P xi( )log2 P xi( )( )

where xi is a set of values of x and P(xi) is the prior probability of
xi. The conditional entropy of x, given another feature Y, is
defined as

H x|Y( ) � −∑
j

P yj( )∑
i

P xi|Yj( )log2 P xi|Yj( )( )

According to the entropy of x for a given Y, we ranked those
features and deleted those redundant dimensions Chen et al.
(2009).
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FIGURE 3 | Visualization of features RRPC and AAPC. In detail, for Figure (A), (i) RRPC of a window size of 10, (ii) RRPC of a window size of 15, (iii) RRPC of a
window size of 20, (iv) RRPC of a window size of 25, and (v) RRPC of a window size of 30. For Figure (B), (i) AAPC of a window size of 10, (ii) AAPC of a window size of 15,
(iii) AAPC of a window size of 20, (iv) AAPC of a window size of 25, and (v) AAPC of a window size of 30.
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2.5 Model Construction and Performance
Evaluation
This study involves the machine learning method in the
prediction of crotonylation. Support Vector Machine
(SVM), Random Forest (RF), and Logistic Regression (LR)
methods are adopted. We employed these three types of
classifiers for Kcr prediction based on both linear features
and spatial features and then compared the performance of
the same type of classifier in the later part of performance
analysis.

2.5.1 Model Construction
2.5.1.1 Support Vector Machine
As a classical machine learning method, SVM is the most-
often-used method for classification problems which are of
enough data but not as plenty as required for the deep
learning method. It is a supervised learning method that
was first proposed in 1963 by Vapnik, V. and Lerner, A.Y. in
the field of pattern recognition Vapnik and Lerner (1963).
After development in decades, it is still the top-used
machine learning method in binary-class-division. SVM is
based on associated learning algorithms using regression
analysis to classify data Vapnik (1999); the main idea is to
find out a boundary that can separate samples into
different parts.

In this study, SVM with a radial basis function (RBF) kernel
was adopted. Penalty parameter Cwas selected from set {20, 21, 22,
. . . , 210}, and the kernel parameter c was selected from set {2–10,
2–9, 2–8, . . . , 20} by grid searching. The SVM classifier was
developed by using the python module ‘sklearn’ Chen et al.
(2020), Chen Z. et al. (2021).

2.5.1.2 Random Forest
The RF method is another widely adopted method in the field of
machine learning, which was first proposed in 2001 by Breiman, L
Breiman (2001). It is a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the
forest. RF is more advanced than the traditional machine learning
method as it can work efficiently in more complicated cases and
gives out a more balanced result when imbalanced data have been
provided. The training process of RF was by setting the tree
number from set {1,400, 1,600, 1800, . . . , 2,400}, and it is also
implemented based on the python module ‘sklearn’ Chen et al.
(2020), Chen Z. et al. (2021).

2.5.1.3 Logistic Regression
LR is a wildly adopted algorithm for binary classification, which
consists of twomain steps: training and regression. In the training
phase, the weights and bias by using SGD and the cross-entropy
loss function were employed, which makes an approximation of
those samples, and then, in the regression phase, the
approximated function was used for predicting whether those
data are positive or negative. In this research, we set a cutoff value
of 0.5. This classifier is also implemented based on the python
module ‘sklearn’ Chen et al. (2020), Chen Z. et al. (2021).

2.5.2 Performance Evaluation
In the phase of machine learning classification, k-fold cross-
validation was employed to evaluate the predictive performances
Kao et al. (2015). When implementing k-fold cross-validation, all
the training data, including positive and negative sequences, were
randomly clustered into k equal-sized subgroups. After that, k-1
of them shall be regarded as the training sample and the
remaining one subgroup was considered as the validation
sample. In a round of k-fold cross-validation, each of the k
subgroups should be considered as the validation sample once
in turn. In this study, k equal to 5 was chosen for the cross-
validation Liu (2019).

Sensitivity (Sn), specificity (Sp), accuracy (Acc), Matthews
correlation coefficient (MCC), Recall, Precision, and F1_Score
have been used as the metrics to determine the performance of
the generated models. The four metrics are defined in terms of
TP, FN, TN, and FP, which denote the instances of true positive,
false negative, true negative, and false positive, respectively, as
Chen Z. et al. (2021), Liu et al. (2016)

Sn � TP
TP + FN

,

Sp � TN
TN + FP

,

Acc � TP + TN
TP + FP + TN + FN

,

MCC � TP × TN − FN × FP�����������������������������������������
TP + FN( ) × TN + FP( ) × TP + FP( ) × TN + FN( )√ ,

Recall � TP
TP + FN

� Sn,

Precision � 1 − FP
TP + FP

,

F1_Score � 1 − FP + FN
2 × TP + FP + FN

.

The ROC curve is also adopted as an evaluation criterion in
this study as a more objective measurement than sensitivity and
specificity. The area under curve (AUC) is an important criterion
in performance evaluation for imbalanced cases Li et al. (2018).
After evaluating the k-fold cross-validation, the classifier which
achieved the best predictive performance was further evaluated by
an independent testing dataset that was not included at all in the
training samples.

Besides the performance evaluation of each single feature, the
performance of the incorporated features which combined
different features was also assessed by two feature selection
(Chi-square and information-gain) methods.

3 RESULTS AND DISCUSSION

In the assessment of different features, we have grouped AAC and
RRC into one group, labeled as the residue composition feature;
AAPC and RRPC were grouped into the other group for
comparison of performances, and we labeled these two
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features as residue–residue pair-wise features. The performances
of group residue composition features are listed in
Suppplementary Table S1 in Supplementary Materials, and
the visualization of the performance is attached in Figure 4.

In Figure 4A–C, it can be seen that the performances of
features AAC and RRC are competitively good with classifier
SVM (the performance of AAC is slightly higher); similarly
in Figure 4G–I for the case of LR classifier, feature AAC
achieved a slightly higher accuracy than feature RRC expect
the case when the window size is 10. Surprisingly, in the case
of classifier RF (Figure 4D–F) with different window-size
numbers, feature RRC yielded a higher accuracy and a better

overall AUC value, which means that in the classifier RF, the
feature RRC could achieved a performance with not only
better accuracy but also a higher AUC than the feature AAC,
which means that in the residue composition feature, the
spatial feature could yield a competitively good or even better
performance than the traditional linear feature. However,
overall, the performance of RRC is not obviously higher than
that of AAC, which is reasonable as in Figure 2, it shows that
for RRC, it seems that less difference appears between
positive and negative, which is reasonable as for RRC, we
considered more residues into one segment, which would
give higher occurrence of each type of amino acid when the

FIGURE 4 | Performance assessment of features AAC and RRC. (A) Group barchart of classifier SVM of features AAC and RRC; (B) ROC of feature AAC with
classifier SVM; (C) ROC of feature RRC with classifier SVM; (D) group barchart of classifier RF of features AAC and RRC; (E) ROC of feature AAC with classifier RF; (F)
ROC of feature RRC with classifier RF; (G) group barchart of classifier LR of features AAC and RRC; (H) ROC of feature AAC with classifier LR; (I) ROC of feature RRC
with classifier LR. In (a), (d), and (g), the red bars refer to contacted information, which corresponds to the RRC feature, while green bars refer to the case containing
no contacted residues, which corresponds to AAC features.
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window size becomes larger. This makes it explainable that
the difference between positive and negative samples
becomes smaller when the window size numbers go larger
as when a larger window size is given, the effect those
contacted residues have on the whole segment for feature
encoding would be less.

Except for residue composition features, residue–residue pair-
wise features were also considered; here, the performances of
pair-wise features AAPC and RRPC are attached in
Suppplementary Table S2 in Supplementary Materials and
Figure 5.

In Figure 5, it shows that for pairwise features, higher
improvement of performances in feature RRPC appeared,
with the case of classifier SVM and RF, and in most of the
cases with different window size numbers, feature RRPC yielded

higher accuracy and AUC values. In the SVM classifier
(Figure 5A–C), the accuracy of feature RRPC (in Figure 5A)
is obviously higher than of feature AAPC, while the AUC
values(Figure 5B, C for AAPC and for RRPC) are
competitively high. Meanwhile, in the classifier of RF
(Figure 5D–F), the RRPC feature gives not only a better
accuracy but also an obvious overall AUC value when the
window size changes. In the LR classifier (Figure 5G–I), the
performances of various window size numbers are very close in
features AAPC and RRPC, with similarly good accuracy and
AUC. Comparing with the single-amino-acid-related feature,
the performances in the pair-wise feature are more outstanding
and robust, which may be owned by the reason that the
differences between positive and negative samples in the
pair-wise feature are more obvious than the single-amino-

FIGURE 5 | Performance assessment of features AAPC and RRPC. (A) Group barchart of classifier SVM of features AAPC and RRPC; (B) ROC of feature AAPC
with classifier SVM; (C)ROC of feature RRPCwith classifier SVM; (D) group barchart of classifier RF of features AAPC and RRPC; (E)ROC of feature AAPCwith classifier
RF; (F) ROC of feature RRPC with classifier RF; (G) group barchart of classifier LR of features AAPC and RRPC; (H) ROC of feature AAPC with classifier LR; (I) ROC of
feature RRPCwith classifier LR. In (A), (D), and (G), the red bars refer to contacted information, which corresponds to the RRC feature, while green bars refer to the
case containing no contacted residues, which corresponds to AAC features.
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acid-related feature. As indicated in Figure 2, the differences
between percentages of positive and negative are not quite
various when the window size changes, and the value
differences between positive and negative samples are not
large in a fixed window size. However, in Figure 3, it shows
great differences among positive and negative samples, and
larger differences appeared in a smaller number of window
size as it shows more plain color in the feature AAPC. This gives
the evidence that spatial-factor-related feature RRPC could be a
more reliable feature for Kcr prediction as larger differences
indicated on it than feature AAPC.

Besides, we have combined the features RRC and RRPC
into an incorporated feature and compared the performance
with incorporated AAC and AAPC. The detailed
performance has been indicated in Suppplementary Table
S3 in Supplementary Materials. In this case, the performance
of incorporated RRC and RRPC is also similarly high as
incorporated AAC and AAPC, which shows that the

spatial features RRC and RRPC are both efficient in the
classification of Kcr sites in both single features and
incorporated features. Among these two, RRPC tends to be
more efficient in the smaller-window-size case as it shows
relatively higher performance than RRC or AAPC.

For further discussion of residue–residue composition contact
within each type of amino acid, the visualization of amino acid
contact is generated in Figure 6. We used links to indicate the
contact between residue and residue. As shown in Figure 6, it
tends to be more pairs of Lx (residue L and other amino acids) in
positive data when the window size is relatively small, typically in
Figure 6A. When the window size becomes larger, the pair
number of Lx for positive and negative sets tends to be more
close to each. This is the reason why when we visualize the RRPC
pair, in the case of a window size equal to 10, we obtained the
result with the largest color range, and when the window size
increases, the color range becomes more and more centralized to
zero level and gives more pale color in the figure. It also suggests

FIGURE 6 |Chord diagram of a window size of (A) 10, (B) 15, (C) 20, (D) 25, and (E) 30. The linked lines show the contact between residues. Highlighted contacts
are compared among various window sizes. For each sub-graph, the left one is from positive samples and the right one from negative samples.
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TABLE 1 | Performance of incorporated features in the cases with or without RRPC incorporated. Here, the sequence-based features used for incorporation contain Binary,
CKSAAP (k � 1, 2, 3), EAAC, EGAAC, and PSSM.

Feature Classifier Sensitivity Specificity Accuracy MCC Recall Precision F1-score

incorporated_without_RRPC SVM 0.70 0.69 0.69 0.30 0.70 0.31 0.43
RF 0.72 0.80 0.79 0.43 0.72 0.42 0.53
LR 0.66 0.66 0.66 0.24 0.66 0.28 0.39

incorporated_with_RRPC SVM 0.67 0.70 0.70 0.29 0.67 0.31 0.43
RF 0.75 0.80 0.79 0.46 0.75 0.43 0.55
LR 0.68 0.66 0.67 0.26 0.68 0.29 0.40

FIGURE 7 | ROC curves of incorporated features in the cases with or without RRPC incorporated: (A) incorporated with RRPC and (B) incorporated without
RRPC.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 78846711

Wang et al. Prediction of Lysine Crotonylation Sites

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


that when a smaller window size is considered, the effects of
spatial residue contact are higher, which may explain why the
performance of a smaller window size tends to be better than the
larger-window-size case.

Feature selection was carried out for finding the ‘importance’
of each feature as well. We have selected features of cases with and
without RRPC involved, and the selection result is attached in
Supplementary Figures S4–7 in Supplementary Materials and
the result of incorporated some sequence-based features with or
without RRPC is attached in Table.1.

In order to find whether the feature RRPC is of enough
importance for Kcr prediction, we separated the feature
selection part into two cases: one is selection with RRPC
involved, and the other one is without RRPC involved. Each
of these two cases has been applied Chi-square selection and
information-gain selection. The result is shown in Figure 7.
Compared with Figure 7B, which shows the result of the Chi-
square method selection without RRPC contains, the
performance of classifier SVM has increased 0.2, while the
other two are with 0.1 lower. However, for the information-
gain selection method, the performance based on an
incorporated feature without RRPC when SVM employed
is 0.3 higher than the case incorporated with RRPC, while
other two are equivalently good (for the RF classifier) and
better if incorporated with RRPC (LR classifier). Overall, the
features incorporated with RRPC can yield a competitively
good or even higher performance compared to the features
without RRPC combined, and as shown in the selection
result, we can see that the RRPC feature has taken a large
percentage when selecting, which proves that RRPC is an
efficient feature which is of high importance and good
performance as well. The table-formed result assessments
have been attached in Suppplementary Tables S4, 5 in
Supplementary Materials.

4 CONCLUSION

In this research, we applied information of spatial residue–residue
contact into encoding of features, represented as RRC and RRPC, for
classification of modified Kcr sites and compared with other
sequence-based features on the aspects of accuracy, AUC
values, and other criteria for performance assessment. It
shows that RRC and RRPC can be effective in classifying
Kcr sites as the performance can be as competitively good as
other well-known features such as AAC, AAPC, CKSAAP,
etc. We also employed feature selection together with the
RRPC feature as it yielded a better performance than RRC
and shows that RRPC has taken a large weight of selected
features, which shows that RRPC is of high information-rich
properties and efficient enough for the Kcr prediction.
However, there are some more details that require further
research: the first one is that the prediction step of
residue–residue contact is very time-consuming; in
Suppplementary Tables S6, 7 of Supplementary Materials,

a summary of some recent-released tools for residue–residue
contact prediction and the comparison of our adopted tool in
this research and other tools are attached, it can be noticed
that even the most speedy tool requires plenty of time for
computation and not a few of them gave the final prediction
result within 24 h, which is very time-consuming and makes
it challenging to broaden the application of residue–residue
contact into the encoding scheme. Another problem is that
we can see that for Kcr modification, the best performances of
spatial features are of a similar level or slightly higher
compared with traditional linear features, but for different
types of PTM, the surrounding residues of modified sites
might be different as each type of PTM requires a certain
environment for modification; also, for different PTM, it
suggests different types of modifications, which suggests
that different effects may be of different PTM when
residue–residue contact is considered to be a feature,
which is another approach that requires discussion.
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