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ABSTRACT 

Airborne diseases including SARS, bird flu, and the ongoing Coronavirus Disease 

2019 (COVID-19) have stimulated the demand for developing novel bioassay 

methods competent for early-stage diagnosis and large-scale screening. Here, we 

briefly summarize the state-of-the-art methods for the detection of infectious 

pathogens and discuss key challenges. We highlight the trend for next-generation 
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technologies benefiting from multidisciplinary advances in microfabrication, 

nanotechnology and synthetic biology, which allow sensitive, rapid yet inexpensive 

pathogen assays with portable intelligent device.  

Keywords: infectious diseases; pathogens assay; biosensors; synthetic biological 

circuits 

During the recent decades, we have witnessed the outbreaks of several severe 

airborne diseases including bird flu, SARS, MERS, and the ongoing Coronavirus 

Disease 2019 (Covid-19, caused by the coronavirus SARS-CoV-2) [1,2]. Particularly 

in the last two years, the SARS-CoV-2 variant of concern (VoC) Omicron, with 

dramatically enhanced infectivity and immune escape ability, has raised a new wave 

of pandemic, imposing a heavy burden on individuals, healthcare systems and 

societies worldwide, including in China [3]. Early-stage diagnosis and frequent 

large-scale screening have proved critical to controlling the spread of such highly 

contagious pathogens.  

A variety of bioassay methods have allowed the diagnosis of airborne diseases by 

detecting pathogenic biomarkers (e.g., pathogenic nucleic acids or antigenic proteins). 

However, as evidenced in the present global pandemic of COVID-19 [1], the 

deployed methods have been inadequately satisfactory for the urgent needs of 

screening potentially infected patients. Owing to the cutting-edge advances in 

nanotechnology, synthetic biology, and microfluidic technology, a new generation of 

detection methods has emerged, holding promise in dealing with highly contagious 
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diseases in resource-limited settings. In this perspective, we discuss recent progress in 

the detection methods for airborne pathogens and provide an outlook on future 

development. 

1. State-of-the-art methods for early-stage detection of pathogens 

1.1. Nucleic acid detection 

Polymerase chain reaction (PCR)-based methods. PCR can amplify specific 

nucleic sequences exponentially via repeated cycles of thermal denaturation and 

renaturation, thus presenting ultra-high sensitivity and specificity, while enabling the 

detection of very few or even single copies of target nucleic acids in complex samples 

[4]. Nowadays, quantitative PCR (qPCR) or real-time PCR has been the gold standard 

for pathogenic nucleic acid analysis. Its combination with reverse transcription 

(qRT-PCR) has been adopted as the first-line assay for confirming the infection of 

RNA viruses including SARS-CoV-2. However, conventional qPCR relies on 

expensive instruments run by professionals in specialized laboratories. A typical 

qPCR assay costs 2-6 h (largely due to the time-consuming temperature changing and 

heat transfer), not to mention the delay caused by the overwhelmed detection capacity 

during pandemics. Thus, traditional PCR has been unsatisfactory for the demand for 

rapid, large-scale screening.  

To overcome the limitations, one approach is to use miniaturized devices with 

high thermal conductivity in combination with small-volume samples, which allows 

rapid temperature change [5]. Some strategies achieve fast thermocycling by 

                  



Fundamental Research 

4 

 

transferring the reactants across different temperature zones via e.g., flow control [6], 

Rayleigh-Bénard convection [7], or rotation [8]. Another possible route is to drive 

DNA denaturation-renaturation with means such as electrochemically controlled pH 

switching [9] and photothermal conversion [10]. In addition, artificial intelligence (AI) 

has been harnessed to predict results with fewer amplification cycles, which can help 

shorten the assay time [11]. These strategies hold the potential for developing 

ultra-fast PCR assays. 

Assays based on isothermal nucleic acid amplification. The development of 

isothermal nucleic acid amplification strategies provides promising alternatives to 

PCR. These strategies generally utilize both the polymerizing and unwinding activity 

of DNA polymerases for successive DNA synthesis and replacement without the need 

for heat denaturation [4]. Representative strategies include strand displacement 

amplification (SDA), nicking enzyme amplification reaction (NEAR), rolling circle 

amplification (RCA), recombinase polymerase amplification (RPA), loop-mediated 

isothermal amplification (LAMP), and nucleic acid sequence-based amplification 

(NASBA). Although the robustness and accuracy need further verification, some of 

them have been adopted in authorized, commercially available test kits, aiming at 

point-of-care (POC) nucleic acid assays. 

1.2. Immunoassays 

Immunoassays are biomolecular detection methods based on specific 

antigen-antibody interactions, which have long been employed for the detection of 
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biomarkers including antigenic proteins from pathogens, or antibodies and cytokines 

from patients. Conventional immunoassays such as lateral-flow immunoassays (e.g., 

immunogold strips) are suitable for rapid self-tests, thus have been widely deployed in 

the COVID-19 pandemic, allowing coarse screening of infection in nasal swabs in 

less than 15 min [12]. In comparison, enzyme-linked immunosorbent assays (ELISA) 

or chemiluminescent immunoassays (CLIA) relying on professional equipment can 

generate more accurate results, thus are more suitable for clinical serological 

diagnosis in hospital. In general, immunoassays can be carried out under ambient 

conditions, thus are amenable to POC assays that can be completed in minutes. 

However, the sensitivity and specificity of immunoassays are inherently constrained, 

largely due to the cross-reactivity of antigen-antibody interactions, and the lack of 

ways to effectively and selectively amplify target proteins. One promising solution is 

to use devisable nanostructures as scaffolds to engineer the spatial arrangement of 

multiple copies of detection ligands (e.g., aptamers, peptides, antibody fragments), 

which may better match the patterns of antigens on the pathogens [13,14]. Due to the 

multivalency effect, the nano-patterned ligands may provide much higher affinity 

against the target pathogens compared to conventional monovalent/bivalent ligands, 

thus holding promise for amplification-free detection of pathogens at early stages. 

2. Advancing pathogen assays with biosensors and microarrays 

2.1. Biosensors 

Biosensors are devices mimicking natural molecular receptors, which generate 
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signals specific to target biomarkers with minimal laboratory-based processes. 

Particularly, electrochemical biosensors can translate molecular recognition events 

into electronic signals amenable to cost-effective, portable electronic devices. Besides, 

they can offer high sensitivity even without molecular amplification, holding promise 

for the rapid analysis of infectious pathogens. For example, a graphene-based 

field-effect transistor (FET) immunological biosensor has been fabricated for direct 

detection of SARS-CoV-2 spike proteins in nasopharyngeal swabs with a LOD of 

~242 copies/mL [15]. More recently (Fig. 1a), the reagent-free sensing of 

SARS-CoV-2 viral particles and antigens in 5 min has been achieved by using an 

electrochemical sensor functionalized with kinetically responsive antibody probes 

[16].  

To improve the performance of biosensors for nucleic acid assays, much 

endeavor has been made to rationally engineer the biosensing interfaces at the 

nanometer scale. A representative approach is to employ nanostructured 

microelectrodes with high curvature and high surface area to maximize molecular 

recognition efficiency [17], which has allowed PCR-free viral nucleic acid detection 

in whole blood [18]. Another approach proposed by our group is to employ DNA 

framework nanostructures to precisely program the spatial arrangement and 

conformation of probe molecules on the interfaces, which allows significant 

improvement in sensitivity and selectivity [19]. Recently, a DNA 

framework-empowered interface has been exploited for direct detection of 
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SARS-CoV-2 RNA from clinical samples within 4 min without the need for RNA 

extraction and amplification, which achieves a LOD (down to ~0.02 copies per μL) 

comparable to the conventional PCR (Fig. 1b) [20]. Overall, these electrochemical 

biosensors with nanostructured interfaces have shown potential in developing POC 

assays with ultra-high sensitivity independent of expensive equipment. Despite the 

progress, the quality control of such biosensors needs further optimization for mass 

production and practical application. 

 

Fig. 1. Electrochemical biosensors for pathogen assays. (a) Schematic of 

reagent-free sensing of viral particles using an electrochemical strategy to monitor the 

kinetics of a DNA-antibody complex [16]. (b) An ultrasensitive FET nucleic acid 

sensor with the probe interface programmed by tetrahedral DNA nanostructures [20].  

2.2. Microarrays 
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Biosensing microarrays (or chips) can be regarded as the arrays of biosensors 

allowing hundreds or even thousands of parallel tests on a miniaturized (e.g., square 

centimeter-scale) area, which have played important roles in high-throughput 

applications such as studies on pathogenic genomics, pathogen-host interactions and 

digitalized bioassays (e.g., digital PCR [21] and digital ELISA [22], for the absolute 

quantification of a single analyte). However, the sensitivity of solid-phase microarrays 

is constrained by the limited reaction efficiency on the solid-liquid interface, 

especially when the sensing area is very small for each unit. In this regard, the 

combination of microfluidic/microdroplet systems and microbeads/nanoparticles 

would allow homogenous/near-homogenous reactions on chips with improved 

sensitivity [23]. For example, a single-molecule ELISA system based on these 

techniques enables the detection of target proteins in serum with a LOD (<10
−15

 M) 

much superior to the conventional ELISA [22]. Recently, next-generation sequencing 

technologies (e.g., nanopore sequencing) in combination with microarrays have 

allowed fast sample preparation, long-sequence read, and high-throughput sequencing 

for metagenomic studies, which can quickly identify novel pathogens or variants in 

complex environments [24,25], meanwhile acquire their genomic information for 

rapid development of target-specific detection methods [1]. 

3. Synthetic biology-empowered pathogen assays 

The advances in synthetic biology have allowed us to repurpose and engineer 

biological components into customized circuits that can work in cell-free settings, 
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which provide new opportunities for isothermal pathogen assays. Recently, there is a 

growing interest in using CRISPR (clustered regularly interspaced short palindromic 

repeats)-Cas (CRISPR-associated proteins) systems for isothermal nucleic acid assays 

[26]. CRISPR-Cas systems as the naturally existing adaptive immune systems in 

microbes, allow specific recognition of target DNA/RNA without heat denaturation. 

They can also achieve isothermal signal amplification based on high-turnover nucleic 

acid cleavage, rather than on nucleic acid replication. For example, CRISPR-Cas12 

and CRISPR-Cas13 systems can mediate indiscriminate cleavage of collateral 

DNA/RNA strands upon RNA-guided DNA/RNA recognition [27,28]. Thus, in the 

presence of the target nucleic acids, a reporter DNA/RNA (simultaneously labeled 

with a fluorescence dye and a quencher) can be cleaved and release a fluorescent 

signal (Fig. 2a). These systems have been demonstrated for the nucleic acid assay of 

SARS-CoV-2 [26], which can be carried out on cost-efficient test papers, producing 

visual readouts in a short sample-to-answer time. Recently, a CRISPR-Cas9 system 

has been adapted for multiplexed RNA detection [29] (Fig. 2b), which employs 

trans-activating CRISPR RNAs to specifically bind the target RNAs and guide the 

Cas9 cleavage of corresponding reporter DNAs, allowing discrimination of 

SARS-CoV-2 and its variant with single-base resolution in patient samples.  

Another representative approach for synthetic biology-empowered assays is 

based on synthetic riboregulators (also called "toehold switches"). A typical 

riboregulator is an engineered RNA motif placed on the 5' untranslated region of an 
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mRNA (Fig. 3c), which allows structural reconfiguration in response to a specific 

nucleic acid sequence, activating the translation of the downstream reporter gene 

(generating a reporter protein). These functions are all carried out under physiological 

conditions, and hence hold promise in isothermal nucleic acid assays [30]. Recent 

studies have achieved single-nucleotide specificity, enabling the discrimination of 

SARS-CoV-2 variants [31].  

Compared to PCR, the signal amplification efficiencies of the CRISPR-Cas and 

riboregulator systems are still very limited. But, they can be seamlessly cascaded with 

other established isothermal nucleic acid amplification strategies (e.g., NASBA, RPA, 

and LAMP) [30], enabling adequate sensitivity for direct detection in clinical samples. 

By generating different reporting proteins, these synthetic circuits can readily adapt to 

diverse readout modes [30], such as paper-based colorimetric platforms, 

electrochemical biosensors, or even glucosemeters [32]. These advantages together 

facilitate the application of these cutting-edge methods in resource-constrained 

settings. Moreover, the synthetic circuits can be integrated with molecular logic 

calculations in response to multiple nucleic acid inputs, which allow more accurate 

identification of target pathogens and their subtypes [33]. However, for POC 

application, how to keep the long-term stability of the reagents (the enzymes and 

RNA molecules) in these methods under ambient conditions is worth considering in 

further development of these methods. 
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Fig. 2. Pathogen assays with synthetic biology. (a) Schematic of CRISPR-based 

nucleic acids detection with collateral cleave activity, Cas12 or Cas13 system, and (b) 

the novel CRISPR-Cas9 system using reprogrammed tracrRNAs (Rptrs) for 

multiplexed RNA detection [26]. (c) Schematic of a riboregulatory nucleic acid sensor. 

Its structural configuration is responsive to the target RNA, allowing switchable 

translation of the reporter proteins. This system can be translated onto test papers by 

freeze-drying [30]. 

4. System integration for real-world detection of pathogens 

The cutting-edge methods for pathogen detection in real samples still face several 

challenges. One major challenge is the matrix effects arising from the interferences by 
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the complex constituents in real samples, which may result in false results or 

compromised sensitivities. To ensure the accuracy of the methods in real samples, 

multistep procedures with different reagents are often involved, which rely on 

cumbersome operations such as sample extraction, transfer, mixing, and separation. 

For example, for detection in blood samples, dilution and/or plasma/serum separation 

are desired to reduce the matrix effects; for nucleic acid assays in real samples, the 

use of lysing reagent to isolate nucleic acids from the pathogens is usually required.  

Microfluidic platforms driven by external power such as centrifuging, 

electronic/magnetic fields, and pumps have been developed to integrate multiple 

reactions. For example, in an immunoassay microfluidic system, bubbles pumped into 

the channels are utilized to drive multiple reagents separately and successively onto 

the interfaces for reactions at different stages, enabling automatic detection of H1N1 

mimetics within minutes [34]. However, the requirement for external equipment to 

power and control the microfluidic systems still restricts their field application. 

Recently, self-powered or power-free microfluidic systems (actuated by, e.g., vacuum 

[35], gravity [36], and/or lateral flow [37]) have been developed for detection 

independent of cumbersome peripherals. Recently, a monolithic chip utilizes 

microfluidic chain reactions powered by an on-chip paper pump to implement an 

eight-step ELISA protocol autonomously [38], allowing quantitative detection of 

antibodies against the N protein of SARS-CoV-2 in saliva. In addition, heterogeneous 

sensing interfaces for different types of analytes can be integrated into a unified 
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microarray, which enables “all-in-one” assays of multiple biomarkers including 

nucleic acids and proteins [19,39], holding promise for facile yet comprehensive 

diagnosis.  

The development of mobile smart devices (e.g., smartphones) has also facilitated 

signal processing, data analysis, and generation of readable conclusions. Recently, 

smart devices with customized apps have been combined with bioassay chips for 

diverse infectious diseases including COVID-19 [39-41]. Further, the development of 

high-speed mobile networks (e.g., 5G networks), big data, artificial intelligence (AI) 

and cloud computing is enabling remote medical observation, analysis, prognosis, and 

management, which is helpful for patients in resource-restricted settings, and can 

relieve the burden on hospital infrastructure during pandemics (Fig. 3).   

 

 

Fig. 3. Outlook of next-generation biosensing platform integrating automatic sample 

preparation on a chip, multi-biomarker microarray, smart device, mobile network, 

artificial intelligence, cloud computing, etc., holding promise for rapid yet precise 
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diagnosis of infectious diseases. 

5. Outlook 

Despite the progress in advancing bioassays for diverse pathogen-related 

biomarkers, challenges remain in satisfying the demands in public health emergencies, 

particularly in the recent pandemic. Although some believe that Omicron is less fatal 

compared to previous VoCs, recent studies suggest that Omicron has still conferred 

substantial excess mortality in a short time, even in a highly vaccinated and 

increasingly immune population, due to the enhanced transmissibility and immune 

escape capability [42]. Meantime, growing evidence shows that COVID-19 may 

result in long-term residual effects (long COVID) that should not be underestimated 

[43]. And, given the large infection population and the intrinsic high mutation rate of 

RNA viruses, the emergence of new dangerous variants is almost inevitable. Thus, it 

is desirable to preventively monitor potentially pathogenic microorganisms in human 

and environmental samples by combining the above-mentioned technologies such as 

AI, big data, and metagenomic sequencing. Although challenges remain, it is worth 

pursuing such an integrated system with high accuracy, speed, and throughput 

whereas miniaturized size and affordable cost, which thus can be widely deployed 

among communities, enabling proactive, rapid-response, and intelligent disease 

control measures in the future.  
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