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Abstract: In recent years, the gut microbiota has been considered as a full-fledged actor of the
gut–brain axis, making it possible to take a new step in understanding the pathophysiology of
both neurological and psychiatric diseases. However, most of the studies have been devoted to gut
bacterial microbiota, forgetting the non-negligible fungal flora. In this review, we expose how the role
of the fungal component in the microbiota-gut-brain axis is legitimate, through its interactions with
both the host, especially with the immune system, and the gut bacteria. We also discuss published
data that already attest to a role of the mycobiome in the microbiota-gut-brain axis, and the impact of
fungi on clinical and therapeutic research.

Keywords: brain–gut axis; mycobiome; microbiome; dysbiosis; neurological disorders; psychiatric
disorders; fungus

1. Introduction

It has long been accepted that the central nervous system (CNS) and the intestine are
closely connected, as suggested by satiety sensations or visceral pains. However, the concept of
“microbiome-gut-brain axis (-GBA)” has emerged very recently as a bidirectional communication
system in which the digestive microbial flora, also known as the gut microbiome, play a key role [1].
Indeed, accumulated evidence suggests that the intestinal microbiome may modulate CNS activities,
which may, in turn, have an impact on the intestinal microbiome [2]. Several studies on mice have
illustrated this mutual dialogue well between the gut microbiome and the brain. On the one hand,
mice elevated in a sterile environment have an increased anxiety-like behavior that can be reversed
after gut colonization with a commensal microbiome [3,4]. On the other hand, the diversity of the
gut microbiome is diminished in rodent maternal separation, a model of depression [5]. Lastly,
the clinical efficacy of specific probiotic strains in human neuropsychiatric pathologies, such as anxiety
or depression, strengthens the concept of the microbiome-GBA [6].

The gut microbiome is a rich and complex ecosystem composed of bacteria, archaea, viruses,
fungi, protists, and (sometimes) helminths. The essential role of this ecosystem in host homeostasis,
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including metabolic and immune functions, is now well demonstrated, as is its involvement
in the pathophysiology of digestive and extra-digestive disorders [7,8]. The development of
culture-independent techniques for identifying microorganisms, such as next-generation sequencing
(NGS), has improved our knowledge on the composition and dynamics of this ecosystem. However,
most studies have focused exclusively on the bacterial component, the dominant domain, neglecting
fungi and other minority kingdoms [9]. GBA illustrates this trend well since few studies integrate
fungal analysis. No review to date has been devoted to the role of intestinal fungi—also named gut
mycobiome—in the microbiome-GBA, despite the key role conferred to fungi in digestive diseases [10].

In this review, we summarize the recent findings on the gut mycobiome and its major interactions
with the host and the other digestive microorganisms in order to decipher both the existence and
the role of a mycobiome-gut-brain axis. Finally, we review the existing literature assessing the links
between fungi, the digestive ecosystem, and neurological or neuropsychiatric disorders.

2. Gut Mycobiome: State of the Art

Unlike the bacteria that inhabit our digestive tract, the human gut mycobiome has been poorly
studied and characterized in healthy as well as in diseased individuals. Initially, the large-scale projects
such as the National Institutes of Health’s Human Microbiome Project (HMP) and Metagenomics
of the Human Intestinal Tract (MetaHIT) Project were focused exclusively on the bacterial flora to
characterize their composition and impact on human health and diseases [11,12]. Bacteria represent
huge quantities of microorganisms that inhabit the intestinal mucosa whereas fungi represent a tiny
part, estimated at less than 0.01% to 0.1% of genes in stool samples [13,14]. Furthermore, a large part
of these fungi are difficult to culture in vitro or are uncultivable [14]. However, the NGS development
has been valuable in revealing this poorly understood compartment of our whole microbiome [15].
The main steps of NGS mycobiome analysis are summarized in Table 1 [9,13,15–25].

Since fungi are ubiquitous in our environment—present in the air we breathe, in the food we eat,
such as bread, cheese, beer or even in antibiotics—nobody is fungus-free [14,26,27]. Therefore, fungi
have been recognized as an integral part of our commensal flora at different body sites (skin, lung,
vagina, oral tract, and gut) [28,29]. In the digestive tract, fungi seem to colonize the gut shortly after
birth [30,31]. Briefly, the fungal composition of gut flora is influenced by several factors such as age,
host genetics, host immunity, diet, and medication [32,33], as well as the bacterial microbiome that
also impacts the mycobiome through inter-kingdom interactions [33].

Despite a recent increased number of published data on the gut mycobiome, defining the
healthy gut mycobiome is still difficult, especially regarding the high inter- and intra-volunteer
variability of the mycobiome. In contrast with gut-associated bacteria, several studies have found
a lack of stability in the gut mycobiome over time and low abundance and diversity [13,34]. To
date, there is no consensus on the mycobiome “normobiosis,” a term referring to a balanced
composition of gut flora in healthy individuals (by contrast, a disruption of this balanced
microbial composition of gut flora is named “dysbiosis”). In most studies, Ascomycota is by
far the most prevalent fungus phylum in the gut, followed by Zygomycota (corresponding at
the previous phylogenetic classification, now distributed among Glomeromycota and several
subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina,
and Zoopagomycotina) and Basidiomycota phyla [33–36]. Hallen-Adams and colleagues [37] have
sequenced stool samples from 45 subjects and observed solely 72 operational taxonomic units (OTUs)
assigned as fungal sequences, which is clearly less than bacterial abundance. These OTUs were
distributed in two phyla (Ascomycota and Basidiomycota) and in ten classes of micromycetes. The
most abundant fungi were Candida tropicalis and yeasts belonging to Dipodascaceae. Interestingly, gut
fungi observed in this study included known human symbionts (Candida, Cryptococcus, Malassezia, and
Trichosporon spp.), environmental fungi (Cladosporium sp.), and food-associated fungi (Debaryomyces
hansenii, Penicillium roqueforti) [37]. These data reinforce the wide exposure of humans to molds
throughout a person’s life. Another NGS study identified 66 fungal genera within 96 stool samples
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collected from 50 patients, of which 12 were healthy control patients [33]. Saccharomyces corresponded
to the most prevalent genus followed by Candida and Cladosporium. A third study observed 75
fungal genera with Saccharomyces, Candida, and Penicillium being the most prevalent [38]. Recently,
for the gut mycobiome, Nash and colleagues sequenced 317 stool samples from the American HMP
project [13]. Gut-associated fungi in this healthy cohort were mainly composed of a high prevalence of
Saccharomyces, Candida, and Malassezia, with Saccharomyces cerevisiae, Malassezia restricta, and Candida
albicans being found in 96.8%, 88.3%, and 80.8% of the samples, respectively. Taking together these
studies confirms the lower diversity of gut mycobiome in healthy subjects compared to the gut bacterial
microbiome [13,33,37,38].

Even if the fungal component is a limited part of the gut ecosystem, it appears to be an essential
player of the human microbiome. The increasing interest in gut mycobiome, its dysbiosis, and its role in
the GBA is driven by recent data supporting its interactions with the host and the bacterial microbiome.

Table 1. Current metagenomic steps to analyze the mycobiome.

Metagenomic Steps Comments References

Extraction of fungal
communities

- Fungus cell wall is difficult to lyse: mechanical cell
disruption (bead beating) or enzymatic cell lysis
(lyticase) are usually used; currently, there is no
consensus adopted for mycobiome analysis.

- Commercial kits are rarely optimized for
fungal extraction

[15–17]

Libraries preparation

- Metagenomic target debate: Either internal transcribed
spacer (ITS1, ITS2) or 18S rDNA are used in mycobiome
analysis. In the same study [11], ITS2 and 18S rRNA loci
revealed similar results. While 18S primers were able to
detect the non-fungal eukaryotic flora, shotgun
metagenomics sequencing was in agreement with results
from ITS2 sequencing.

- Specific NGS method is able to distinguish living and
dead cells using pre-treatment with propidium
monoazide (PMA)

[8,12,16,18–20]

High-throughput
sequencing

- Usual sequencing platforms: Illumina (Miseq), Ion
Torrent (PGM))

- Uneven ITS length among fungal species may impact
species abundance in case of targeted
amplicon sequencing

- Whole genome sequencing (shotgun metagenomic) may
offer both accurate taxonomic assignments and
functional data at gene levels but requires higher cost
and intensive bioinformatic analysis

[16,18,20,21]

Bioinformatics analysis

- Preprocessing, OTU picking, and taxonomic
classification: lack of standardization even if QIIME
(Quantitative Insights Into Microbial Ecology), an
open-source bioinformatic pipeline, is one of the
most used

- Quality and completeness of fungal databases lead to
different proportions of unassigned sequences (17% of
the total OTUs in some studies [11])

- Improving taxonomic assignment quality requires an
up-dated fungal database (current databases: Unite,
Findley, RTL, TH)

[12,14,16,20,22–24]
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3. Mycobiome Interactions within the Gut Ecosystem

Similar to gut bacteria, the gut mycobiome contributes to physiological functions and homeostasis
throughout a host’s lifetime. The effect of the whole microbiome on host health is highlighted
by disruptions observed in germ-free mice models [39]. Here we summarize both experimental
and clinical data focusing on mycobiome interactions that may be involved in mycobiome-GBA
communication through immune and non-immune mediated crosstalk systems, similar to those
described in the microbiome-GBA [40].

A first example illustrating the dialogue between fungi and the host immune system is the
protective effect of Saccharomyces boulardii (the most common probiotic, isolated from fruit) against
Clostridium difficile colitis. In mice, a prior administration of S. boulardii increases the production
of immunoglobulin A (IgA), particularly of intestinal anti-toxin IgA [41]. Modulation of the host
immune response by S. boulardii has also been investigated by Thomas and colleagues [42] who
demonstrated that supernatants from S. boulardii cultures inhibit the inflammatory response of patients
with inflammatory bowel disease (IBD) by inhibiting the activation of T and dendritic cells. The
secretion of key pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin(IL)-6 are
also reduced [42]. In addition, S. boulardii promotes IL-10, an anti-inflammatory cytokine, and epithelial
growth factor production [42]. S. cerevisiae and C. albicans also seem to participate in immune system
maturation, inducing functional reprogramming of monocytes and leading to enhanced cytokine
production [43,44]. Furthermore, C. albicans is able to block monocyte nitric oxide production [44].
This “trained immunity” could be a key factor in the gut immune homeostasis by modulating both the
interaction of the host immune system with commensal microorganisms and the host defense against
pathogens [45]. Another illustration of this close link between fungi and the immune system is the
fungal dysbiosis observed in IBD, an intestinal inflammatory disorder considered as an inappropriate
immune reaction against the gut microbiome [46]. Several teams have studied the role of fungal
dysbiosis in the pathogenesis of IBD [10,47,48]. To illustrate the fungal impact on IBD, Wheeler and
colleagues increased the colitis severity of mice after antifungal administration [48]. Of note, increased
plasma levels of (1,3)-β-D-glucan (a major polysaccharide motif of fungal cell walls) are associated
with severe colitis in mice [49]. In addition, anti-S. cerevisiae antibodies (usually named ASCA) are
found to be significantly associated with Crohn disease (CD) in patients [50], which reinforces the
concept that fungi are implicated in the inflammatory immune disorder of IBD.

These data highlight the crucial dialogue between the host’s innate immune system and the
mycobiome, involving many actors (for review see [51]). Among them, Dectin-1 is one of the
most important pattern recognition receptors (PRRs) expressed by immune cells that interact with
β-glucan [52]. Dectin-1 knockout mice have more severe colitis compared to wild-type; furthermore,
polymorphisms of Dectin-1 gene are associated with increased severity of disease in patients with
ulcerative colitis (UC) [53].

Interactions between the gut mycobiome and the host system also influence extra-intestinal
immune responses. In mice for example, an antifungal administration induces a disruption of the gut
mycobiome, characterized by an expansion of Aspergillus amstelodami, Epicoccum nigrum, and Wallemia
sebi and a decrease of Penicillium brevicompactum and C. tropicalis. In parallel, this fungal dysbiosis
is clinically associated with a significant increase in allergic airway disease occurrence, which was
confirmed by an increased infiltration of inflammatory cells (mainly eosinophils) into animal lungs [48].
Moreover, fungal supplementation in normobiosis mice with these post-antifungal increased strains
(A. amstelodami, E. nigrum, and W. sebi, in order to reproduce the observed post-antifungal dysbiosis)
replicated effects similar to allergic airway disease occurrence [48]. Taken together, these results indicate
that the commensal mycobiome may be a crucial factor in gut and systemic immunological disorders,
based on systemic diffusion of either cytokines, fungal products or metabolites, or micromycetous
translocation [49].

On the non-immune mediated crosstalk side and focusing on GBA, fungi are able to synthesize
and release neurotransmitters, similar to many bacteria. S. cerevisiae and Penicillium chrysogenum
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can produce high concentrations of norepinephrine [54], which is involved in brain activation.
This neuromediator increases locomotor activity and aggressive behavior and decreases anxiety
reactions. In addition, C. albicans is able to produce histamine, another neuromediator involved in
appetite regulation, sleep–wake rhythm, and cognitive activity [55]. The direct impact of these
mycobiome-produced neuromediators is not entirely clear yet. Even if these neurotransmitters
seem unlikely to directly modulate CNS, they could locally act on the enteric nervous system (ENS).
Conversely, neuromediators may have an impact on gut fungi. For example, gamma-aminobutyric
acid (GABA) is able to increase virulence and germ tube formation of C. albicans [56], while serotonin
attenuates the C. albicans virulence [57].

Finally, inter-kingdom interactions between fungi and bacteria at the gut site may also
be implicated in the mycobiome-GBA. While gut bacteria are a known essential actor of the
microbiome-GBA [2], mycobiome equilibrium has also been demonstrated as being critical for
microbiome stability in a mice model of colitis [49]. In this model, an antifungal exposition induced a
fungal diversity decrease along with an increased bacterial diversity, aggravating colitis inflammation
and severity [49]. In healthy subjects, Hoffmann and colleagues uncovered specific and significant
fungal-bacterial correlations in gut flora [33]. In addition, in the case of bacterial intestinal dysbiosis,
such as after antibiotic exposure, commensal fungi or mono-fungal supplementation with C. albicans
or S. cerevisiae can have the same protective benefits as intestinal bacteria in terms of immune system
modulation and prevention of mucosal tissue injuries [58]. At molecular levels, S. boulardii is able
to secrete enzymes, such as proteases or phosphatases, which can inactivate toxins produced by
highly inflammatory intestinal pathogens such as C. difficile and E. coli [59,60]. This yeast also
directly inhibits the growth and dissemination of several intestinal pathogens, such as C. albicans,
Salmonella typhimurium, and Yersinia enterocolitica [61]. Additionally, β-glucan decreases E. coli
abundance in animal stools [62], a result suggesting a notable influence of this major fungus wall
component on the intestinal growth of E. coli and other bacteria, which in turn supports inter-kingdom
interactions. On the other hand, C. albicans germination is modulated by fatty acids produced locally
by bacterial flora [63]. Therefore, we may consider the possibility that the impact of fungi on GBA is
due to the local interplay between bacteria and fungi, even though no study has yet focused specifically
on this aspect.

These interactions clearly suggest a potential implication of the mycobiome in GBA and, therefore,
in various psychiatric and neurological diseases. In the next section, we review evidence of the
digestive and neurological aspects of mycobiome influence.

4. Mycobiome-Gut-Brain Axis (GBA): Current Evidence from Digestive and Central Nervous Aspects

On the digestive side, many studies have been devoted to the role of gut bacteria in the gut-brain
crosstalk. Consistent with this concept, germ-free mice are affected by myelination problems [64] and
anxiety-like behavior [65,66], while fecal transplantation modulates this behavior, suggesting once
again some strong interactions between the brain and the microbiome [67]. The specific role of gut
mycobiome in the communication with the brain is nearly unexplored in the whole microbiome-GBA
research field but it is becoming increasingly clear that fungi may have an impact on GBA. Both
clinical and experimental data suggest that fungi participate in this dynamic relationship through
neuro-immuno-endocrine mediators similar to those described in the microbiome-GBA crosstalk [40].
Numerous evidence consistent with a complex communication network between the gut mycobiome
and the brain exists; they are summarized and discussed below.

One main evidence for a key role of the mycobiome in GBA is mycobiome dysbiosis identified
in irritable bowel syndrome (IBS). For patients with IBS, a microbiome-GBA disorder is now
recognized [68]. It is associated with altered cognitive functions, hypothalamic-pituitary-adrenal
axis (HPAA) dysfunctions with lower total cortisol levels, and gut bacterial dysbiosis [69]. In a rat
model, antibiotic-induced dysbiosis results in visceral hypersensitivity, a specific clinical trait of rodent
IBS models [70]. Furthermore, some studies have shown an efficacy of probiotics in IBS patients [71].
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Recently, a mycobiome dysbiosis was also associated with visceral hypersensitivity in a rat model and
with human IBS [72], whilst S. boulardii supplementation improved gastrointestinal neuromuscular
anomalies in a mouse IBS model [73]. These data pave the way for future studies that aim at identifying
the specific part of fungi in microbiome-GBA disorders associated with IBS.

Shifts in mycobiome composition have also been reported in various intestinal diseases (for review
see [9]), especially in IBD for which an increased fungal load in patients with CD and UC was observed
in comparison to healthy controls [10], as well as disease-specific inter-kingdom alterations [10,47,74].
Moreover, depression and psychiatric comorbidities occurred in IBD and have been associated with a
systemic inflammation [75]. For example, IL-1 and IL-6 are able to increase cortisol release by HPAA
stimulation [76]. Furthermore, patients with depressive disorders exhibit HPAA perturbations with
elevated cortisol levels. As previously seen, the mycobiome participates in modulating cytokine
production, such as either C. albicans, A. fumigatus or S. cerevisiae with IL-6 [43,77]. Thus, it has been
proposed that immune pathways play a critical role here and are mediated by cytokines produced at
the gut site, reaching the brain via the bloodstream. These molecules may cross the blood-brain barrier
(BBB) and modulate brain area stimulations, particularly the hypothalamus and circumventricular
organ stimulations where the BBB is underprovided [78].

In germ-free animals, an increased BBB permeability has been shown, coming from a reduction in
tight junction protein expression; this permeability can be decreased after microbial colonization of
the mouse digestive tract. BBB permeability is also decreased after gut colonization by short-chain
fatty acid (SCFA)-producing bacteria or direct SCFA administration [79]. As fatty acid synthesis fulfills
numerous central biological roles in living cells, fatty acid synthase (FAS) is one of the most conserved
enzymes of cells including fungal cells. FAS has been described from a variety of yeasts and fungi, such
as S. cerevisiae, C. albicans, other Candida species, Cryptococcus neoformans, and Penicillium species [80].
As fungi such as S. cerevisiae or even Aspergillus fumigatus are also able to produce short-chain fatty
acids [81], we can reasonably hypothesize that the gut mycobiome could use the same pathway;
however, no study has explored this hypothesis.

Regarding the central nervous diseases (psychiatric and non-psychiatric ones), the involvement of
the human gut mycobiome in the pathophysiology of central nervous diseases has received increased
attention in the last few years. The gut mycobiome of an anorexic patient was investigated with
culture-dependent and independent approaches. In this case report, the fungal diversity seemed
to be decreased with a total of ten different fungal species identified, notably Aspergillus ruber,
Penicillium solitum, Cladosporium bruhnei and Tetratrichomonas sp. that have not been previously
detected in human stools [82].

Another recent study showed for the first time an alteration of the gut mycobiome composition
in patients with autism spectrum disorders (ASD), with a trend in increased Candida abundance [83].
Given the microbiome influence on ASD based on the increased gastrointestinal problems in this
population [84], and given the alteration of BBB permeability and CNS immune response observed in
ASD [85] that may be affected by systemic inflammation [86], this over-representation of Candida could
play a notable role. It may stimulate the host immune response through interactions with specific
species such as Lactobacillus and may increase IL-22 production [87], a cytokine implicated in the
pathogenesis of several autoimmune diseases such as CD and rheumatoid arthritis [88,89]. The Candida
over-representation may also prevent recovery of a normal flora from a perturbed bacterial flora [90].

Rett syndrome is another progressive neurological genetic disorder often associated with
gastrointestinal dysfunctions and constipation. Once again, an increase in the abundance of Candida
species was described in patients affected by Rett syndrome [91]. In both Rett syndrome and ASD,
a predisposition to fungal infections was likewise observed that can, in turn, contribute to systemic
responses [92].

Furthermore, a recent study has demonstrated that oral administration of Candida kefyr protects
mice from developing experimental autoimmune encephalomyelitis, an animal model of multiple
sclerosis [93]. This protection was associated with a bacterial microbiome dysbiosis, an increase
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of regulatory T cells in mesenteric lymph nodes, and a reduction in T-helper 17 cells on the
digestive mucosa.

A fungal dysbiosis was found in individuals with schizophrenia, characterized by an increase in
C. albicans and S. cerevisiae species [94,95]. Moreover, the presence of antibody against C. albicans
is associated with gastro-intestinal disorders as well as lower scores on cognitive tests in these
patients [95]. A supplementation with a probiotic formulation composed of Lactobacillus rhamnosus
and Bifidobacterium animalis significantly reduced blood levels of C. albicans antibodies and improved
psychiatric symptoms [96].

5. Concluding Remarks

It is now well-admitted that the role of the gut microbiome in GBA represents a complex
bidirectional system of communication that includes neuro-immuno-endocrine mediators and network
pathways between gut mucosa, ENS, and CNS [40,97,98]. In addition to interactions with local
bacterial flora and, therefore, acting indirectly on GBA, the gut mycobiome seems to share with the gut
microbiome numerous communication processes, which allow us to propose some downward and
upward pathways for a mycobiome-GBA in the context of health and disease. These proposed
mechanisms of communication between gut mycobiome and GBA are summarized in Figure 1.
Furthermore, our growing knowledge on the gut mycobiome, its key role on gut flora equilibrium,
and its highly probable role in the whole microbiome-GBA may provide new insight for therapeutic
management of neurological and neuropsychiatric disorders such as probiotic administration [73].
In addition, the mycobiome component of gut flora should be systematically taken into account when
the gut-microbiome analysis is assessed during clinical trials on GBA.
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