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Abstract

Objectives

To assess the efficacy of Y-chromosome mini-STR-based next-generation sequencing

(NGS) for non-invasive prenatal paternity testing (NIPPT).

Methods

DNA was extracted from the plasma of 24 pregnant women, and cell-free fetal DNA

(cffDNA) haplotyping was performed at 12 Y-chromosome mini-STR loci using the Illumina

NextSeq 500 system. The cffDNA haplotype was validated by the paternal haplotype. Sub-

sequentlly, the paternity testing parameters were attributed to each case quantitatively.

Results

The biological relationship between the alleged fathers and infants in all 24 family cases

were confirmed by capillary electrophoresis (CE). The Y-chromosome mini-STR haplotypes

of all 14 male cffDNA were obtained by NGS without any missing loci. The alleles of cffDNA

and paternal genomic DNA were matched in 13 cases, and a mismatched allele was

detected at the DYS393 locus in one case and considered as mutation. No allele was

detected in the 10 female cffDNA. The combined paternity index (CPI) and probability of

paternity calculation was based on 6 loci Y-haplotype distributions of a local population. The

probability of paternity was 98.2699–99.8828% for the cases without mutation, and

14.8719% for the case harboring mutation.

Conclusions

Our proof-of-concept study demonstrated that Y-chromosome mini-STR can be used for

NGS-based NIPPT with high accuracy in real cases, and is a promising tool for familial

searching, paternity exclusion and sex selection in forensic and medical applications.
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Introduction

The conventional prenatal paternity testing methods rely on invasive amniocentesis or chori-

onic villus sampling, which may lead to pregnancy-related complications and increase the pro-

cedure-related risk of miscarriage to 0.35% [1, 2]. Lo et al. [3] first isolated cell-free fetal DNA

(cffDNA) from maternal plasma in the 1990s, which paved the way for developing non-inva-

sive prenatal testing techniques [4]. Currently, non-invasive prenatal testing is widely used for

detecting the rhesus D blood type [5], fetal aneuploidy like Down syndrome [6], fetal sex [7]

and paternity [8]. Approximately 99% of the cffDNA is shorter than 313 base pairs (bp), and is

largely derived from trophoblast destruction, or the apoptosis of fetal hematopoietic cells and

trans-placental transfer to a lesser extent [9, 10]. A previous study showed that the circulating

cffDNA had a mean half-life of 16.3 min and was undetectable in the maternal plasma 2 h

post-delivery. This indicates that cffDNA testing is not affected by carryover from previous

pregnancies [11].

In forensic science, Y-STR typing is used as an additional tool for confirming the paternity

or identifying individual male sequences in complex DNA mixtures along with autosomal STR

typing [12, 13]. Due to its uniparental inheritance, the results of Y-STR typing are interpreted

on the basis of haplotype distribution, which reveals the familial relationship pattern [14]. A

major challenge in non-invasive prenatal paternity testing (NIPPT) is the detection of fetal-spe-

cific markers from the paternal genetic material in the maternal plasma. Therefore, autosomal

STR-based prenatal paternity testing is not used frequently due to maternal DNA contamina-

tion and the requirement of short target sequences. Since Y-specific cffDNA can be easily distin-

guished from the abundant maternal DNA signals in the maternal plasma, detection of Y-

chromosome markers can be used to assess the paternity of male fetuses by capillary electropho-

resis (CE) or SNP-based next-generation sequencing (NGS) [15, 16]. In addition, mini-STR loci

detection is an effective strategy for recovering genetic information from highly degraded DNA

samples, and was solely used to fingerprint 20% of the degraded DNA samples from the after-

math of the 9/11 World Trade Centre terrorist attacks with reduced PCR amplicon sizes [17,

18]. The aim of our study was to evaluate the efficacy of Y-chromosome mini-STR-based NGS

for NIPPT, and quantify the extent of match using paternity testing parameters.

Materials and methods

Sample collection

Peripheral blood samples were collected from 24 pregnant women undergoing prenatal tests,

and their male partners, at the Dalian Blood Centre from April 2018 to December 2019. The

age of the women ranged from 26–38 years, and the gestational age ranged from 21–37 weeks

(17 women in the second trimester and 7 in the third trimester). Buccal swabs were collected

from the infants after delivery. All participants signed the informed consent, and the study was

approved by the Dalian Blood Centre Ethics Committee.

DNA extraction

Around 5 mL peripheral blood was collected from the pregnant women in anticoagulant-

treated tubes. Plasma was isolated from the whole blood sample using two-step centrifugation

at 1500 ×g for 10 min and 13,000 ×g for 10 min [19]. The supernatant was collected and stored

at -80˚C. Plasma DNA was extracted from 2 mL cell-free maternal plasma using the MagPure

Circulating DNA Maxi Kit (Angen Biotech, Guangzhou, China) and eluted with 60 μL water

according to the manufacturer’s instructions. The 2800M Control DNA (Promega, Madison,

WI, USA) was used as the positive control, and nuclease-free water was used as the PCR blank.
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Genomic DNA was extracted from the peripheral blood of the pregnant women and their hus-

bands, and from the buccal swabs of infants using HiPure Tissue & Blood DNA Kit (Angen

Biotech). The quantity and purity of the 1 μL extracted DNA were determined by sodium

dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with Tanon 1600 Gel Imag-

ing System (Shanghai Tanon Science & Technology, Shanghai, China) and NanoDrop 2000

spectrophotometry (Thermo Fisher Scientific, Waltham, MA, USA) respectively. Presence of

contaminants such as RNA and proteins can increase the absorbance of the DNA samples at

260, resulting in overestimation of DNA concentration. Therefore, spectrophotometric mea-

surement of DNA was supplemented with SDS-PAGE to avoid interference from these con-

taminants. The DNA concentration of each sample was estimated on the basis of a molecular

weight marker band.

Paternity testing by Capillary Electrophoresis (CE)

Paternity testing was performed using the Microreader™ 21 ID System (Microread Genetics,

Beijing, China) and Microreader™ 29Y ID System (Microread Genetics, Beijing, China). The

genomic DNA extracted from all subjects was amplified using Life ECO Thermal Cycler

(Bioer Technology, Hangzhou, China) according to the manufacturer’s instructions. Autoso-

mal STR genotyping was performed using the 3130 Genetic Analyzer system (Thermo Fisher

Scientific). The genotyping results were analysed using GeneMapperTM v3.0 software

(Thermo Fisher Scientific).

Library preparation and NGS

One microliter DNA extract from cell-free maternal plasma was amplified using the barcoding

primers of the following 12 Y-chromosome mini-STR loci: DYS439, DYS437, DYS643,

DYS393, DYS570, DYS392, DYS549, DYS460, DYS458, DYS576, DYS438 and DYS533 (S1

Table). The 2800M Control DNA was used to construct the library. The DNA library was pre-

pared using KAPA Library Amplification Kit (Illumina, San Diego, CA, USA) according to the

manufacturer’s instructions. Specialized adapters and indexes were added to both ends of bar-

coding sequences (Fig 1). Targeted amplifications were performed in single-tube reactions on

a VeritiTM 96-Well Thermal Cycler (Applied Biosystems, Foster City, CA, USA) with the fol-

lowing cycling conditions: 95 ˚C for 5 min; 35 cycles of 94 ˚C for 30 s, 55 ˚C for 4 min; 72 ˚C

for 60 min. Sample indexing with specialized adapters was performed with the following

parameters: 95 ˚C for 5 min; 15 cycles of 95 ˚C for 30 s, 60 ˚C for 30 s, 72 ˚C for 30 s; 72 ˚C for

5 min. The quantity and purity of the DNA libraries were assessed by SDS-PAGE. Subse-

quently, the adapter-ligated templates were purified using MagPure A3 XP beads (Angen Bio-

tech). The libraries were quantified with KAPA Library Quant DNA Standards & Primer

Premix Kit (Illumina) using the Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA,

USA). Each DNA library was normalized to 2nM and pooled in equal volumes. Finally, the

DNA libraries were diluted to the concentration of 10pM and sequenced by paired-end 150 bp

reads on the NextSeq 500 system (Illumina) (Fig 1).

Data analysis

Quality control (QC) analysis of raw FASTQ data was performed using FastQC software. The

FASTQ reads were mapped against reference sequences from GenBank to determine the mini-

STR haplotypes of plasma DNA. The sequence and length variants per sample per locus were

compiled and counted. The signal noise and stutter ratio of each locus was evaluated indepen-

dently. The mini-STR haplotyping results of cffDNA were validated by that of paternal geno-

mic DNA (Fig 2).

PLOS ONE Y-chromosome mini-STR-based NGS for NIPPT

PLOS ONE | https://doi.org/10.1371/journal.pone.0266332 April 1, 2022 3 / 11

https://doi.org/10.1371/journal.pone.0266332


Fig 1. Schematic representation of library preparation and NGS. Data for D3S1358 is shown as a representative

example. (a) Amplification of the target sequence with barcoding primers. (b) Second PCR amplification adding

specialized adapters and indexes to both ends. (c) Purification of the amplicon and pooling multiple libraries together.

(d) Linearization of DNA libraries. (e) Loading DNA libraries onto the flow cell. (f) Bridge PCR amplification. (g)

Cluster generation. (h) Paired-end sequencing. (i) Base calling, alignment and data analysis.

https://doi.org/10.1371/journal.pone.0266332.g001
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Calculation of paternity testing parameters

The combined paternity index (CPI) was calculated according to Eq (1) derived from Rolf’s

equation [20] where fs is the frequency of the son’s haplotype, μ is the mutation rate, n is the

total number of Y-STR haplotypes, and m is the number of loci where the paternal and filial

haplotypes differ. Probability of paternity was calculated by Eq (2) [21]. The CPI and probabil-

ity of paternity rely on the haplotype distribution in the local population. The haplotype fre-

quencies of the DYS392, DYS393, DYS438, DYS439, DYS437 and DYS458 loci were obtained

from Guo’s report [22] on the population genetics of Y-STR loci in the Liaoning population,

which is the only local genetic information available at the Y-Chromosome STR Haplotype

Reference Database (YHRD) (https://yhrd.org/). Given the limited information on the Y-STR

loci haplotypes in the Liaoning population, only 6 out of the 12 loci tested in our study could

be used for estimating haplotype frequencies. For example, one of 14 Y-haplotypes with 6 loci

in our study matches two of the 838 Liaoning haplotypes available at the YHRD, that results in

a haplotype frequency of 0.003521 ((1+2)/(14+838)).

Then, CPI and probability of paternity can be calculated based on this haplotype frequency.

According to Eq (1), m = 0 and n = 1 were used in cases without mutation, CPI ¼ 1

fs. For the

case with a mutation, the mutation rate μ can be calculated from YHRD. According to Eq (1),

m = 1 was used, and CPI ¼
1
2
m

fs .

If m ¼ 0;CPI ¼
Qn

a¼1

1

fs

If m > 0;CPI ¼
Qm

b¼1

1

2
m

fs
X
Yn

a6¼b

1

fs

ð1Þ

Probability of paternity ¼
CPI

CPI þ 1
ð2Þ

Fig 2. Flow chart for experimental procedures and data analysis.

https://doi.org/10.1371/journal.pone.0266332.g002
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Results

Paternity validation

Paternity testing with mother, alleged father and infant was performed using commercial auto-

somal STR genotyping kits by CE, which confirmed the biological relationship between the

fathers and infants in all 24 family cases.

STR haplotype-match analysis between cffDNA and paternal genomic

DNA

The quantities of the 24 cell-free fetal DNA extracts are shown in S2 Table. Plasma DNA sam-

ples were sequenced on the Illumina NextSeq 500 platform, and the number of reads per sam-

ple per locus is shown in Fig 3. The average number of the sequence reads for each sample was

283535 (range 84732–819334). The target sequence length of all 12 mini-STR loci was less than

150 bp, of which only 3 STR loci were shorter than 150 bp as per CE (Fig 4). The Y-chromo-

some mini-STR haplotyping results of 14 male cffDNA samples were obtained without missing

loci with NGS. The alleles of cffDNA and paternal genomic DNA were matched in 13 cases,

whereas one mismatched allele (14!15) was detected at DYS393 in one case. Given the posi-

tive paternity identification, the mismatched allele at DYS393 was considered a mutation. No

allele was detected in the 10 female cffDNA samples (S3 Table).

Calculation of paternity testing parameters

The probability of paternity using cffDNA was 98.2699–99.8828% for the cases without muta-

tion. The mutation rate of DYS393 is 0.00123 according to YHRD, and taking that into

account, the CPI and probability of paternity for case No. 14 were 0.1747 and 14.8719% respec-

tively (Table 1).

Fig 3. The NGS sequencing reads per sample per locus of plasma DNA (range: 1068–140045 reads).

https://doi.org/10.1371/journal.pone.0266332.g003
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Discussion

Capillary Electrophoresis is the routine technique used for STR typing, and is widely used for

individual and paternity tests in forensic investigations [23, 24]. NGS is a supplementary tool

for forensic genetics owing to the large amount of genetic information that it can provide and

process, high throughput function and low costs [25, 26]. Since the length of cffDNA in the

maternal plasma is approximately 145-201bp, only short amplicons are available for fetal DNA

analysis [9, 27]. Amplicons with similar length must be labelled with different fluorescent

markers for CE, which limits the number of loci that can be multiplexed together. In contrast,

NGS uses barcodes and index adapters that precludes the need for size separation between

amplicons. As a result, numerous loci and multiple samples can be simultaneously analyzed in

a single reaction. The mini-STRs were redesigned with primers flanking the repeat region to

reduce the amplicon size for small DNA fragment detection [17]. Compared to the commer-

cial kits using CE with amplicon length of 79–430 bp, the mini-STR amplicon lengths analyzed

by NGS in our study were all less than 150 bp (Fig 4). Several reports have been published on

SNP-based prenatal paternity testing combined with microarrays [28]. Since it relies on the

differences in paternally versus maternally inherited SNP alleles, millions of SNPs have to be

analyzed due to low polymorphism information content (PIC) leading to statistics with lower

power. In addition, the routine use of SNPs in forensics is controversial since some SNPs may

be present in the coding regions with bioethical implications stemming from confidentiality

and privacy concerns since they may disclose sensitive information or are modified due to dis-

ease [29]. In contrast, STRs are widely used for routine forensic applications, and only a set of

Fig 4. Overview of target sequence length for all STR loci as per NGS and CE. Target sequence indicates the PCR amplicon without barcoding

and adapter primers.

https://doi.org/10.1371/journal.pone.0266332.g004
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12 STR loci is sufficient for paternity testing [30, 31]. Therefore, given the limitations of CE

and SNP-based NGS, mini-STR-based NGS with high testing capacity and high PIC is a better

choice for NIPPT. According to the guidelines of International Society for Forensic Genetics

(ISFG), CPI and probability of paternity should be calculated in paternity testing [32, 33]. Due

to strong linkage disequilibrium, the multiplying of single locus allele frequencies cannot be

used for Y-STR CPI calculation. Instead, Y-STR-based paternity testing relies on complete

haplotype frequencies [12]. In 7 of the 14 cases, the fetal haplotype were not detected in the

838 Liaoning haplotypes reported by Guo et al [22]. According to the ISFG algorithm [14], the

haplotype frequency of these cases was 0.0012 (1/852), and the CPI and probability of paternity

were 852 and 99.8828% respectively. Since most mutations in the STR loci are caused by DNA

strand slippage during DNA replication, the Y-STR loci mutate independent of each other [12,

34]. In our study, one cffDNA sample had a mismatched allele (14!15) at DYS393, which was

considered a mutation since paternity had been validated by CE. The sequencing result

showed that the repetitive [AGAT] motif of fetal and infant allele had an extra repeat com-

pared to the paternal allele. Unlike the autosomal loci, Y-STR haplotyping may lead to false-

positive results if the alleged father and child belongs to the same paternal lineage [16]. For

example, the fetus may have the same Y-chromosome as his biological father’s brother or even

grandfather’s brother. In this case, Y-STR haplotyping is ineffective if the alleged father and

biological father share the exact same Y-chromosome. Thus, Y-STR results must be confirmed

with autosomal STR markers when the samples can be safely collected from the babies after

birth or from aborted embryos. For this reason, Y-STR haplotyping is normally used along

with autosomal STR genotyping to determine paternity. However, it is a viable option in foren-

sics for identifying the paternal male relatives of an unknown perpetrator during large-scale

voluntary DNA screening, whereas autosomal STR profiling can only trace the close relatives

of the perpetrator [12]. In cases of sexual assault, the cffDNA from pregnant victims bearing

male fetuses may provide valuable information regarding the DNA sequence of the perpetra-

tor. Furthermore, for pregnant women with more than one sexual partner, NIPPT with Y-

chromosome mini-STR can help exclude paternity if the male fetus and alleged father show no

match. Although prenatal screening has been widely accepted, NIPPT is fraught with ethical

Table 1. The paternity testing parameters using cffDNA in the 14 cases with male fetuses.

Case No. Haplotype frequency CPI Probability of paternity

1 0.001174 852 99.8828%

2 0.017606 56.8 98.2699%

3 0.001174 852 99.8828%

4 0.003521 284 99.6491%

5 0.005869 170.4 99.4166%

6 0.001174 852 99.8828%

7 0.003521 284 99.6491%

8 0.001174 852 99.8828%

9 0.001174 852 99.8828%

10 0.003521 284 99.6491%

11 0.001174 852 99.8828%

12 0.001174 852 99.8828%

13 0.002347 426 99.7658%

14a 0.003521 0.1747 14.8719%

aThe case with a mutation at DYS393

https://doi.org/10.1371/journal.pone.0266332.t001
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concerns [35]. It is at present illegal in China in order to avoid its misuse in determining sex of

the fetus or in establishing paternity. Nevertheless, we recommend that NIPPT with Y-chro-

mosome mini-STR should be used for unwanted pregnancy as the result of sexual assault or

for sex selection in case of gene defect and inherited disease. Sex selection can be a double-

edged sword, especially among the economically underprivileged population. While prefer-

ence for male children leads to significant social problems, medical sex selection can preclude

the burden of a child with inherited disease. Nevertheless, avoiding non-medical sex selection

remains a serious issue globally.

For the cffDNA samples with no Y-chromosome allele, the sex of all the infants had been

determined through paternity testing by CE in our study. Thus, the cffDNA samples lacking

Y-chromosome were known before NIPPT. However, in order to conduct a more rigorous

study design, an internal control like Amelogenin locus should be included to distinguish

DNA amplification failure or absence of Y-chromosome.

In summary, we established the proof-a-concept of Y-chromosome mini-STR-based

NIPPT through NGS, which showed high accuracy in real cases and identified a mutation at

DYS393. CPI and probability of paternity were calculated based on the local Y-STR haplotype

frequencies. The discrimination power could be increased with the availability of more infor-

mation regarding the haplotype. As an alternative of CE and SNP-based NGS, our approach

can aid in familial searching, paternity exclusion and sex selection in forensic and medical

applications.
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