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Abstract: Tailing sand contains a large number of heavy metals and sulfides that are prone to
forming acid mine drainage (AMD), which pollutes the surrounding surface environment and
groundwater resources and damages the ecological environment. Microbially induced calcium
carbonate precipitation (MICP) technology can biocement heavy metals and sulfides in tailing sand
and prevent pollution via source control. In this study, through an unconfined compressive strength
test, permeability test, and toxic leaching test (TCLP), the curing effect of MICP was investigated
in the laboratory and the effect of grouting rounds on curing was also analyzed. In addition, the
curing mechanism of MICP was studied by means of Fourier transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA), X-ray diffraction spectroscopy (XRD), and scanning electron
microscopy (SEM). The experimental results showed that MICP could induce calcium carbonate
precipitation through relatively complex biochemical and physicochemical reactions to achieve the
immobilization of heavy metals and sulfides and significantly reduce the impact of tailing sand on
the surrounding environment.

Keywords: acid mine drainage (AMD); microbially induced calcium carbonate precipitation (MICP);
source control; biochemical and physicochemical reactions

1. Introduction

One of the most relevant environmental concerns currently faced by the mining indus-
try is acid mine drainage (AMD) [1]. The sulfur minerals contained in pyrite tailings un-
dergo an oxidation reaction under the joint action of chemical oxidants and Thiobacillus ferro
oxidants to form AMD [2]. The pH value of AMD is usually very low (in severe cases, the
pH value can reach 2). In addition, it is rich in SO4

2− ions, Fe3+ ions, and easy to leach toxic
elements such as lead, arsenic, chromium, cadmium, and copper from waste ore [3]. AMD
has become a major obstacle to sustainable development because of its large volume, wide
range, serious pollution, and difficult governance [4]. AMD source control technology can
inhibit the oxidation of sulfur minerals through some technical means according to the
formation mechanism of acid wastewater from tailings, so as to control the formation of
acid water. The oxidation of pyrite is a slow process if it is covered with water or other
inhibiting layers. Therefore, some researchers have proposed the use of physical barriers to
inhibit the oxidation responsible for AMD, e.g., fly ash and sludge layers [5,6] or natural
soil [7].

Microbially induced carbonate precipitation (MICP) technology has several advan-
tages: it is a low-carbon, high-efficiency, green, and ecological method [8–10]. It can gen-
erate carbonate precipitate by combining CO3

2− produced during microbial metabolism
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with Ca2+ ions to enhance soil strength, reduce soil permeability, and immobilize heavy
metals [11–15]. MICP technology has been proven to be effective in improving soil
strength [16–21] and cementing heavy metals [22,23]. Many recent studies have shown that
MICP technology can effectively reduce the porosity and permeability of porous media. For
example, Stabnikov et al. [24] reduced the permeability of sand columns by three orders of
magnitude through the process of biomineralization. Gustavo et al. [25] used two ureolytic
strains (UB3 and UB5) of Sporosarcina luteola investigated to induce the sequestration of
metals by the precipitation of carbonates in vitro and under microcosm conditions. Zeinab
Piervandi et al. [26] used indigenous bacteria to fix heavy metal elements in tailings sand
and showed that the passivation layer could adsorb heavy metals. Heavy metals could
also be co-precipitated with the passivation layer, which brought about the main methods
used for removing toxic elements. The practice has demonstrated that MICP technology
can reduce the acid mine wastewater pollution of groundwater and surface by forming a
biocement barrier with good durability on the surface of the tailings sand accumulation [27].
In addition, the resulting calcium carbonate can also co-precipitate with heavy metal ions
in the tailings sand, preventing the heavy metals from diffusing into the surrounding
environment [28–31].

In this study, the effects of different grouting times on the engineering properties
and environmental effects of MICP-biocemented pyrite tailings were explored under the
following optimal conditions [32]: (1) the bacterial liquid had an OD600 value of 1.8;
(2) the concentration of cementitious liquid was 1.0 mol/L; and (3) the urea-to-calcium-
chloride ratio was 1:1. The mineral composition, thermal stability, and microstructure
of the biocemented samples were studied via X-ray diffraction (XRD), Fourier transform
infrared absorption spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning
electron microscopy (SEM). The biochemical mechanism underpinning the biocementation
of pyrite tailings by MICP was revealed through macroscopic mechanical properties and
microstructure characteristics, which indicated that the technique may have a significant
impact on environmental remediation.

2. Materials and Methods
2.1. Pyrite Tailings

The pyrite tailings sand used in this study was collected from Xinqiao tailings pond,
Tongling City, Anhui Province. The pyrite tailings were in a relatively wet state, and the
pH value of the surface pyrite tailings was measured as 7.02. The loose bulk density of
the tailings sand was determined using the ring knife method, and the specific gravity
of the tailings was measured using the pycnometer method (JTGE40-2007); the recorded
values were 1.33 g/cm3 and 3.02, respectively. The test results are shown in Figure 1. It
can be observed that d60 was 5.32 µm, and d10 was 1.26 µm. Therefore, we calculated the
uniformity coefficient (Cu) as 1.22, which is smaller than 5. These results indicated that
most of the tailings sand particles were well-graded.

The XRF results of the pyrite tailings are shown in Table 1. The pH of the pyrite tailings
sand was slightly acidic. The pH value of pyrite tailings sand that was left for a period of
time was 4.75, indicating that the sulfur content was high, which was consistent with the
XRF test results.

In order to clarify the content and migration ability of heavy metals in the sample, the
TCLP method was used; in addition, the SO4

2− content was detected via ion chromatogra-
phy. The detection results are shown in Table 2.

2.2. Microorganisms and Culture Medium

Sporosarcina pasteurii (S. pasteurii, ATCC 6452), a non-pathogenic bacterium with high
urease activity, was used for MICP in this study [33,34]. The bacterial solution was prepared
by inoculating bacterial colonies into the NH4-YE solution medium (20 g/L yeast extract,
10 g/L (NH4)2SO4, and 0.13 M Tris-base) and was then subjected to shaking incubation at
30 ◦C for approximately 24 h until the optical density at 600 nm (OD600) reached the desig-
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nated value. The OD600 value was measured using a UV–Visible spectrometer (Shanghai
Analytical Instruments Co., Ltd., Shanghai, China). The prepared bacterial solution was
then stored at 4 ◦C. Prior to its use in the experiment, the solution was firstly re-harvested
in a fresh growth medium. When bacterial cells reached the exponential growth stage
during resuscitation, they were inoculated into the solution for the formal test. The NH4-YE
medium, CaCl2, and urea solutions were sterilized by autoclaving at 121 ◦C for 20 min.

Y = 8.59 × 107Z1.3627 (1)

where Y is the cell concentration (cells/mL), and Z is the OD600 value.
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Table 1. Sample tailings XRF analysis and datasheet.

Component Quality Score (%) Contains Elements Elemental Content
per Kilogram (mg)

SiO2 30.61 Si 14,284,666.67
Fe2O3 21.52 Fe 230,554.52
SO3 19.52 S 168,028.16
CaO 10.87 Ca 151,558.86

Al2O3 7.62 Al 21,925.43
K2O 2.10 K 6639.13
MgO 1.42 Mg 1789.20
MnO 1.08 Mn 1188.00
ZnO 0.07 Zn 60.67
CuO 0.06 Cu 3.35
PbO 0.03 Pb 1.67

Table 2. Contents of heavy metal elements and SO4
2– in sample tailings.

Leached Iron Cu2+ Zn2+ Mn2+ Pb2+ SO42−

Content (mg/kg) 0.50 0.45 27.18 0.03 358.21

2.3. Specimen Preparation
2.3.1. Test Device

The sample mold was an acrylic tube with an outer diameter of 45 mm, a wall thickness
of 3 mm, an inner diameter of 39 mm, and a height of 100 mm, cut into two semicircular
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C-shaped acrylic tubes. First, the upper and lower ends of the pipe were fixed with pipe
hoops, the bottom end of the pipe was wrapped with 450-mesh nylon cloth, and gravel
with a particle size of about 2 mm was added to the pipe at a height of about 10 mm,
and 60-mesh nylon cloth was laid on the upper end of the gravel. Then, the dried and
pulverized pyrite tailings were added, 60-mesh nylon cloth was laid on the upper end of
the pyrite tailings, and gravel with a particle size of about 2 mm was added to the top of
the pipe. The dry density of the samples was 1.60 g/cm3, which was the optimum dry
density of MICP-biocemented fine sand.

2.3.2. Curing Test

In order to explore the effect of grouting times on the curing effect under optimal
conditions [32]—i.e., an OD600 value of the bacterial liquid of 1.8, a concentration of
cementitious liquid of 1.0 mol/L, and a urea-to-calcium-chloride ratio of 1:1—the samples
were grouted in different rounds. The grouting round was set to 1, 2, 3, 4, 5, and 6 rounds,
and each sample was injected with a bacterial solution once and a cementation solution
twice in each round. The injection rate of the bacterial solution and cementation solution
was 0.9 mL/min, which was automatically controlled by a peristaltic pump. Each injection
volume was 30 mL, which was half of the pore volume of the sample. The liquid was fully
contacted and then injected a second time. After 1 to 6 rounds of grouting, the samples
were placed in a curing box and cured for 45 days. Then, they were dried and demolded at
70 ◦C for subsequent tests.

For the convenience of recording and subsequent experimental data processing, each
sample was numbered as A, B, C, D, E, or F. The untreated tailings were set as the control
group. Three parallel samples were used for the UCS test, two parallel samples were used
for the permeability test, and the other sample was reserved for standby.

2.4. Tests
2.4.1. UCS

In accordance with the standard test method for UCS of the immobilized mine tailings
(ASTM D2166/D2166M-16 2016), the as-prepared specimen was assembled in a strain-
controlled YHS-2 UCS testing apparatus. The UCS test was then performed at a vertical
strain rate of 1 %/min. The stress and strain of the specimen were recorded at intervals of
5 s until the specimen failed. Three parallel samples of each group were used to test UCS,
and the average value was taken according to the test results.

2.4.2. Permeability Test

According to the specification “Highway Geotechnical Test Regulations” (JTGE40-2007),
a permeability test was carried out on the samples that completed the specified number
of grouting tests. The test used a flexible wall permeameter to conduct a constant head
permeation test on the partially cured samples. The volume of water injected at the
backpressure end was verified during the permeation test, and the corresponding time
was recorded. Finally, the permeability coefficient was calculated according to Darcy’s law.
Two parallel samples of each group were used to test the permeability, and the average
value was taken according to the test results.

2.4.3. Pollution Components

The curing effect of the contaminated soil was evaluated using the toxic leaching test
method (TCLP) recommended by the Resource Conservation and Recovery Act (RCAC) in
the United States [35]. The unconfined compressive strength test samples were collected,
crushed, and dried for the TCLP test, and the leachate obtained was filtered using a 0.22 µm
filter membrane. A part of the collected filtrate was subjected to an inductively coupled
plasma mass spectrometry test (ICP–MS) using a 7500 Series instrument produced by
Agilent Technologies (California, CA, USA). Another part of the filtrate was subjected to
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ion chromatography detection. Finally, the filtrate was collected after each grouting round
and its pH was detected.

2.4.4. Micromorphology Testing

One sample was selected from each group of samples after curing: A, B, C, D, E, and F,
plus the control group. A total of seven samples were tested; the samples were placed in
an oven for drying, crushed, passed through a 200-mesh sieve, and used for XRD (Hefei,
China), TGA (Hefei, China), and SEM (Hefei, China) to analyze the chemical bonds and
chemical components in the cured samples.

XRD patterns were obtained using a Rigaku D/Max-2005 V diffractometer with Cu-Kα

scanning from 5 to 80◦ 2θ. The components in the samples were identified by comparison
with standards established by the International Center for Diffraction Data.

The instrument used in the TGA test was a STA449F3 synchronous thermal analyzer
manufactured by NETZSCH, Germany. During the test, the atmosphere was nitrogen (flow
rate 50 mL/min), the temperature range was set from 25 ◦C to 1000 ◦C, and the heating
rate was 5 ◦C/min. The FTIR test used a Nicolet iS50 FTIR spectrometer manufactured by
Thermo Fisher Scientific. The sample was prepared via the tableting method during the
test, and the measurement range was 4000~400 cm−1.

SEM imagery was obtained to provide direct evidence of reaction product analyses.
Samples of approximately 5 × 5 × 5 mm were selected; they were initially freeze-dried be-
fore their surfaces were cleaned and then coated with gold, in preparation for SEM analysis.

3. Results and Discussion
3.1. Effect of Curing Rounds on Engineering Properties of Tailings
3.1.1. Unconfined Compressive Strength

The unconfined compressive strength test data of the biocemented pyrite tailings are
shown in Figure 2. As can be seen from the figure, with an increase in the number of
grouting rounds, the unconfined compressive strength of the sample showed an upward
trend. However, the overall unconfined compressive strength was not very high, reaching
500 kPa in 4–6 rounds of grouting. The highest value was recorded for the six-round
grouting sample, which reached 587.86 kPa. However, comparing the results of the fifth and
sixth rounds, the strength did not increase much, and the sample was difficult to infiltrate
during the sixth round of grouting; at this point, most of the pores in the sample were filled,
which also shows that a larger number of grouting rounds is not necessarily better.

With an increase in grouting rounds, the strength of the sample continued to increase,
the stress–strain relationship of the sample gradually transformed from a strain-hardening
type to a strain-softening type, and the failure mode gradually transitioned from a plastic
failure mode to a brittle failure mode. After four rounds of grouting, the failure mode of
the sample changed to the strain-softening type, and the failure mode was a brittle failure.

The failure states of the samples with one to six rounds of grouting are shown in
Figure 3. It can be seen from Figure 3 that the samples of grouting rounds 1 and 2 (A and
B, respectively) showed shear failure from the top at 45◦, and the samples of grouting
rounds 3 and 4 (C and D, respectively) all exhibited splitting through the sample. The
samples with five and six rounds of grouting (E and F, respectively) had similar failure
modes to the samples with one or two rounds of grouting (A and B, respectively).

3.1.2. Permeability Test

The permeability coefficient results are shown in Figure 4. It can be seen from the
figure that, with an increase in the number of grouting rounds, the permeability coefficient
of the sample gradually decreased. The permeability coefficient of sample E reached
1.13 × 10−6 cm/s. The initial permeability coefficient of the old tailing sand in the Xinqiao
mining area was 5.10 × 10−3 cm/s, and the permeability coefficient of the new tailing sand
was 2.79 × 10−3 cm/s [36]. The tailings sand used in this test was the new tailings sand of
Xinqiao pyrite. MICP biocementation reduced the permeability coefficient of the tailings
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by three orders of magnitude and reached the magnitude of clay soil, which showed that
the MICP-cured pyrite tailings sand had a good effect. These results indicate that MICP
biocementation technology can effectively reduce the permeability of tailings and form
a layer on the surface of tailings to inhibit their oxidation. This parameter indicated that
most of the pores in the sample were filled, which could effectively prevent the migration
of heavy metal elements and the oxidative release of S elements.
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Figure 3. (A–F) The failure diagrams of samples with 1–6 rounds of grouting.
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3.2. Influence of Curing Rounds on the Environmental Effects of Tailings Sand
3.2.1. pH

The results for the pH value of each filtrate group are shown in Table 3. From the
experimental results, with an increase in the number of grouting rounds, the overall trend
of the pH of the filtrate showed an upward movement. However, the sample was still
slightly acidic and gradually changed to neutrality under MICP curing, which also showed
that the MICP technology was effective for S elements and had a good curing effect.

Table 3. pH changes in samples during 1–6 rounds of grouting.

Sample pH

A 5.91 - - - - -

B 6.09 6.22 - - - -

C 5.96 6.23 6.37 - - -

D 6.03 6.16 6.21 6.30 - -

E 5.94 6.15 6.32 6.47 6.60 -

F 5.98 6.18 6.36 6.37 6.44 6.69

3.2.2. Sulfur Element

It can be seen from Figure 5 that the SO4
2− content of the experimental group was

significantly lower than that of the control group, and with an increase in the number
of grouting rounds, the SO4

2− content became lower and lower, and the SO4
2− content

dropped to 70.16 mg/L after one round of grouting. The SO4
2− content was 12.88 mg/L

after six rounds of grouting.
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3.2.3. Heavy Metals

For the convenience of comparison, this paper introduces the concept of a “removal
rate” to more intuitively reflect the effect of microorganisms that induce calcium carbonate
precipitation to biocement pyrite tailings sand. The removal rate of heavy metals can be
calculated by Equation (2).

Removal rate = 1− cm

c0
(2)
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where Cm is the leaching concentration of heavy metals after biocementation, and C0 is the
leaching concentration of heavy metals in the uncemented sample. The removal rate is
expressed as a percentage.

As shown in Figure 6, with an increase in the number of grouting rounds, the content
of several heavy metals in the filtrate showed a downward trend.
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Figure 6. Changes in the removal rate of common heavy metals from samples with 1–6 rounds of
grouting: (a) result for Zn; (b) result for Cu; (c) result for Mn.

Overall, the removal rate of Cu was the highest, followed by the removal rate of
Mn; the removal rate of Zn was the lowest. However, it was also close to 50%, indicating
that Bacillus pasteurii has a robust biocementation effect on heavy metals. The contents of
heavy metal elements in the biocemented samples were all lower than the above standards
(GB 36600-2018, GB 15618-2018).

3.3. Microscopic Test Results
3.3.1. XRD Results

The XRD analysis and detection results are shown in Figure 7. The position and
number of wave peaks in the control samples and the biocemented sample were different.
The results of A~F and the control group were analyzed, and new minerals were found
that had been biocemented by MICP in the pyrite tailings sand.
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Figure 7. XRD results of samples with 0–6 rounds of grouting.

In the analysis, bauxite, quartz, and hemoranite were the main minerals found in the
control group. Aragonite, iron calcite, magnesium calcite, gypsum, calcite, manganese-rich
calcite, iron-rich magnesite, brucite and were found in the MICP-biocemented the pyrite
tailings sand. Most of the newly formed minerals existed in metal carbonates form. A
small number of minerals were found in the form of metal sulfates and hydroxides, which
indicates that metal cations are combined with carbonate ions to achieve the effect.

3.3.2. FTIR Results

The FTIR analysis and detection results are shown in Figure 8. The vibrational peak bands
of each spectrum included hydroxyl absorption bands at 2750~3750 cm−1, oxygen-containing
functional groups at 900~1750 cm−1, and mineral absorption bands at 650~800 cm−1; the
peaks appeared at 3394.75 cm−1, 1619.80 cm−1, 1407.41 cm−1, 1114.14 cm−1, 1002.63 cm−1,
867.06 cm−1, and 667.38 cm−1. The main oxygen-containing functional groups were
carboxyl-COOH, hydroxyl-OH, amide-CONH2, and ether bond C-O-C, indicating that
organic and inorganic reactions occurred simultaneously during the biocementation of
pyrite tailings sand by MICP.

3.3.3. TGA Results

When a sample is thermally decomposed, its quality will change, and TG and DTG
analysis can reflect the thermal stability and pyrolysis of the sample. Figures 9 and 10
show the TG and DTG curves of the test samples, respectively. Overall, the pyrolysis
process of the cured samples showed a similar trend and had six stages. The first stage was
from the initial temperature to 80 ◦C and was labeled as the water evaporation stage. As
the temperature increased, the water evaporation speed increased, reaching a maximum
value of about 50 ◦C, which is the decomposition of bacterial and extracellular polymeric
substances (EPSs). The range of 200 ◦C~1000 ◦C was the decomposition stage of the mineral
components in the sample.



Molecules 2022, 27, 3608 11 of 17

Molecules 2022, 27, x FOR PEER REVIEW 11 of 18 
 

 

In the analysis, bauxite, quartz, and hemoranite were the main minerals found in the 

control group. Aragonite, iron calcite, magnesium calcite, gypsum, calcite, manganese-

rich calcite, iron-rich magnesite, brucite and were found in the MICP-biocemented the 

pyrite tailings sand. Most of the newly formed minerals existed in metal carbonates form. 

A small number of minerals were found in the form of metal sulfates and hydroxides, 

which indicates that metal cations are combined with carbonate ions to achieve the effect.  

3.3.2. FTIR Results  

The FTIR analysis and detection results are shown in Figure 8. The vibrational peak 

bands of each spectrum included hydroxyl absorption bands at 2750~3750 cm−1, oxygen-

containing functional groups at 900~1750 cm−1, and mineral absorption bands at 650~800 

cm−1; the peaks appeared at 3394.75 cm−1, 1619.80 cm−1, 1407.41 cm−1, 1114.14 cm−1, 1002.63 

cm−1, 867.06 cm−1, and 667.38 cm−1. The main oxygen-containing functional groups were 

carboxyl-COOH, hydroxyl-OH, amide-CONH2, and ether bond C-O-C, indicating that or-

ganic and inorganic reactions occurred simultaneously during the biocementation of py-

rite tailings sand by MICP.  

 

Figure 8. The FTIR results of samples with 0-6 rounds of grouting. 

3.3.3. TGA Results  

When a sample is thermally decomposed, its quality will change, and TG and DTG 

analysis can reflect the thermal stability and pyrolysis of the sample. Figures 9 and 10 

show the TG and DTG curves of the test samples, respectively. Overall, the pyrolysis pro-

cess of the cured samples showed a similar trend and had six stages. The first stage was 

from the initial temperature to 80 °C and was labeled as the water evaporation stage. As 

the temperature increased, the water evaporation speed increased, reaching a maximum 

value of about 50 °C, which is the decomposition of bacterial and extracellular polymeric 

substances (EPSs). The range of 200 °C~1000 °C was the decomposition stage of the min-

eral components in the sample. 

4000 3500 3000 2500 2000 1500 1000 500
10

20

30

40

50

60

70

80

90

100

110

6
6

7
.3

8

8
6

7
.0

6

1
0

0
2

.6
31
1

1
4

.1
4

1
4

0
7

.4
1

1
6

1
9

.8
0

T
ra

n
sm

it
ta

n
ce

 (
%

)

Wavenumber (cm-1)

 Control group   A5  B5  C5

 D5  E5  F5
3

3
9

4
.7

5

-OH
-CONH2

-COOH

C-O-C
CO3

2-

Figure 8. The FTIR results of samples with 0-6 rounds of grouting.

Molecules 2022, 27, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 9. The results of TG. 

This section will mainly analyze key minerals according to the results of the XRD 

analysis. At 300 °C~550 °C, the main processes were the decomposition of MnCO3, 

MgCO3, and gypsum; at 550 °C~750 °C, the main process was CaMg(CO3)2 in the decom-

position of Mg element; at 800 °C~1000 °C, the main process was the decomposition of 

CaCO3, which can confirm the mechanism of action of MICP for the solidification of pyrite 

tailings sand. 

 

Figure 10. DTG results of classic samples. 

3.3.4. SEM Results 

The SEM results are shown in Figure 11. Figure 11a shows an image of a sample from 

the blank control group magnified 2000 times. It can be seen from the figure that the un-

treated pyrite tailings had many voids and were very loose. In Figure 11b, an image of the 

B1 sample magnified 5000 times clearly shows columnar minerals and tabular minerals, 

which were judged to be gypsum and aragonite according to their size. In the image of 

the C1 sample magnified 5000 times, it can also be seen that there were a large number of 

100 200 300 400 500 600 700 800 900 1000

75

80

85

90

95

100

M
as

s 
p

er
ce

n
t 

(%
)

Temperature (℃)

 Control group  B6 

 D6  F6

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0.0

0.2

CaCO3

CaMg(CO3)2M
as

s 
lo

ss
 r

at
e 

(%
)

Temperature (℃)

 Control group  B6  D6  F6

H2O

Bacteria

MnCO3, MgCO3

Figure 9. The results of TG.

This section will mainly analyze key minerals according to the results of the XRD
analysis. At 300 ◦C~550 ◦C, the main processes were the decomposition of MnCO3, MgCO3,
and gypsum; at 550 ◦C~750 ◦C, the main process was CaMg(CO3)2 in the decomposition of
Mg element; at 800 ◦C~1000 ◦C, the main process was the decomposition of CaCO3, which
can confirm the mechanism of action of MICP for the solidification of pyrite tailings sand.

3.3.4. SEM Results

The SEM results are shown in Figure 11. Figure 11a shows an image of a sample
from the blank control group magnified 2000 times. It can be seen from the figure that
the un-treated pyrite tailings had many voids and were very loose. In Figure 11b, an
image of the B1 sample magnified 5000 times clearly shows columnar minerals and tabular
minerals, which were judged to be gypsum and aragonite according to their size. In the
image of the C1 sample magnified 5000 times, it can also be seen that there were a large
number of acicular minerals and a small number of spherical minerals. Combined with
the XRD results, it was judged that these were aragonite or gypsum. Figure 11d,e both
show images of the E1 sample magnified 2000 times. It can be seen that short columnar
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and flake minerals were cemented together, and there were some small pores during this
period, indicating that MICP has a good cementation effect. From Figure 11f, it can be seen
that, after XRD treatment, the surface of the sample was in the shape of short calcite and
aragonite, and the bonding effect was obvious.
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3.4. The Mechanism for the Biocementation of Pyrite Tailings Sand by MICP

A comprehensive analysis of the XRD, SEM, FTIR, and TGA findings and the results
of the previous sections showed the presence of heavy metals and sulfur elements in the
MICP-cemented pyrite tailings mainly through co-precipitation and biological action. Here,
abiotic and biological mechanisms are introduced to explain MICP-immobilized pyrite
tailings [37]. The action mechanism of MICP-cemented pyrite tailings is shown in Figure 12.
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3.4.1. Abiotic Mechanisms

The non-biological mechanism refers to the reactions between heavy metals and sub-
stances contained in the grouting fluid to form precipitates. The bacterial solution was
injected into the sample first during the grouting process, and then the cementing solution
was injected. The pH value of the filtrate gradually increased, which was beneficial to the
acid–base balance. After the cementing solution is added, urea is hydrolyzed to generate
CO3

2− and NH4
+. At this time, the heavy metal ions in the sample and Ca2+ in the cement-

ing solution will combine with CO3
2− to form metal carbonate and calcium carbonate. In

the XRD results, aragonite, iron calcite, magnesium calcite, gypsum, calcite, manganese-rich
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calcite, iron-rich magnesite, brucite, and berberlite were found, the main components of
which are CaCO3, CaMg(CO3)2. CaSO4, CaMn(CO3)2, MgCO3 and Mg(OH)2. Due to the
presence of other heavy metal elements in the pyrite tailings, it was difficult to deduce the
sequence of precipitation formation through the test process. However, according to the
existing results, with an increase in the number of grouting rounds, the main sediments
appeared as follows: Mg(OH)2 → MgCO3 → CaSO4 → CaMn(CO3)2 → CaMg(CO3)2.
From this, a hypothesis of a multilayer precipitation structure was developed, as shown in
Figure 13.
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3.4.2. Biological Mechanism

The biological mechanism refers to the consumption or precipitation of heavy metal
ions through biological actions, which mainly include biosorption and bioaccumulation.
Biosorption refers to the capture of heavy metal ions through the cell wall of microorgan-
isms and the subsequent adsorption of the ions to the binding sites on the cell wall [38].
Bioaccumulation refers to the entry of heavy metal ions into the cytoplasm through the cell
membrane during cell metabolism.

The FTIR results showed that the main oxygen-containing functional groups in the
cured samples were carboxyl-COOH, hydroxyl-OH, amide-CONH2, and ether bond C-O-C.
These groups proved the role of bacteria in this process. The liquid medium contained
yeast extract, which is a required nutrient for bacterial growth. Yeast extract contains a
large number of proteins, and each protein contains at least one carboxyl-COOH and one
amino-NH2; The appearance of amide-CO-NH2- and ether bond C-O-C confirmed the
bacterial metabolism [39]. In addition, according to the recommended medium containing
(NH4)2SO4 for Bacillus Pasteurella (US National Culture Bank No. ATCC11859), it can
be seen that urea is decomposed by Bacillus Pasteurella to generate CO3

2− and NH4
+. In

contrast, the sulfur element in pyrite is decomposed by Bacillus Pasteurella. Oxidation
generates SO4

2−, and the SO4
2− in the sample will generate (NH4)2SO4 when it encounters

NH4
+, thereby providing the substances needed for the growth of bacteria, which is also

one of the reasons for the decrease in the content of SO4
2− in the sample.

As Bacillus pasteurii is negatively charged, it can attract positively charged metal
cations. Through the metabolic activity of Bacillus pasteurii, heavy metal ions are wrapped
outside the bacteria, forming the multilayer structure described above. As can be seen
from our results, the innermost layer is Mg(OH)2, which is converted into MgCO3 in the
second layer with the passage of time; the third layer consists of CaSO4, SO4

2− released
from pyrite tailings sand, and cementitious liquid. A combination of Ca2+ covers the outer
layer, which can prevent the valence state transition of Mg2+ to a certain extent; the fourth
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and fifth layers are CaMn(CO3)2 and CaMg(CO3)2, indicating that Mn2+ and Mg2+ are
gradually transformed into stable compounds. It can be speculated that over time, Mn2+

will gradually transform into a more stable compound form.

4. Conclusions

Through the introduction of the research background, test methods, engineering
properties, environmental effects of cured samples, and microscopic analysis, the following
conclusions were obtained:

(1) It is feasible to use MICP technology to biocement pyrite tailings sand. The UCS
increased significantly and the permeability coefficient decreased to that of clay. In
the TCLP test of the cured samples, the ion concentrations of Mn2+, Zn2+, and Cu2+

and the ratio of the control group all fell below the standard. The content of SO4
2−

was significantly reduced.
(2) The microscopic analysis showed that MICP biocemented pyrite tailings mainly pro-

duce various carbonate minerals (e.g., aragonite, iron calcite, magnesium calcite,
calcite, manganese-rich calcite, iron-rich magnesite, brucite, and carbortite) and gyp-
sum. The FTIR results showed that CO3

2− is generated. The TGA results corroborated
the XRD results.

(3) The action mechanism of the microorganism-induced calcium carbonate precipitation
and biocementation of pyrite tailings sand mainly includes the following: urea hy-
drolysis, microbial utilization after sulfur oxidation, and heavy metal ion fixation. In
these processes, complex biochemical and physicochemical reactions occur, which
finally induce calcium carbonate precipitation to achieve the biocementation of heavy
metals and sulfur elements.

(4) MICP biocementation technology can effectively reduce the permeability of tailings
and form a layer on the surface of tailings by carbonate precipitation to inhibit their
oxidation. This results in a reduction in the concentration of heavy metals and
controls their mobility through microbial adsorption, intracellular accumulation,
and coprecipitation.
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