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Novel 3‑D printed radiation 
shielding materials embedded 
with bulk and nanoparticles 
of bismuth
M. Elsafi1*, M. A. El‑Nahal2, M. I. Sayyed3, I. H. Saleh2 & M. I. Abbas1

In the present study, a new type of radiation shielding material was developed by using a 3-D printing 
technique which enables to create a light radiation shielding materials of a great variety of shapes 
and dimensions. Micro and nano bismuth particles were incorporated as a filler between the inner 
layers of polylactic acid thermoplastic polymer (PLA Plastic) designed of the investigated 3-D printed 
prototypes to achieve the desired radiation attenuation. The effect of particle size on the attenuation 
parameters were studied over the energy range from 0.0595 to 1.41 MeV. The mass and thickness 
needed to reduce the intensity of the incoming radiation to half of its original value were determined 
experimentally for pure polymer (ABS Plastic), polymer with bulk Bi, and polymer with nano Bi. 
The results reveal that bismuth NPs with average particle size of about 17 ± 3 nm have a greater 
mass attenuation capability than normal bulk bismuth particles, meaning they are more efficient 
and a lighter shield can be produced. The enhanced shielding ability of nano bismuth particles was 
contributed to the excellent particle distribution, leading to an increase in the probability of photons 
interacting with the bismuth atoms. The bismuth NPs 3-D printed objects can be considered as a 
promising radiation shielding candidates and also could be utilized in manufacturing of radiation 
medical phantom.

Radiation is strongly utilized in medicinal disciplines such as diagnostic radiology, radiotherapy and medical 
medicine. Energy generation, agriculture, manufacturing, and many others also can be considered as fields of 
radiation applications. Ionizing radiation, such as X-rays and gamma-rays, has enough energy to remove elec-
trons from atoms in the human body, which can develop adverse harmful effect if not effectively attenuated. In 
order to mitigate these undesired effects, shielding materials are designed to eliminate a considerable portion of 
incoming photons through absorption process. The attenuation capability of a material varies depending on the 
energy and the type of radiation it may interact with. However, as a basic rule of thumb, high-Z and high-density 
elements are often desirable within shields because their great efficiency to attenuate high energy radiation1–6.

Lead has a high density, low cost, and has great attenuation near its k-absorption edge. However, lead has 
a major drawback due to its adverse environmental impact as well as being heavy in applications such as lead 
aprons. As a result, researchers have devoted their attention in finding alternatives to lead that can safely be used 
across various fields, and especially in medicine. Some of these substitutes include tungsten and bismuth7,8. Aside 
from bulk lead, pure polymer and polymer based composites have also been used as radiation shields, especially 
for non-ionizing radiation9–12. By introducing micro- and nanoparticles into the polymers, the radiation shielding 
efficiency of the polymers increases. Nanoparticles have been found to provide the greatest benefit because of the 
resulting greater surface-area-to-volume ratio, which leads to greater photon absorption. These fillers can also 
improve their mechanical, electrical, optical and chemical properties. Metal oxides such as PbO, WO3, Gd2O3, 
and Bi2O3 have been investigated as fillers in polymers used in radiation shielding applications. By introducing 
these oxides into the polymers13–16.

Much literature has been conducted to evaluate the effect grain size for varying metal and metal oxide parti-
cles. Holynska17 found that the impact of the particle size on the shielding ability of the samples greatly diminishes 
as energy increases, meaning that smaller particles perform better against lower energy photons. Additionally, 
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when testing WO3, PbO, and Bi2O3 micro and nanoparticles, it was discovered that Bi2O3 nanoparticles and PbO 
microparticles have the best mass attenuation coefficients, which correlates with the best shielding ability18. Li 
et al.19, compared micro and nano gadolinium oxide Gd2O3 and found that the nano-Gd2O3 composites were 
more effective against X-rays and gamma-rays than the microparticles Gd2O3 composites by around 28%. Other 
studies have included the bulk versions of their metal oxides as another point for comparison. El-Khatib et al.20, 
studied high density polyethylene (HDPE) and tested the shielding abilities of pure HDPE, HDPE with micro 
CdO, and HDPE with nano CdO. They concluded that the HDPE with nano CdO has the best shielding ability. 
Zakaly et al.21 and El-Sharakawy et al.22 have developed new nano-composites radiation shielding materials 
prepared from polypropylene (PP) with CdO-NPs dispersed with different concentrations and bentonite con-
taining Bi2O3 NPs additive, respectively. Studies have focused on enhancing the radiation-shielding properties 
by increasing the content of nanoparticles.

In this work, the radiation protection properties were experimentally studied using a HPGe detector and 
different point sources of bismuth metallic microparticles and nanoparticles used as fillers in PLA plastic matrix 
by using 3D printing technique. This new material created through this technique is efficient and lightweight for 
easy shielding as well as easy to design samples in a variety of shapes and sizes, so it can be used to manufacture 
medical radiation phantom by controlling bismuth concentration and designing the object.

Materials and methods
Samples design and manufacturing.  The fabrication of 3D-printers plastics embedded with nano-bis-
muth can be achieved by dispersing the bismuth into plastic filament or by introducing the bismuth particles 
inside the unfilled designed layers of the printed objects. In order to produce filament embedded with bismuth, 
ABS plastic should be used since the ABS plastic and bismuth have close melting temperature, so the bismuth 
can be fused into ABS in the extruder machine (during manufacturing the filament), on the other hand PLA 
plastic is more easy to be printed than ABS and has greater density than ABS therefore PLA with bismuth as filler 
has been selected in the present study.

The shape of the object and the plastic shells and bismuth layers were designed by 3D-printers software “Ulti-
maker Cur” which is easy to use powerful software enable designers to draw, design and control the 3D-printers. 
This software was operated by dividing designed model file into layers and generating a printer-specific g-code 
which can be sent to the printer to create the desired physical object. The selected shape has been chosen to be 
simple cylindrical shape with dimension of 2 cm as diameter and 1 cm as height with plastic as 20% of volume of 
the object and 80% volume as unfilled space which will be filled by bismuth metal particles, three shells of plastics 
at the top, bottom and around the object that represent the necessary outer envelope of 3D-printed structure.

Figure 1a describes the designed shape and its inner layers which will be filled by bismuth. The object that 
produced and investigated in present study represents a prototype model, in real application any other printable 
shape can be manufactured and filled by bismuth particles. Used filaments were produced by the ESUN Company 
with diameter 1.75 mm and melting temperature 200 °C and 3D-printing machine model Creality CR10 with 
nozzle diameters of 0.4 mm, bed temperature of 65 °C and printing speed of 50 mm per minute (see Fig. 1b,c).

The high purity analytical grade bulk bismuth metal in the form of powder was supplied by cornel chemical 
laboratory in Egypt with a density of 9.8 g/cm3 while Nano metal bismuth particle powder were prepared by 
Nano tech Company in Egypt with lower density of 7.0 g/cm3. Bismuth metal particles have been added manually 
during the printing till the layers completely filled, the quantity of bulk bismuth oxide required to fill the space of 
the inner layers were slightly variable and more than the constant quantity of bismuth nano particles that filled 
same spaces of the same layers. Two sets of samples containing bismuth nano particles and bulk bismuth parti-
cles were produced; each set consists of six samples. Solid 100% filled of PLA plastic samples were also printed 
to represent the blank samples (without bismuth); another sample without bismuth was manufactured but with 
20% to 80% ratio of plastics filled to unfilled layers ratio, in order to determine the mass of bismuth inside the 
samples and the densities of samples accurately.

Samples characterization.  The density of each sample was calculated theoretically due to the regular and 
constant geometry of printed objects as well as it was measured experimentally by Archimedes method using 
distilled water as the immersion fluid for confirmation by using the following relation:

Figure 1.   Machines used in 3D-printing, (a) horizontal cross section of the designed shape, (b) Esun Filaments 
and (c) 3D-printing machine model Creality CR10.
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where ρL is the density of the immersion liquid (density of distilled water is 1.000 g/cm3), Wa and Wb are the 
weight of samples in air and the immersion fluid, respectively. The compositions, masses and densities of the 
prepared samples are tabulated in Table 1. The initial thickness of the samples was 1 cm; other values can be 
obtained by making a combination of multiple samples of the same type.

A scanning electron microscope (SEM) (JSM-5300, JEOL) was utilized, and the samples were cut to be 
exposed to the electron beam and fixed with a double coated carbon tap, which also dissipated the electron 
beam charge and heat buildup. The samples were covered with a fine layer of gold under a vacuum before the 
SEM observation, using an ion sputtering coating device (JEOL-JFC-1100E). The SEM was operated at 25 kV 
at a magnification order of 35,000. The samples were examined by SEM to assess the homogeneity distribution 
of the bismuth particle for both bulk and nano Bi inside the layers of PLA as well as to determine the average 
particle size of Bi inside the samples, as shown in Fig. 2.

Spherical-shaped bismuth nanoparticles with an average size of 17 ± 3 nm were achieved and demonstrated by 
SEM as shown in Fig. 2b, while the average size of bulk bismuth was 50 ± 8 nm. The morphological results shown 
in Fig. 2c,d indicated a clear difference in the distribution of nanoparticles rather than micro in PLA, where it 
was found that nanoparticles are more distributed and homogeneous, which improves its shielding properties.

(1)ρ = ρL
Wa

(Wa−Wb)
,

Table 1.   The compositions and densities of the produced samples.

Samples

Average composition wt%

Average density (g/cm3)PLA Bulk Bi Nano Bi

PLA-bulk Bi 10 90 – 2.202 ± 0.005

PLA-nano Bi 32 – 68 0.704 ± 0.007

Blank (pure PLA) 100 – – 1.303 ± 0.003

Figure 2.   SEM images for (a) micro Bi, (b) nano Bi, (c) PLA with micro Bi, (d) PLA with nano Bi.
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Gamma‑rays attenuation test.  The attenuation coefficients were determined experimentally by using 
a narrow beam technique23, the collimated beams of gamma photons of different energies penetrate the sam-
ple, the transmitted photons counted by using Canberra High Purity Germanium detector (HPGe) of the 
model: CS20-A31CL, coupled with multichannel analyzer (MCA). The detector relative efficiency was 24.5% 
for 1333 keV of Co-60-line. The characteristic of Eu-152 radioactive point source that utilized in this experi-
ment in order to produce gamma photons with different energies are listed in the Table 2. The arrangement of 
attenuation experiment was shown in Fig. 3. The initial intensity (without sample) and transmitted intensity of 
each gamma line of interest were counted for a fixed time by evaluating the counts under the photo peak which 
represents the intensity of gamma rays. The counting time had been selected to acquire at least 105 counts under 
each peak so that the statistical uncertainty kept less than 1%. The spectrum was processed by the Genie 2000 
data acquisition and analysis software made by Canberra. A proper energy and efficiency calibrations had been 
done before to the measurement process.

The linear attenuation coefficient (LAC) represents the probability of photon interaction through a certain 
distance inside material and can be expressed by the following relation24,25:

where, I0, I and x represent the initial intensity, transmitted intensity and the absorber thickness, respectively. 
The thickness and mass needed to reduce the intensity of the incoming radiation to half of its original value called 
the half value layer (HVL) and the half mass value (HMV), respectively and given by the following equation25:

where,  ρ and R are the density and the radius of sample material, respectively. Similarly, The thickness and mass 
needed to reduce the intensity of the incoming radiation to tenth of its original value called the tenth value layer 
(TVL) and the tenth mass value (TMV), respectively and given by the following equation:

The shielding efficiency of an absorber sample can be investigated using a parameter called the radiation 
protection efficiency (RPE) and given by the next equation26,27:

(2)LAC =

Ln(I0/I)

x
,

(3)HVL =

Ln2

LAC
, HMV = πR2

×HVL× ρ,

(4)TVL =

Ln10

LAC
, TMV = πR2

× TVL× ρ.

(5)RPE(%) =

[

1−
I

I0

]

× 100.

Table 2.   The characteristic of Eu-152 radioactive point source.

Energy (keV) PTB nuclide Activity (kBq) Emission probability

121.7

Eu-152 290 ± 4.0

28.37

244.7 7.53

344.3 26.57

778.9 12.97

964.1 14.63

1086.0 13.42

1112.0 13.54

1408.1 20.85

Figure 3.   The arrangement of attenuation experiment.
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Results and discussion
Table 3 lists the linear experimentally determined attenuation coefficients (LAC) for all the tested samples 
between 121.7 and 1408 keV. To determine the accuracy of these measurements, the experimental LAC values for 
the blank polymer (the polymer without any Bi) was compared against the LAC values obtained from the XCOM 
database. By comparing the results from these two methods, the accuracy of the experimental method can be 
assessed. The percent difference between these two methods was within ± 5% deviation, proving the accuracy of 
the experimental data. The greatest deviation occurred at 1086 keV and is equal to a 4.85% difference. It is vital 
to first ensure the precision of the results for the blank polymer since XCOM cannot predict the LAC for the 
sample that contains nanoparticle Bi. Once the results for the blank polymer are determined to be accurate within 
a desirable deviation, the same experimental setup can be used to assess the samples with bulk and nanoparticle 
Bi without worrying about the reliability of the process. Furthermore, the table lists the LAC values of bulk and 
nano Bi to compare them against each other. These values demonstrate that the LAC of bulk Bi is greater than 
the blank and nano Bi samples. For examples, at 344.3 keV, the blank polymer has an LAC equal to 0.129 cm−1, 
the bulk Bi sample has an LAC equal to 0.677 cm−1, and the nano Bi sample has an LAC equal to 0.493 cm−1. 
The bulk Bi sample has the greatest LAC because it has the greatest density out of the three investigated samples.

In Fig. 4, the half value layer (HVL) for the pure polymer, polymer with bulk Bi, and polymer with nano Bi 
were determined in the same energy range used for the LAC values. Both the polymers containing Bi have a lower 
HVL than the pure polymer, which means that the addition of Bi leads to a decrease in the thickness of the sample 
needed to attenuate the intensity of the incoming photons to half of their original value. Additionally, it can be 
seen that the effect of Bi on the HVL values is clearer at lower energies than at higher energies. For example, at 
121.7 keV, the HVL values are equal to 3.981, 0.350, and 0.415 cm for the pure polymer, polymer with bulk Bi, 
and polymer with nano Bi respectively. Meanwhile, at 1408 keV, the HVL values are equal to 10.491 cm, 8.123 cm, 
and 8.699 cm, respectively. This result signifies that the radiation shielding advantage of the polymers with a Bi 
decrease as the energy increases. When comparing the HVL values of the bulk and nanoparticle polymers, it 
can be observed that the HVL for the bulk Bi polymer is lower than the nanoparticle Bi, which is related to the 
greater density of the bulk Bi sample, lowering HVL.

Table 3.   The LAC for different investigated samples and the pure PLA polymer (blank) compared with the 
XOM results and its uncertainty.

Energy (keV)

LAC (cm−1)

∆ (%)

LAC (cm−1)

Blank (XCOM) Blank (exp) With bulk Bi With nano Bi

121.7 0.1742 0.1762 ± 0.0013 1.09 1.9811 ± 0.0009 1.6692 ± 0.0013

244.7 0.1415 0.1394 ± 0.0015  − 1.41 1.0472 ± 0.0015 0.7333 ± 0.0017

344.3 0.1252 0.1291 ± 0.0010 3.53 0.6771 ± 0.0019 0.4930 ± 0.0014

778.9 0.0883 0.0864 ± 0.0018  − 3.20 0.1814 ± 0.0010 0.1344 ± 0.0009

964.1 0.0804 0.0835 ± 0.0020 4.41 0.1223 ± 0.0013 0.0991 ± 0.0021

1086 0.0755 0.0795 ± 0.0013 4.85 0.1050 ± 0.0008 0.0843 ± 0.0018

1112 0.0751 0.0782 ± 0.0009 3.98 0.0991 ± 0.0011 0.0811 ± 0.0011

1408 0.0662 0.0641 ± 0.0012  − 2.43 0.0852 ± 0.0014 0.0713 ± 0.0010
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Figure 4.   The HVL for the pure PLA, PLA with bulk Bi, and PLA with nano Bi at different energies.
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The tenth value layer (TVL) of a sample is defined as the thickness of the material needed to reduce the 
intensity of the incoming radiation to one-tenth of its original value. Figure 5 illustrates the TVL of the three 
tested polymers. Since TVL is closely related to HVL, the same trends can be observed in both figures. As the 
incoming photon energy increases, the TVL values all increase with it. The TVL of the pure polymer sample, for 
example, increases from 12.226 cm at 121.7 keV to 18.479 cm at 344.3 keV, 28.810 cm at 964.1 cm, and 34.851 cm 
at 1408 keV. In addition, the TVL values following the order of: TVLpure polymer > TVLnano Bi2O3 > TVLbulk Bi2O3. 
At 778.8 keV, for instance, the pure polymer has a TVL equal to 26.046 cm, the nano Bi has a TVL equal to 
17.238 cm, and the bulk Bi has a TVL equal to 12.743 cm. The order of these values is still correlated with the 
densities of the samples. Since the polymer with bulk Bi has the lowest TVL at all tested energies, this sample 
is the most space-efficient and has the greatest potential for radiation shielding applications. The discrepancy 
between the TVL results also decreases with increasing energy. At the lowest tested energy, the lowest and 
greatest TVL has a difference of 12.063 cm, while at the highest energy their difference is equal to 7.866 cm, it 
should be noted that since TVL requires greater attention than HVL, the TVL values are all greater than their 
respective HVL values.

The mass of a material needed to reduce the intensity of the incoming radiation to half of its original value is 
defined as its HMV. The HMV of the three investigated samples are graphed in Fig. 6 at the first four energies, the 
HMV of the pure polymer is greater than the HMV for the bulk and nano Bi samples. For example, at 244.7 keV, 
the pure polymer has an HMV equal to 18.22 g, while the polymer with bulk Bi has an HMV equal to 4.43 g and 
the nano Bi polymer has a HMV equal to 2.08 g. As energy further increases, however, (E ≥ 1086 keV) the bulk 
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Figure 5.   The TVL for the pure PLA, PLA with bulk Bi, and PLA with nano Bi at different energies.
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Bi polymer has the greatest HMV. At 1086 keV, for instance, the HMV values are equal to 113.11 g, 146.14 g, 
and 60.34 g for the pure polymer, polymer with bulk Bi, and polymer with nano Bi, respectively. These results 
indicate that at all energies the polymer with nano Bi has a much lower HMV than the other samples, which is 
greatly important for real applications. In other words, a much lighter sample can be used to attenuate the same 
amount of photons, making this shield more practical and viable as a portable or movable radiation shield. In 
contrast, the polymer with bulk Bi offers great attenuation, but is much heavier than the nano Bi, making it 
impractical for some applications.

Like HMV, TMV is the counterpart where the intensity of radiation is reduced to a tenth of its original value. 
This naturally results in the TMV values being much greater than the HMV results. Figure 7 illustrates the TMV 
of the three investigated polymers. Due to the similarity between the two parameters, the same trends can be 
observed in both figures. First, the TMV of the polymers increase with increasing energy. For example, the TMV 
of the polymer with bulk Bi increases from 7.78 g at 121.7 keV to 22.76 g at 334.3 keV, 126.27 g at 964.1 keV, 
155.97 g at 1112 keV, and 180.48 g at 1408 keV. At energies below 1086 keV, the TMV follow the order of pure 
polymer > bulk Bi > nano Bi. For instance, at 344.3 keV, the pure polymer has a TMV of 68.47 g, the polymer with 
bulk Bi has a TMV of 22.76 g, and the polymer with nano Bi has a TMV of 10.27 gm. At energies greater than 
1086 keV, however, the TMV of the bulk Bi sample surpasses the pure polymer. At 1112 keV, the pure polymer 
has a TMV equal to 114.45 g and the bulk Bi sample has a TMV of 155.97 g. This figure reaffirms the conclusion 
that the nano Bi is more practical for real world applications due to the much lower mass needed to attenuate 
the same amount of photons, even if a greater thickness might be needed compared to bulk Bi. Therefore, when 
selecting the most desirable radiation shield for a specific application, both the thickness and the mass of the 
shield must be carefully considered and compared against each other.

Figure 8 illustrates the radiation protection efficiency (RPE) of the three investigated samples as a function 
of the incoming photon energy. This figure demonstrates that RPE decreases as energy increases for all three 
samples. The maximum RPE occurs at the lowest tested energy, 121.7 keV, and is equal to 86.20% for the polymer 
with bulk Bi2O3. RPE, then quickly decreases to its minimum value at the highest tested energy. Continuing 
with this sample, its RPE is equal to 64.91% at 244.7 keV, 16.53% at 778.9 keV, 10.00% at 1086 keV, and 8.18% at 
1408 keV. This sharp drop signifies that the samples have a good attenuation capability at lower photon energies, 
and that their abilities to absorb radiation decreases with increasing energy. Thus, to maintain the same amount 
of attenuation against higher energy photons, the thickness of the polymer must be increased if the application 
requires it. Furthermore, the figure shows that both the polymers with Bi2O3 have a higher RPE than the pure 
polymer. For example, at 964.1 keV, the pure polymer has an RPE of 7.68%, while the polymer with bulk Bi2O3 
has an RPE of 11.48%, and the polymer with nanoparticle Bi2O3 has an RPE of 9.47%. This result suggests that 
the addition of Bi2O3 enhances the RPE of the tested samples.

Finally, the present work was compared with an essential material used for gamma ray shielding such as glass 
and concrete as well as previous works related to our work such as HDPE embedded in CdO nanoparticles and 
silicon rubber (SR) embedded with Bi2O3 nanoparticles. The comparison was reported in Table 4 and it was 
clear that the results of the current work provided light shielding materials with a good attenuation parameters 
compared to the other scheduled results.

Conclusion
The designed prototypes were designed and created using 3D printing method and this method proved to be 
capable of creating excellent radiation shielding candidates and good replacements to already available shields 
based on lead in real applications. Moreover, the suggested technique allows manufacturers to create radiation 
shields with a large variety of shapes and dimensions that can fit any the requirements of any application. Addi-
tionally, the low density nano bismuth particles have a better mass attenuation coefficient than bulk bismuth, 
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Figure 7.   The TMV for the pure PLA, PLA with bulk Bi, and PLA with nano Bi at different energies.
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which can help develop a lighter and more effective radiation shielding material. This advantage is attributed to 
the homogenous distribution of nanoparticles with approximately equal size within the printed object layers. 
This novel technique can be applied to a wide variety of radiation shielding applications from the shielding of 
low energy X-ray diagnostic to the environmental shielding of nuclear reactor due to its proved great ability of 
radiation attenuation and being consisting of both light and heavy material and also can be used to produce 
medical phantoms.

Data availability
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