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Abstract: Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surround-
ing blood vessels. Under physiological conditions, PVAT plays a significant role in regulation of
vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC) proliferation.
PVAT is responsible for releasing adipocytes-derived relaxing factors (ADRF) and perivascular-
derived relaxing factors (PDRF), which have anticontractile properties. Obesity induces increased
oxidative stress, an inflammatory state, and hypoxia, which contribute to PVAT dysfunction. The
exact mechanism of vascular dysfunction in obesity is still not well clarified; however, there are
some pathways such as renin–angiotensin–aldosterone system (RAAS) disorders and PVAT-derived
factor dysregulation, which are involved in hypertension and endothelial dysfunction development.
Physical activity has a beneficial effect on PVAT function among obese patients by reducing the
oxidative stress and inflammatory state. Diet, which is the second most beneficial non-invasive
strategy in obesity treatment, may have a positive impact on PVAT-derived factors and may restore
the balance in their concentration.

Keywords: obesity; perivascular adipose tissue; exercise; endothelial dysfunction

1. Introduction

Today, an increasing prevalence of obesity is observed in many countries, since a third
of the worldwide population is described as obese or overweight [1]. National survey
data from 2000 to 2018 in the USA reported that obesity prevalence increased to over 42%
among adults, and the prevalence of severe obesity (BMI ≥ 40 kg/m2) doubled to 9.2%
over the study period [2]. Weight problems and obesity are increasing at a rapid rate
in most of the EU Member States, with estimates of 52.7% of the EU’s population being
overweight in 2019 [3]. According to the Global Burden of Disease study, 4.7 million people
died prematurely in 2017 as a result of obesity [4]. Obesity is a risk factor for developing
many disorders such as diabetes mellitus, hypertension, cardiovascular events, obstructive
sleep apnea syndrome, certain cancers, and musculoskeletal diseases [5]. Obesity also has
a negative impact on quality of life and increases the costs of healthcare [6,7].

Adipose tissue is known as an endocrine organ. By producing adipokines, it regulates
various metabolism pathways and processes such as insulin sensitivity, energy metabolism,
blood flow, and even inflammatory stage [8,9]. Adipose tissue is divided into two main
subtypes: white (WAT) and brown (BAT), according to their characteristic and different
properties. WAT is responsible for storage of the excess of energy as fatty acids, while BAT
mostly specializes in thermogenesis [10]. There is also a third type of adipocyte, termed
the “beige” adipocyte. It is a brown adipocyte that arises within white adipose depots and
also has thermogenic capacity [11].
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Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue
surrounding blood vessels. PVAT is located around the aorta, coronary arteries, small and
resistance vessels, and vasculature of the musculoskeletal system [12–14] On the contrary,
PVAT is absent among cerebral vessels [15]. It consists of stem cells, adipocytes, mast
cells, and nerves [16,17]. PVAT lies outside the adventitia, with no laminar structures or
any organized barrier separating them from each other. Although PVAT characteristics
resemble both brown and white adipose tissues, recent evidence suggests that PVAT de-
velops from its own distinct precursors, implying a closer link between PVAT and the
vascular system [18]. PVAT at different anatomical locations presents different phenotypes.
PVAT demonstrates WAT, BAT, and mixed phenotypes, depending on their anatomical
placement [19]. In the abdominal PVAT, white adipocytes are more abundant, whereas
thoracic PVAT contains more brown adipocytes. These regional differences in PVAT could
explain the higher susceptibility of the abdominal aorta to atherosclerosis compared to the
thoracic aorta [20–22]. Moreover, gender influences differences in PVAT. After menopause
in women, there is an increase in perivascular and pericardial adipose tissue, and addition-
ally, the volume of aortic PVAT positively correlates with the reduction in estradiol [23,24].
Additionally, in obesity experimental models, the PVAT mass and adipocyte size are in-
creased [25]. PVAT, similar to every other adipose tissue, secretes cytokines, hormones,
growth factors, and adipokines. It plays a beneficial role as long as adipokine levels with
opposing properties remain in equilibrium. In obesity, PVAT becomes dysfunctional and
exerts detrimental effects on vascular homeostasis [26].

2. The Influence of PVAT-Derived Factors on Vascular Function

Under physiological conditions, PVAT plays a significant role in the regulation of
vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC)
proliferation (Figure 1) [27–29]. PVAT exhibits an anticontractile effect as a response to
several factors such as endothelin-1, phenylephrine, angiotensin II, and serotonin [30–32].
PVAT anticontractile factors are divided into adipocytes-derived relaxing factors (ADRF)
and perivascular-derived relaxing factors (PDRF) [30–33]. On the other hand, PVAT induces
vasoconstriction by releasing angiotensin II [34] and the superoxide anion [35]. These
factors affect vascular tone via endocrine and paracrine mechanisms. Moreover, VSMCs
play a significant role in maintaining the balance between vasoconstriction and vasodilator
signals. However, PVAT, as a special adipose tissue, is not only a mechanical support for
the vasculature but plays a vital role in the homeostasis of the vascular system, sharing a
status no less important than that of the endothelium [36].

2.1. Adiponectin

Adiponectin is profusely produced and released by PVAT under physiological con-
ditions [37]. It is secreted in different polymeric forms, which differ from each other by
molecular weight: multimeric, hexameric, trimeric, and globular [38]. Adiponectin is
known as a vasodilator, which acts through different mechanisms affecting endothelial
cells and VSMCs directly. First of all, adiponectin activates in both mentioned locations
5′ adenosine monophosphate-activated protein kinase (AMPK), which is responsible for
phosphorylation of endothelial nitric oxide synthase (eNOS) [39,40]. Moreover, adiponectin
increases the production of 3,4-tetrahydrobiopterin (BH4), which is an important cofac-
tor of eNOS [41]. As a consequence, the synthesis of the well-known vasodilator nitric
oxide (NO) is increased. In addition, AMPK induces the opening of large-conductance
calcium-activated potassium channels (BK channels) in VSMCs, which also contributes to
vasodilation [42]. AMPK is activated mainly by globular and trimeric forms of adiponectin.
Additional effects of multimeric adiponectin are the downregulation of glucose blood levels
by the stimulation of glucose uptake by muscles, the improvement of insulin sensitivity,
or a reduction in hepatic glucose production [43]. Moreover, it also regulates fatty acid
metabolism by increasing the high-density lipoprotein (HDL) concentration and decreasing
the triglycerides [44].



Nutrients 2021, 13, 3843 3 of 18

Nutrients 2021, 13, x FOR PEER REVIEW 3 of 18 
 

 

acid metabolism by increasing the high-density lipoprotein (HDL) concentration and de-
creasing the triglycerides [44]. 

 
Figure 1. Vasodilatory and hyperpolarizing effect of perivascular adipose tissue–derived factors (PVAT-derived factors) 
on vascular smooth muscle cells (VSMCs) and hyperpolarizing effect of PVAT-derived factors on endothelial cells. Adi-
ponectin causes vasodilation by affecting adiponectin receptors (AR) in endothelial cells, which contributes to the activa-
tion of locations 5′ adenosine monophosphate-activated protein kinase (AMPK), which is responsible for the activation of 
endothelial NO synthase (eNOS). Enhanced NO concentration induces activation of cyclic guanosine monophosphate 
(cGMP), which is responsible for opening large-conductance calcium-activated potassium channels (BKCa). eNOS is pre-
sent in both endothelial cells and adipocytes. Leptin activates leptin receptors (LR), which are responsible for activation 
of not only AMPK, but also endothelium-derived hyperpolarizing factor (EDHF), which activates BKCa. Moreover, AMPK 
independently activates BKCa and induces a hyperpolarization effect. Hydrogen sulfide (H2S) induces activation of BKCa 
in VSMCs and endothelial cells. Moreover, it induces a decrease in intracellular pH by the activation of Cl−/HCO3− ionic 
exchanger. Angiotensin 1–7 (Ang 1–7) by affecting endothelial Ang 1–7 receptor (MAS) activates eNOS and increases the 
NO concentration. Hydrogen peroxide (H2O2) stimulates the soluble guanylyl cyclase (sGC-1), which induces vasodilation 
through the NO/GC-1/cGMP pathway. 
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Figure 1. Vasodilatory and hyperpolarizing effect of perivascular adipose tissue–derived factors (PVAT-derived factors) on
vascular smooth muscle cells (VSMCs) and hyperpolarizing effect of PVAT-derived factors on endothelial cells. Adiponectin
causes vasodilation by affecting adiponectin receptors (AR) in endothelial cells, which contributes to the activation
of locations 5′ adenosine monophosphate-activated protein kinase (AMPK), which is responsible for the activation of
endothelial NO synthase (eNOS). Enhanced NO concentration induces activation of cyclic guanosine monophosphate
(cGMP), which is responsible for opening large-conductance calcium-activated potassium channels (BKCa). eNOS is present
in both endothelial cells and adipocytes. Leptin activates leptin receptors (LR), which are responsible for activation of
not only AMPK, but also endothelium-derived hyperpolarizing factor (EDHF), which activates BKCa. Moreover, AMPK
independently activates BKCa and induces a hyperpolarization effect. Hydrogen sulfide (H2S) induces activation of BKCa
in VSMCs and endothelial cells. Moreover, it induces a decrease in intracellular pH by the activation of Cl−/HCO3− ionic
exchanger. Angiotensin 1–7 (Ang 1–7) by affecting endothelial Ang 1–7 receptor (MAS) activates eNOS and increases the
NO concentration. Hydrogen peroxide (H2O2) stimulates the soluble guanylyl cyclase (sGC-1), which induces vasodilation
through the NO/GC-1/cGMP pathway.

2.2. Leptin

Leptin is another adipokine highly produced by adipose tissue. It regulates appetite
by centrally affecting the hypothalamus and activating a sympathetic effect by affecting
the arcuate nucleus in the hypothalamus [45]. Leptin synthesis is directly proportional
to adipocyte size [46]. Leptin-induced vasodilation acts via endothelium-dependent and
-independent mechanisms, which additionally depends on the type of vessel. In large arter-
ies, such as the aorta, leptin increases endothelium-dependent vasodilation, in a similar
way to adiponectin, by AMPK activation, which is responsible for eNOS phosphoryla-
tion [47]. In small arteries, such as the mesenteric artery, leptin-induced increased synthesis
of NO and endothelium-derived hyperpolarizing factor (EDHF) contribute to endothelium-
dependent vasodilation [48]. VSMCs are also known as a target for leptin, which impairs
the contraction effect of angiotensin II by reducing the Ca2+ release from cellular reserves
and inducing VSMC proliferation [47]. In addition, leptin in a high concentration can
induce vasoconstriction by increasing the endothelin-1 release from endothelium [49].
Leptin is known as an immune-modulatory factor, which induces the production of proin-
flammatory cytokines such as IL-6, TNFα, or IL-12 and the differentiation of monocytes
into macrophages [50].
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2.3. H2O2

PVAT-derived hydrogen peroxide (H2O2) is known as both a vasoconstrictor and
vasodilator factor by different mechanisms, which depend on the concentration of H2O2,
vessel type and vessel contractile status [51]. In healthy individuals, the concentration
of H2O2 is nontoxic. First of all, H2O2 has membrane-permeable properties and freely
diffuses to smooth muscle cells, where it stimulates the soluble guanylyl cyclase (sGC-1),
which plays the role of receptor for NO in smooth muscles and induces vasodilation by
the NO/sGC-1/cGMP pathway [52]. On the other hand, a high concentration of H2O2
stimulates cyclooxygenase and increases the level of Ca2+ [51].

2.4. H2S

Hydrogen sulfide (H2S) is a gaseous factor, which is produced by PVAT, endothelial
cells, and VSMCs, controlling the vascular tone. H2S-induced vasodilation is caused by
activation of BK channels in VSMCs, which leads towards cell membrane hyperpolarization,
inactivation of voltage-dependent l-type Ca2+ channels, and a decrease in intracellular Ca2+

concentration [53]. In addition, H2S leads to a dose-dependent decrease in intracellular
pH, which causes the vasodilation. It is suggested that the Cl−/HCO3

− ionic exchanger is
engaged in this process [54]. The shortage of H2S is important in the development of various
cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure [55].

2.5. Angiotensin 1–7 and Angiotensin II

Components of the renin–angiotensin–aldosterone system (RAAS) are present in the
aortic and mesenteric PVAT, except renin [56]. The effect of factors on vascular tone is
different. Angiotensin 1–7 induce vasodilation by endothelium-dependent mechanisms.
After the activation of the Mas receptors, located in the endothelium, the synthesis of
NO is increased, which leads to vasodilation by the activation of BK channels [57]. On
the contrary, angiotensin II, which is also produced by PVAT, induces vasoconstriction.
There are regional differences in angiotensin II synthesis by PVAT, while it is greater in
mesenteric adipose tissue than in the periaortic adipose tissue [35]. Moreover, angiotensin
II in increased concentration activates immune cells, which can produce cytokines and
proinflammatory mediators [58].

2.6. NO

Nitric oxide (NO) is a well-known endogenous gas with vasodilative properties,
which is produced in almost all human cells. There are three isoforms of NOS: neuronal
NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) [59]. Each of them is
characterized by different attributes. nNOS is present in cells of the central and peripheral
nervous system, where produced NO acts as a neurotransmitter and plays a role in the
central regulation of blood pressure [60]. iNOS is activated by inflammatory cytokines
and plays a role in inflammation; additionally, iNOS is Ca2+ independent, unlike other
isoforms [59]. eNOS, which is located in endothelial cells, regulates blood pressure locally
and has an antiatherosclerotic effect [60,61]. PVAT is responsible for increased production
of NO by a direct mechanism, while eNOS isoform is also present in PVAT, where NO is di-
rectly produced and released affecting vasculature [62]. In addition, NO produced in PVAT
positively regulates adiponectin release by PVAT [37]. On the other hand, PVAT-derived
factors, mentioned in previous sections, increase NO production, which is responsible
for activations of BK channels and stimulating cGMP synthesis endothelium and smooth
muscle cells.

2.7. COX-Derived Factors

PVAT is also known as a source of a group of adipose-derived factors, which are
produced by cyclooxygenase (COX), such as thromboxane A2 (TXA2), prostaglandin D2,
prostaglandin E2, prostaglandin, F2a, prostaglandin H2, and prostaglandin I (prostacy-
clin) [63,64]. Both COX-1 and COX-2 isoforms are present in adipocytes of PVAT [64].
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COX-derived factors have a different effect on vascular tone. Under normal conditions,
serotonin stimulates the production of TXA2, which is characterized by pro-contractile
and pro-inflammatory properties [65]. Prostacyclin is known as a vasodilator, which
additionally reacts with receptors on the vasculature and plays a significant role in pro-
tection against endothelium dysfunction and atherosclerosis [27,66,67]. Moreover, the
concentration of prostacyclin declines with age progression [27].

2.8. Noradrenaline

PVAT is known as a source of noradrenaline (NA), which is the main neurotransmitter
in the sympathetic nervous system (SNS). NA induces vasoconstriction of vessels by
activation of adrenoreceptors localized on VSMCs [68]. NA is released by the endings of
sympathetic nerves, which are spread among adipose tissue. However, it is reported that
NA is additionally synthesized by PVAT independently of SNS activation, while surgical
denervation of PVAT decreased NA concentration insignificantly [69,70]. Moreover, Ayala-
Lopez et al. also indicated that NA is stored in PVAT, while tyramine stimulation induced
an increased release of catecholamines from PVAT. In addition, NA stimulates the synthesis
of H2O2 by PVAT, which has an anti-contractile effect [71].

3. The Role of Inflammation, Oxidative Stress, and Hypoxia in Obesity

Obesity is characterized by an excessive level of triglycerides and lipids, which are
stored in adipocytes. It leads to their hyperplasia and hypertrophy, where hyperplasia is a
well-tolerated complication. In contrast, it is suggested that the capacity of lipid storage
and subsequent growth in adipocyte size is limited, and exceeding this threshold induces
serious molecular changes and induces cellular dysfunction and death of adipocytes [72].
Moreover, enlarged adipocytes induce elevation of IL-6, IL-8, and leptin and decrease the
level of adiponectin, which leads to consequent accumulation of inflammatory factors
in PVAT [73,74]. Cytokines, fatty acids, and cell-free DNA, which are excreted after
adipocytes apoptosis, induce migration of macrophages to the adipose tissue. Adipose
tissue macrophages are divided into two subgroups, which differ from each other by type
of secreted cytokines and cell markers: M1 with an inflammatory profile and M2 with an
immunosuppressive feature [75]. The M1 subclass secretes cytokines such as TNF-α, IL-6,
and IL-1β and plays a significant role in inducing an inflammatory state in adipose tissue,
which is important in the development of vascular disorders. Obesity is accompanied
by a chronic low-grade inflammatory state, which is confirmed by an elevated level of
inflammatory markers, especially C-reactive protein and IL-6, which are significantly
higher among obese nonmorbid patients and positively correlates with BMI [76,77].

The excess of carbohydrates, fatty acids, and hyper nutrition induce oxidative stress
activation by various pathways such as glycoxidation, oxidative phosphorylation in mito-
chondria, and NADPH oxidase (NOX) activation with consequent reactive oxygen species
(ROS) production [78,79]. The increase in NOX activity leads to excessive production of the
superoxide anion (O2

−), which can react with DNA, lipids, and proteins leading to their
destruction [80]. Moreover, O2

− leads to the alteration of NO activity and consequent en-
dothelial dysfunction and cardiovascular events among obese populations [81]. In addition,
an elevated level of ROS induces VSMC proliferation and remodeling, which contribute to
hypertension development and increased risk of cardiovascular events [82,83].

Moreover, hypertrophy of adipocytes does not proceed hand in hand with angiogene-
sis, and the demand of tissues for oxygen is greater than the supply. As a result, hypoxia
and consequent necrosis and inflammation occur [84]. Hypoxia-inducible factor (HIF-1α),
which is increased in adipose tissue among obese individuals, plays the role of mediator in
hypoxia. HIF-1α induces the elevation of IL-6 and TNF-α activity and reduces adiponectin
concentration [85].
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4. Dysregulation of Vascular Function Induced by PVAT Dysfunction in Obesity

PVAT dysfunction, which is a result of an increased inflammatory state among obese
patients, induces the dysregulation of vascular function by increased peripheral resistance
and vascular tone [86]. In animal models, with diet-induced obesity, loss of the PVAT
anticontractile effect was correlated with increased blood pressure [87,88]. The exact
mechanism of vascular dysfunction in obesity is still not well clarified; however, there
are some pathways such as renin–angiotensin–aldosterone system (RAAS) disorders and
PVAT-derived factors’ dysregulation, which are involved in the process. Pathological
modifications in the synthesis and secretion of ADR and PDRF are responsible for the
loss of their anticontractile effect (Figure 2). Endothelial dysfunction plays a crucial role
in the pathophysiological process of microvascular and macrovascular complications of
obesity [89,90].
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function. (PVAT: perivascular adipose tissue, RAAS: renin–angiotensin–aldosterone system, NO:
nitric oxide, H2S: hydrogen sulfide, H2O2: hydrogen peroxide, TNF–α: tumor necrosis factor α, and
NA: noradrenaline).

4.1. The RAAS in Obesity

The renin–angiotensin–aldosterone system (RAAS) plays a significant role in the regu-
lation of blood pressure. Components of RAAS are produced by the adrenal gland, liver,
and adipose tissue. The hypertrophy of adipocytes among obese patients contributes to in-
creased production of angiotensinogen, Ang-II, and aldosterone by PVAT and subcutaneous
adipose tissue [91,92]. The concentration of factors mentioned above positively correlates
with BMI among obese nonhypertensive subjects [93]. Moreover, the animal model study
with diet-induced obese rats revealed the increased production of angiotensinogen by
adipose tissue, while the liver expression remained unchanged [94], which shows the sig-
nificant role of adipose tissue in RAAS factor production. Each component of RAAS plays
an important role in the development of dysfunction of microcirculation, hypertension, and
arterial stiffness. Increased concentrations of Ang-II and aldosterone induce microvascular
constriction via different mechanisms. First of all, chronic activation of angiotensin-II type
1 receptors (AT1R), which suppresses eNOS activity, induces a decrease in NO concen-
tration and bioavailability [95]. Moreover, Ang-II stimulates the synthesis and release of
endothelium-dependent vasoconstrictors such as endothelin-1 by increased expression of
preproendothelin-1, which is consequently converted to endothelin-1 and COX-1-derived
prostanoids by increased expression of COX in human endothelial cells [96,97]. In addition,
each component of RAAS, especially aldosterone, by the activation of mineralocorticoid
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receptors, induces reabsorption of sodium in distal nephron and consequently increases
blood pressure [98]. Ang-II and aldosterone also induce arterial stiffening via enhanced
fibrosis, proliferation of VSMCs, and increased collagen deposits [99].

4.2. PVAT-Derived Factors Dysregulation with Effect on Vascular Tone

Among obese patients, the regulatory effect of PVAT on vascular tone is attenu-
ated because of the dysregulation in PVAT-derived factors release. Increased inflamma-
tion in adipose tissue, especially IL-6 and TNFα, decreases adiponectin secretion, while
the expression of mRNA remains unchanged. Almabrouk et al. reported that concen-
tration of adiponectin was 70% decreased among mice, which were fed a high-fat diet
for 12 weeks [100]. Aghamohammadzadeh et al. presented similar findings among hu-
mans, while the adiponectin level was significantly lower among obese patients compared
to healthy individuals; however, the main limitation of this study was the small study
group [101]. Peroxisome proliferator-activated receptor gamma (PPAR-γ) belongs to ligand-
dependent nuclear receptors, which play a significant role in adipocyte differentiation and
metabolism [102]. Obesity induces downregulation of PPAR-γ, which decreases the expres-
sion of adiponectin [103]. Decreased synthesis and secretion of adiponectin is responsible
for the decrease in anticontractile effect.

Leptin synthesis is proportional to adipose size; thus, in obesity, the production of
leptin is increased in PVAT and visceral adipose tissue [104]. An increased level of leptin
is related to selective insensitivity in appetite and weight regulation and a biphasic effect
on vascular function. Even though leptin has an anticontractile effect by inducing NO
synthesis, long-lasting exposure of endothelium to leptin induces the inverse result by
decreasing the bioavailability of NO [105]. Initially, in diet-induced obesity in animal
models, the impairment in leptin-induced NO synthesis and release was compensated
by enhanced EDHF-mediated vasodilation. After three months of a high-fat diet, both
NO and EDHF-mediated vasodilation effects were reduced and led to an increase in
blood pressure [44,48]. In addition, an increased level of leptin decreased the level of
L-arginine, resulting in eNOS uncoupling and overproduction of O2

−, which reacted with
NO forming the cytotoxic ONOO-inducing endothelial dysfunction [105]. Increased leptin
levels predispose the development of atherosclerosis, by inducing the production of IL-6,
IL-12, and TNFα, which plays a significant role in atherogenesis [106]. Moreover, leptin
induces the proliferation of vascular and endothelial cells, which also play an important
role in atherosclerosis development [107]. In addition, increased blood pressure induced by
an enhanced level of leptin is a result of the SNS stimulation. In experimental studies, the
external infusion of leptin increased the concentration of norepinephrine and epinephrine
dose dependently [107]. Harlan et al. suggested that leptin induces SNS stimulation by
activation of the arcuate nucleus in hypothalamus [108].

Geng et al. showed that H2S bioavailability and synthesis in adipose tissue was
decreased in mice on a highfat diet [109]. It is probably a result of the decreased activation
of cystathionine γ-lyase (CSE), which is responsible for H2S production. Moreover, obesity
is related to an increased concentration of ROS, which induces H2S degradation [110]. A
decreased concentration of H2S results in increased systolic and diastolic blood pressure
and contributes to the progression of atherosclerosis [111]. H2O2 is another vasorelaxant
factor, which has the opposite abilities to O2

−, which induces vasoconstriction. The final
effect on vessels depends on the balance between them and the activation of superoxide
dismutase (SOD), which is an essential antioxidant enzyme in inactivation of the mentioned
factors [25]. The oxidative stress, present among obese individuals, reduces SOD activation,
which results in the loss of anticontractile effect and consequent vascular dysfunction by
increased concentration of O2

− and H2O2 [40]. It turns out that H2O2 is changed into a
hydroxyl radical, which induces cell damage.

Decreased NO release is present among obese patients compared to controls [56]. First
of all, disturbances in secretion of the PVAT-derived factors mentioned above induces
changes in NO synthesis and releasing. Elevated ROS concentration among obese individ-
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uals reacts with the NO forming cytotoxic product, which interferes with endothelial cells.
Among diet-induced obese mice, reduced expression of eNOS in mesenteric PVAT [87] and
impaired eNOS function in thoracic aorta PVAT [49] was observed.

Obesity is connected with increased COX-1 and consequent COX-2 activation, affect-
ing increased production of contractive (TXA2), which contributes to an increased vascular
smooth muscles tone [64]. Moreover, due to pro-inflammatory TXA2, the increased con-
centration of inflammatory markers, ROS, and consequent endothelial dysfunction is
present [112,113]. HF diet attenuates prostacyclin secretion, which induces endothelial
dysfunction [27]. Moreover, obese subjects present impairment in the prostacyclin ability
to increase adenosine 3′,5′-cyclic monophosphate (cAMP) and consequent dysregulation in
platelets function [114].

5. The Influence of Exercise among Obese on PVAT

Exercise is one of the beneficial nonpharmacological interventions, which is essen-
tial in obesity treatment. Physical activity increases the muscles’ demands for oxygen
and nutrition, resulting in increased blood flow and the vasodilation of muscle vessels.
Exercise induces body weight loss, improvement in endothelial function, and reduction
in blood pressure [115]. The influence of physical activity on PVAT is multiple. First of
all, exercise has anti-inflammatory properties and reduces oxidative stress [116]. It was
also shown that exercise prevents or attenuates infiltration of immune cells into PVAT
improving vascular function [117]. It contributes to decreasing adipocyte size and conse-
quent reduction in inflammatory markers and pro-inflammatory factors secretion such
as TNFα, IL-6, or leptin [118,119]. Physical activity contributes to enhanced adiponectin
synthesis by PVAT, inducing an improvement in endothelium-dependent vasodilation
and vascular function [120]. Moreover, exercise training is responsible for a reduction in
ROS concentration and increased NO bioavailability [121]. In obese rats, physical activity
increases the eNOS expression and phosphorylation, which is essential in enzyme acti-
vation [120,122]. SNS modulates vascular tone via a double mechanism. Noradrenaline,
which is the main SNS mediator, induces the expression of β3-adrenoreceptors, which are
responsible for adiponectin release, while organic cation transporter 3 (OCT3) separates
the excess of NA [38]. Saxton et al. reported that obesity contributes to the downregulation
of mentioned receptors among mice [123]. However, exercise performed on obese mice
turned out to increase the expression of β3-adrenoreceptors and returned control levels
of OCT3. Moreover, stimulation of β3-adrenoreceptors plays an important role in eNOS
activation in PVAT [124]. Additionally, it was postulated that skeletal muscle activity
regulates PVAT function through myokines such as FGF21, meteorin-like, irisin, IL-15, and
IL-6, acting in a paracrine fashion to antagonize dysfunction of PVAT (i.e., inflammation
and dysregulated secretion of adipokines) [117]. DeVallance et al. showed that 8-week
aerobic training in rats with metabolic syndrome prevented the increase in oxidant load and
inflammation, while enhancing •NO and proteasome function in PVAT, which favorably
influenced the function of aortic endothelium [125]. Wang et al. reported that among obese
mice, the dominant population of macrophages in the PVAT are M1 subtype, which has
proinflammatory properties [126]. Physical activity has an influence on the population of
macrophages in PVAT, while 8-week exercise induces reduction in M1 cells with rising of
M2 cells among exercised mice, which was not observed among the obese nonexercised
group of mice [126]. Moreover, mentioned study confirms the thesis presented by the
remaining reports that physical activity has anti-inflammatory properties, while 8-week
exercise induces a significant reduction in IL-6 and TNF-α concentration with a consequent
significant increase in adiponectin and IL-10 level. Uncoupling protein 1 (UCP1), espe-
cially highly expressed in BAT, is responsible for heat production by distracting the proton
gradient in mitochondria [127]. Exercise intervention induces upregulation of expression
of UCP1 and increases the number of multilocular brown adipocytes in PVAT among
obese, exercised mice [126]. Similar findings were reported by Liao et al., who reported
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an increase in UCP1 expression in the mesenteric artery PVAT after exercise intervention
among rats [128].

6. The Potential Influence of Diet on PVAT-Derived Factors among Obese Patients

Besides exercise, an adequate diet is another beneficial intervention in weight loss and
obesity treatment. Nowadays, there are a wide variety of diet strategies, which differ from
one another in terms of the percentage content of macronutrients, such as carbohydrates,
proteins, and fats. However, a reduction in daily calorie intake is a universal rule and a
recommended strategy in weight loss [129]. Some data that present the influence of dietary
intervention directly on PVAT are available. Nevertheless, the association between diets
and PVAT are not clearly understood. Reports mainly refer to animal models, in which
high-carbohydrate (HC) diets induce obesity and the consequent loss of the anticontrac-
tile effect of PVAT by an imbalance in PVAT-derived factor secretion [100]. In contrast,
Costa et al. have shown that consuming an HC diet for 4 weeks enhanced the release of
vasodilatory factors from PVAT, suggesting that this could be a compensatory adaptive
characteristic in order to preserve the vascular function during the initial stages of obe-
sity [130]. Additionally, it is suggested that imbalanced diets can cause PVAT inflammation
and dysfunction as well as impaired vascular function. The recent published study has
showed that a high-fat (HF) and a high-sucrose (HS) diet affected PVAT at different sites.
Sasoh et al. have presented characteristic differences in the effects of HF and HS diets
on PVAT and aortae [131]. A HF diet induced an increased number of large-sized lipid
droplets and increased cluster of differentiation (CD) 68+ macrophage- and monocyte
chemotactic protein (MCP)-1-positive areas in the abdominal aortic PVAT (aPVAT). Fur-
thermore, a HF diet caused a decreased collagen fiber-positive area and increased CD68+
macrophage- and MCP-1-positive areas in the abdominal aorta. In contrast, a HS diet
induced an increased number of large-sized lipid droplets, increased CD68+ macrophage-
and MCP-1-positive areas, and decreased UCP-1 positive area in the thoracic aortic PVAT
(tPVAT). Moreover, a HS diet caused a decreased collagen fiber-positive area and increased
CD68+ macrophage- and MCP-1-positive areas in the thoracic aorta. However, there were
some factors that did not follow the trend to this variation. For example, angiotensinogen
levels were increased in both tPVAT and aPVAT of the HF group. The authors concluded
that the potential mechanisms underlying these effects may be related to the different
adipocyte species that comprise tPVAT and aPVAT [131]. Victorio et al. reported that the
effect of HF and HS diets on PVAT differs depending on sex [132]. The anti-contractile
effect of PVAT was measured by comparing the phenylephrine-induced contraction in
mesenteric arteries after 3 and 5 months of HF or HF+HS diet among male and female
mice. The results showed that anticontractile function was impaired after 3 months of both
obesogenic diets among females, while among males, the anti-contractile effect remained
comparable during the experiment. Moreover, the assessment of PVAT-derived endothelial
function after acetylcholine administration likewise demonstrated differences between
sexes, while obesogenic diet among females induces endothelial dysfunction after 3 months
and only after 5 months among males.

However, there are many reports that relate the positive impact of different diets on
inflammatory state, oxidative stress, NO, adiponectin, or leptin concentration. Thus, one
could conclude that similar changes could be observed in PVAT; however, further studies
should be conducted.

The Mediterranean diet (MD) is the most popular diet and is commonly known as a
healthy, balanced diet with proven efficiency in reducing the cardiovascular risk among
high-risk patients and reducing overall mortality [133,134]. A typical MD contains 55–60%
carbohydrates, mainly complex ones, 25–30% polyunsaturated and monounsaturated fats,
and 15–20% proteins, and meals are generally based on fish, nuts, olive oil, and plant-based
foods [135]. Luisi et al. reported that the implementation of an MD for 3 months among
overweight/obese patients, with high-quality extra virgin olive oil, induced weight loss
and the significant elevation of adiponectin levels [136]. Interestingly, among normal
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weight controls, the MD has no impact on weight, and the increase in adiponectin concen-
tration was not as considerable as that found among overweight/obese patients. It can be
concluded that weight loss and the consequent reduction in adipose tissue contribute to
a size reduction in adipocytes and an improvement in adiponectin synthesis and release.
Among both groups, the concentration of IL-6 significantly decreased after dietary inter-
vention, which provides proof of the anti-inflammatory properties of MD [136]. Moreover,
it is suggested that the higher the amount of fiber in one’s diet, the greater the adiponectin
concentration in one’s blood [137].

Recently, the ketogenic diet has become very popular due to its therapeutic properties
in relation to different diseases. It has been widely used in drug-resistant epilepsy with
good outcomes and is increasingly being used in metabolic disorders such as obesity
or diabetes mellitus [138,139]. The ketogenic diet is characterized by low carbohydrates
and high fat, inducing changes in the metabolism of energy substrates, with a switch
from glucose to fatty acids [138]. A very low-calorie ketogenic diet (VLCKD) is a special
type of caloric reduction diet characterized by a very low or extremely low daily food
energy intake, circa 800 kcal per day [140]. It provides 30–50 g of carbohydrates, about
30–40 g of fats, and 0.8–1.5 g/kg of ideal body weight (IBW) of proteins [141]. Monda et al.
reported that obese patients who consumed a VLCKD diet for 8 weeks presented with
a significant body mass reduction, a decreased concentration of inflammatory markers
such as IL-6, TNF-α, and CRP, and a significant elevation in the level of adiponectin
in their blood [140]. This relatively short period of intervention induced a significant
multifactorial improvement; however, the main limitation of the aforementioned study is
the small sample size. In other reports, the ketogenic diet has also been proven to have
anti-inflammatory properties [142,143].

A low-calorie diet is a balanced diet with a 20–30% reduction in one’s daily calorie
intake, differing from the ketogenic diet by its macronutrient content, and consisting
of 45–55% carbohydrates, 25–35% fat, and 15–25% proteins, with an additional 30 g of
fiber [144]. The beneficial effects of a calorie reduction among humans include weight
loss, a reduction in superoxide and inflammatory factor production, and the upregulation
of the activity of eNOS [145,146]. Vink et al. found that 12 weeks of a low-calorie diet
among obese patients resulted in a significant reduction in leptin and the elevation of the
adiponectin concentration [147]. Another report among overweight patients confirmed a
reduction in body weight and leptin levels after 6 months of a low-calorie diet [148]. It
is reported that the supplementation of melatonin in animal models, which is known for
its anti-inflammatory and anti-oxidative properties, could be used in the prevention of
obesity [149,150]. Szewczyk-Golec et al. reported that 30 days of daily oral administration
of 10 g of melatonin, accompanied by a low-calorie diet, induced a statistically significant
reduction in body mass weight and led to the elevation of the adiponectin concentration
among obese patients, which was not observed among the control group, who received a
low-calorie diet alone [151].

Intermittent fasting (IF) is the type of diet that is based on taking intermittent breaks
from eating. There are two types of IF: alternative day fasting and time-restricted fasting.
The first type includes 24 h of fasting followed by a 24-h period of eating with mixing
fast days with nonrestricted days during a week, while time-restricted fasting consists of
different variations, f.e., 16 h of fasting with 8 h of eating [152]. IF is reported to have a
positive impact on adipose tissue function especially among obese individuals. Liu et al.
reported that eight weeks of IF among high-fat diet (HFD)-fed mice reduced adipocytes
hypertrophy and concentration of inflammatory markers by bodyweight reduction and
improvement in insulin sensitivity [153]. Moreover, IF is more effective in reducing inflam-
matory markers concentration than a calorie-restriction diet among animal models [154].
Interestingly, the comparison between IF and a calorie-restricted diet among humans
showed an intermittent increase in M1 markers of inflammation, which was a result of
lipolysis and consequent increase in non-esterified fatty acids serum concentration after
IF [155]. On the other hand, IF in mice was reported to induce activation of macrophages
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with M2 subtype polarization [156]. The M2 macrophages, which are known in the liter-
ature for their anti-inflammatory properties, induce the production of IL-10, phagocyte
apoptotic cells, and promote wound healing [157,158]. Moreover, fasting-mediated activa-
tion of AMPK is reported among animal models [159] and seems to play a significant role
in mitochondrial homeostasis [160]. In addition, AMPK, opposite to mTOR, turned out
to activate autophagy, which seems to play a significant role in maintaining autophagic
homeostasis [161]. Permanent overnutrition induces suppression of autophagy and the
accumulation of impaired cellular components, such as mitochondria, in metabolic tissues,
which contributes to metabolic dysfunction and consequent development of metabolic
disorders such as obesity [162].

7. Conclusions

PVAT, as a special adipose tissue, is not only a mechanical support for the vascular
system but plays a vital role in the homeostasis of the vascular system, sharing a status no
less important than that of endothelium. Obesity plays an important role in the develop-
ment of vascular dysfunction, dysregulation of vascular tone, and endothelial dysfunction.
The pathogenesis of obesity contains hypoxia, increased oxidative stress, and enhanced
inflammatory factors. All these components induce PVAT dysfunction, dysregulation in
the synthesis of PVAT-derived factors, decreased bioavailability of NO, an increased in-
flammatory state in PVAT, and increased activation of RAAS. Exercise training, commonly
known as an essential nonpharmacological intervention in obesity treatment, contributes to
an improvement in PVAT activity, which could have a positive effect on vascular tone. Diet,
which is the second most beneficial non-invasive strategy in obesity treatment, may have a
positive impact on PVAT-derived factors and may restore the balance in their concentration.
Independent of the type of diet, a decrease in body mass weight, which is connected
with a reduction in adipose tissue, may restore the balance of the synthesis and release of
adipokines. However, further studies should be conducted in order to demonstrate the
exact influence of diet on PVAT among humans. Moreover, additional studies are also
needed to help researchers better understand the pathophysiology of PVAT and evaluate
whether targeting PVAT function could be used as a novel approach for the treatment of
cardiovascular diseases.
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